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Origami, the traditional art of paper folding, has
revolutionized science and technology in recent
years and has been found useful in various real-
world applications. In particular, origami-inspired
structures have been used for robotics and mechanical
information storage, in both of which the rigidity
control of origami plays a crucial role. However, most
prior works have only considered the origami design
problem using purely deterministic or stochastic
approaches. In this paper, we study the rigidity control
of origami using the idea of explosive percolation.
Specifically, to turn a maximally floppy origami
structure into a maximally rigid origami structure, one
can combine a random sampling process of origami
facets and some simple selection rules, which allow
us to exploit the power of choices and significantly
accelerate or delay the rigidity percolation transition.
We further derive simple formulae that connect
the rigidity percolation transition effects with the
origami pattern size and the number of choices,
thereby providing an effective way to determine the
optimal number of choices for achieving prescribed
rigidity percolation transition accuracy and sharpness.
Altogether, our work paves a new way for the rigidity
control of mechanical metamaterials.

1. Introduction
Origami, the traditional art of paper folding, has existed
in various regions and cultures for centuries [1], in which
most paper folding practices were primarily related
to religious, ceremonial and recreational purposes. In
the past several decades, origami has been gaining
popularity among not just artists but also scientists
and engineers for its rich geometrical and mechanical
properties. In particular, the mathematics and computat-
ion of origami have been extensively studied by different
origami theorists [2–8]. Moreover, origami has been

2025 The Author(s) Published by the Royal Society. All rights reserved.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

17
 J

un
e 

20
25

 

https://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2024.0826&domain=pdf&date_stamp=2025-06-18
mailto:ptchoi@cuhk.edu.hk
https://doi.org/10.6084/m9.figshare.c.7858464
https://doi.org/10.6084/m9.figshare.c.7858464
http://orcid.org/0009-0005-0398-5487
http://orcid.org/0000-0001-5407-9111


2

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A481:20240826

..........................................................

used in many modern engineering and technological applications, including flexible electronics
[9,10], soft robotics [11,12] and space exploration [13]. Several surveys on recent advances in
origami and its applications can be found in [14–20].

Many prior origami research works have focused on the geometrical and physical properties
of various classical origami patterns, such as the Miura-ori pattern [21,22], waterbomb origami
[23], Resch pattern [24] and curved crease origami [25]. Also, multiple computational algorithms
have been developed to modify the geometry of origami structures to achieve different desired
properties [26–29]. In recent years, there has been an increasing interest in the mechanical
properties of different origami structures [30–35] and the application of origami in the design of
mechanical storage devices [36,37]. In [38], Chen & Mahadevan studied the rigidity percolation
and geometric information in floppy origami. Specifically, they changed the planarity of the facets
in the Miura-ori structure using a stochastic approach and analysed the resulting changes in its
rigidity.

Note that the rigidity percolation in bond networks has been widely studied over the past
few decades [39–41]. In recent years, explosive percolation in random networks has received
a lot of attention [42–47]. Specifically, it has been shown that incorporating an extra step of
selecting between two choices in the random process (also known as the power of two choices)
can lead to a very sharp phase transition. More recently, the idea of explosive percolation has
been applied to the rigidity and connectivity control in kirigami metamaterials [48,49]. Motivated
by the above works, here we pose and solve the problem of optimally controlling the rigidity
percolation transition in origami using simple selection rules based on the idea of explosive
percolation.

2. Methods
The Miura-ori pattern is an array of quadrilaterals consisting of m rows of facets in the vertical
direction and n columns of facets in the horizontal direction (figure 1a). It is composed of identical
unit cells with four facets, which can be characterized by two angle parameters, γ and θ , and two
length parameters, l1 and l2 [21,22] (figure 1b). For the classical Miura-ori pattern, all quadrilateral
facets are planar, and the structure has only 1 degree of freedom (DOF), excluding the three global
translational DOFs and three global rotational DOFs. Specifically, it features a single zero-energy
DOF associated with a rigid folding motion [3].

Note that if we allow every quadrilateral facet to bend along one of its diagonals, the origami
structure becomes floppy (figure 1c). It is natural to ask how the rigidity of the structure evolves
as we start from the initial maximally floppy state and gradually enforce that the facets remain
planar, thereby preventing out-of-plane folding. In particular, it is noteworthy that explicitly
enforcing a facet to be planar may affect not just its planarity but also implicitly the planarity of
some other facets. Therefore, the rule of adding the planarity constraints throughout the process
has a significant effect on the rigidity change.

We first consider imposing certain geometrical constraints as described in [38] and
constructing the infinitesimal rigidity matrix of the origami structure to determine the range of
motions associated with infinitesimal rigidity. More specifically, we consider the following edge
constraint for each edge (vi, vj) to enforce that all edge lengths remain unchanged:

ge = ||vi − vj||2 − l2e = 0, (2.1)

where le = l1 or l2 is the edge length of the quadrilateral facets. Note that there are in total
m(n + 1) + (m + 1)n = 2mn + m + n edges in a m × n Miura-ori structure, and hence, we have
2mn + m + n edge constraints (which can be denoted as ge1 , ge2 , . . . , ge2mn+m+n ).

To prevent shearing of the quads, for each quad (vi1 , vi2 , vi3 , vi4 ) (where the four vertices
represent the bottom left, bottom right, top right and top left vertices, respectively, by our
convention), we have the following diagonal (no-shear) constraint for one of the diagonals (for
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Figure 1. TheMiura-ori pattern and rigidity percolation. (a) AMiura-ori structure withm rows of facets in the vertical direction
and n columns of facets in the horizontal direction, (b) a Miura-ori unit cell with four facets is characterized by two angles γ
andθ and two length parameters l1 and l2, (c) starting from amaximally floppy origami structure inwhich all facets are allowed
to bend out-of-plane (left), one can gradually impose planarity constraints on certain facets, thereby changing the rigidity of
the overall origami structure. In particular, note that explicitly imposing the planarity constraint on a facet may affect not just
itself but also some other facets implicitly. As all facets become planar, the resulting origami structure has exactly 1 degree of
freedom (DOF) associated with a rigid folding motion.

consistency, we always choose the diagonal (vi1 , vi3 ) involving the bottom left vertex vi1 and the
top right vertex vi3 ):

gd = ||vi3 − vi1 ||2 − l2d = 0, (2.2)

where ld is the diagonal length of the quadrilateral facets. Note that there are in total mn facets in
a m × n Miura-ori structure, and hence we have mn diagonal constraints (which can be denoted
as gd1 , gd2 , . . . , gdmn ).

We will also add the following quad-planarity constraint gradually to enforce the planarity of
some specific quadrilateral facets. Specifically, consider a quad (vi1 , vi2 , vi3 , vi4 ). Suppose there is a
virtual diagonal edge (vi1 , vi3 ) in the quad that allows the quad to fold about it. Then, to enforce
the quad to be planar, the volume of the tetrahedron formed by vi1 , vi2 , vi3 , vi4 must be 0. Therefore,
we have

gp = (vi2 − vi1 ) × (vi4 − vi1 ) · (vi3 − vi1 ) = 0. (2.3)

In other words, a quadrilateral facet without the above quad-planarity constraint is equivalent to
a panel divided by a diagonal fold, with the two triangular parts of it being rigid.

We can then construct the infinitesimal rigidity matrix as described in [50] to examine the
possible infinitesimal modes of motion. Specifically, suppose there are in total 2mn + m + n edge
constraints, mn diagonal constraints and t planarity constraints imposed. Denote K = (2mn +
m + n) + mn + t as the total number of constraints and V = (m + 1)(n + 1) as the total number
of vertices in the m × n Miura-ori structure. The infinitesimal rigidity matrix is a K × V matrix A
with

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂g1

∂x1

∂g1

∂y1

∂g1
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∂z2
. . .

∂g1
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.4)
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where g1, g2, . . . , gK include all edge constraints {gei }2mn+m+n
i=1 , all diagonal constraints {gdi }mn

i=1 and
the current set of quad-planarity constraints {gpi }t

i=1, and (xi, yi, zi) are the coordinates of the vertex
vi, i = 1, 2, . . . , V.

It is easy to see that the matrix A is a sparse matrix and all entries of it can be explicitly derived.
For instance, for each edge constraint in equation (2.1), suppose vi = (xi, yi, zi) and vj = (xj, yj, zj).
The partial derivatives of ge with respect to the coordinate variables are given by

∂ge

∂xi
= −∂ge

∂xj
= 2(xi − xj), (2.5)

∂ge

∂yi
= −∂ge

∂yj
= 2(yi − yj) (2.6)

and
∂ge

∂zi
= −∂ge

∂zj
= 2(zi − zj), (2.7)

and the partial derivatives of ge with respect to all other variables are 0. This shows that each
row of A associated with an edge constraint has at most six non-zero entries. See the electronic
supplementary material, Section S1, for the explicit formulae for all other entries of A.

Now, suppose there is an infinitesimal displacement dv added to all vertex coordinates v =
[x1, y1, z1, x2, y2, z2, . . . , xV , yV , zV]T. The condition for infinitesimal rigidity is given by

Adv = 0. (2.8)

Therefore, the infinitesimal DOF of the origami structure is the dimension of the null space of A.
In other words, we can calculate the infinitesimal DOF (with the three global translational DOFs
and the three global rotational DOFs removed) by

d = 3(m + 1)(n + 1) − rank(A) − 6. (2.9)

As described in [38], the infinitesimal rigidity matrix A for the initial maximally floppy Miura-
ori structure only involves the 2mn + m + n edge constraints and the mn diagonal constraints.
Therefore, the DOF of the initial structure is dinitial = 3(m + 1)(n + 1) − (2mn + m + n + mn) − 6 =
2m + 2n − 3, while the DOF of the final Miura-ori structure after all facets are forced to be planar
is 1. We can then study the change of DOF from 2m + 2n − 3 to 1 as the quad-planarity constraints
are gradually imposed, where at each step, we choose a new quad and explicitly impose the quad-
planarity constraint on it (see also figure 2 for an illustration using paper models). Specifically, we
define the planarity constraint density ρ ∈ [0, 1] as follows:

ρ = #(quad-planarity constraints imposed)
mn

. (2.10)

Since adding each quad-planarity constraint will increase the number of rows of the matrix A by 1,
it follows that the DOF d in equation (2.9) will either be unchanged or reduced by 1. Therefore, to
get a 1-DOF structure, the minimum number of quad-planarity constraints needed is (2m + 2n −
3) − 1 = 2m + 2n − 4. In other words, the theoretical minimum density ρmin for getting a 1-DOF
structure is

ρmin = 2m + 2n − 4
mn

. (2.11)

Also, note that the origami structure will not be 1-DOF unless all corner facets are planar. By
deferring the addition of the quad-planarity constraints on them to the end of the process, one
can avoid getting a 1-DOF structure as much as possible. Therefore, the theoretical maximum
density ρmax for getting a 1-DOF structure is

ρmax = 1. (2.12)

Now, following the idea of explosive percolation [42,43], we consider gradually adding the
quad-planarity constraint to the initial floppy origami structure based on some selection rules to
control the rigidity percolation transition. Let k ≥ 1 be a positive integer. At each step, we sample
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Figure 2. Paper models illustrating the DOF of floppy Miura-ori structures. (Top) If the quad planarity constraints are not
imposed on some facets, then it may be possible to fold along their diagonal to form triangular facets (yellow). In this case,
the structure may admit multiple possible motions. (Bottom) By contrast, the standard Miura-ori structure with rigid facets
is 1 DOF.

k facets randomly from the set of available facets. We then choose one among them based on one
of the following selection rules:

— Most efficient selection rule: Denote the k randomly sampled candidate facets as f1, f2, . . . , fk.
For each facet fi, we construct an augmented infinitesimal rigidity matrix Ai by adding
the quad planarity constraint imposed on the facet fi to the current infinitesimal rigidity
matrix A. We then compute the DOF di of the temporarily updated origami structure
using equation (2.9). Among all k candidate facets, we choose the facet that gives the
minimum DOF, i.e. the facet fc with c = argminidi. If there are multiple facets that give the
minimum DOF, we choose one among them randomly.

— Least efficient selection rule: Analogous to the above rule, we construct an augmented
infinitesimal rigidity matrix Ai for each candidate facet fi and compute the DOF di of the
temporarily updated origami structure. We then choose the facet that gives the maximum
DOF among all k choices, i.e. the facet fc with c = argmaxidi. If there are multiple facets
that give the maximum DOF, we choose one among them randomly.

After choosing a facet among the k candidate facets, we impose the quad-planarity constraint on it
and update the infinitesimal rigidity matrix A. We then repeat the above process until all the quad-
planarity constraints are explicitly imposed on all mn facets. Here, note that after the (mn − k)-th
step, there will be less than k available facets. In this case, all available facets will be automatically
considered. Also, our subsequent experiments and analyses involve simulations with various
pattern sizes mn and number of choices k from a fixed list of values. By our convention, if the
prescribed k is larger than mn, we automatically correct it as k = mn.

3. Results
With the above formulation, it is natural to ask how the selection rules and the number of choices
k affect the rigidity percolation transition. To answer this question, we performed numerical
simulations with different set-ups and analysed the results. The numerical simulations were
performed in MATLAB, with the Parallel Computing Toolbox used to improve the simulation
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Figure 3. Miura-ori structures of different sizes. Left to right: L × L= 5 × 5, 10 × 10, 15 × 15, 20 × 20, 25 × 25, 30 × 30.
The structures are not displayed to scale.

efficiency. The infinitesimal rigidity matrix A was constructed using the sparse matrix format in
MATLAB. For the DOF calculation, we followed the approach in [48] and used the built-in column
approximate minimum degree permutation colamd and the QR decomposition qr functions to
obtain the QR decomposition of A, and then approximated the rank of A by counting the non-zero
diagonal entries of the triangular matrix R. As the rank approximation of large matrices may be
affected by numerical errors, we further restrict the DOF values to be within the feasible range
[1, dinitial]. As for the geometry of the Miura-ori structure, we followed [38] and used the length
parameters l1 = l2 = 2 and angle parameters γ = π/4 and θ = cos−1 √

2/3 to construct the Miura-
ori unit cell. In the electronic supplementary material, S2, we present additional experiments to
compare the simulations based on different geometric parameter set-ups, and the results show
that the explosive percolation transition is independent of the geometry of the Miura-ori structure.

(a) Explosive rigidity percolation in L × LMiura-ori
To simplify our analysis, we first consider the case m = n = L, where L is the number of
rows/columns of quads in the Miura-ori structure. For each pattern size L = 5, 10, 15, 20, 25, 30 (see
figure 3), each number of choices k = 1, 2, 4, 8, 16, 32 and each rule (the most efficient rule and the
least efficient rule), we performed 500 independent simulations. Specifically, for each simulation,
we started with the maximally floppy Miura-ori structure and added a quad planarity constraint
at each step by randomly picking k candidate facets and selecting one among them based on the
prescribed selection rule. We then recorded the DOF change as the density of planarity constraints
imposed ρ increased from 0 to 1.

As the DOF d of an origami structure depends on the pattern sizes m, n as shown in equation
(2.9), here we consider the following normalized DOF d̃ to facilitate the comparison across
different pattern sizes (see also the electronic supplementary material, S3, for the analysis of the
unnormalized DOF d)

d̃ = d − 1
dinitial − 1

= d − 1
4L − 4

. (3.1)

It is easy to see that d̃ ∈ [0, 1]. In figure 4a, we plot the value of d̃ for all simulations under the
most efficient selection rule for different values of k. It can be observed that in some of the
simulations, d̃ becomes 0 before ρ reaches 1. This implies that some of the quadrilateral panels
remain flexible when considered individually (i.e. without the planarity constraint enforced),
while the overall origami structure has already become a 1-DOF system. It is then natural to
ask how d̃ changes as ρ increases for different k. For all k, the change of d̃ shows a linear regime
followed by a sublinear regime, which is consistent with the observation in the fully stochastic
approach [38]. Specifically, in the linear regime, we have d = dinitial − t, where t is the number of
planarity constraints imposed and d̃ = (4L − 3 − t − 1)/(4L − 4) = 1 − t/(4L − 4). In other words,
the slope of d̃ is given by −1/(4L − 4). Then, in the sublinear regime, d̃ decreases gradually to 0
as ρ increases. However, in contrast to the fully stochastic approach in [38], here we can see that
by increasing the value of k, we can easily control the sharpness of the transition from the linear
regime to the nonlinear regime. More specifically, increasing the value of k effectively extends the
linear regime and reduces the variation in d̃ among the 500 simulations for each L.

By contrast, the change of the normalized DOF d̃ under the least efficient selection rule exhibits
a significantly different trend as shown in figure 4b. Specifically, while the change of d̃ also shows
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(a) (b)

Figure 4. The change in the normalized DOF under different selection rules with different number of choices for L × LMiura-
ori structures. (a) The most efficient selection rule, (b) the least efficient selection rule. For each k = 1, 2, 4, 8, 16, 32, we plot
the normalized DOF d̃ = (d − 1)/(dinitial − 1) in all 500 simulations for all L= 5, 10, 15, 20, 25, 30 on the same plot to visualize
the change in d̃. Each partially transparent curve represents one simulation, and the opacity is proportional to the number of
repeated trends.

a linear regime at small ρ for all k ≥ 2, in which adding every quad-planarity constraint leads to a
decrease in the DOF, there is subsequently a plateau regime in which d̃ remains almost unchanged
for a range of ρ. In this regime, the method preferentially selects the ‘redundant’ quads for which
adding the planarity constraint does not affect the DOF. As ρ approaches 1, d̃ enters another
regime and decreases sharply to 0. Increasing the value of k effectively extends the plateau regime
and yields a sharper decrease in d̃ near ρ = 1.

To conduct a more systematic analysis of the rigidity percolation transition, we consider the
probability of getting a 1-DOF structure for each planarity constraint density ρ, defined as

P(ρ) = number of 1-DOF structures at ρ

total number of simulations
. (3.2)

For the most efficient selection rule, it can be observed in figure 5a that increasing the value of k
will lead to a sharper transition of P from 0 to 1. For the least efficient selection rule, we can also
see a notable difference between the transition behaviours for k = 1 and k > 1 in figure 5b.

Now, note that a simple deterministic approach for constructing a 1-DOF origami structure
using a minimal number of planarity constraints was proposed in [38]. More precisely, it was
shown that for even L, adding quad-planarity constraints to all boundary facets in a L × L pattern
is sufficient to make the structure 1-DOF. In this boundary-driven approach, the density of the
planarity constraints added is

ρb = number of boundary facets
total number of facets

= 4L − 4
L2 , (3.3)

which matches the theoretical minimum constraint density ρmin = (2L + 2L − 4)/L2 = (4L − 4)/L2

in equation (2.11). In other words, we have ρb = inf{ρ : P = 1}. For L = 10, 20, 30, we have ρb =
0.36, 0.19, 0.1289, respectively. From the simulation results for L = 10, 20, 30 in figure 5a, we can
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Figure 5. Rigidity percolation in origami under different selection rules for L × L Miura-ori structures. (a) The most efficient
selection rule and (b) the least efficient selection rule. For different problem size L= 5, 10, 15, 20, 25, 30 and different number of
choices k = 1, 2, 4, 8, 16, 32, we calculated the probability P of getting a 1-DOF structure at different planarity constraint density
ρ among the 500 simulations.

see that the transition from P = 0 to P = 1 occurs at around these values of ρ. Also, it was shown
in [38] that for odd L, adding quad planarity constraints to all boundary facets will give a 2-DOF
structure, where there will be an additional DOF involving the single centre quad of the structure.
In this boundary-driven approach, the planarity constraint density for getting a 1-DOF structure
is

ρb = number of boundary quads + 1
number of quads

= 4L − 3
L2 . (3.4)

Since the above ρb differs from ρmin in equation (2.11) by 1, it is natural to ask whether ρb = (4L −
3)/L2 is the actual minimum density required. For L = 5, 15, 25, we have ρb = 0.68, 0.2533, 0.1552,
respectively. From the simulation results for L = 5, 15, 25 in figure 5a, we can see that the transition
from P = 0 to P = 1 begins at comparable or even smaller values of ρ. For instance, there is a
sharp transition at around ρ = 0.6 in the simulation results for L = 5, which is lower than ρb =
0.68. This shows that our power-of-choices strategy is more efficient than the intuitive boundary-
driven approach in this case. Altogether, the above analysis shows that by introducing choices
and applying the most efficient selection rule, we can effectively accelerate the phase transition,
achieving performance that is comparable to, or even better than, that of intuitive deterministic
design strategies.

As for the least efficient selection rule, note that as discussed previously, the theoretical
maximum density is ρmax = 1 as one may delay the rigidity percolation transition by not enforcing
the quad-planarity of the corner facets until the end of the process. In our simulations, it is
also easy to see that the rigidity percolation transition is significantly delayed by having k > 1.
Interestingly, when compared with the most efficient selection rule for which we need a large
value of k to achieve a sharp transition in P, here in the least efficient selection rule, there is no
notable difference between k = 2 and other larger values k = 4, 8, 16, 32 as shown in figure 5b.
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Figure 6. The change in the critical transition ρ∗ with the number of choices k for L × L Miura-ori structures. (a) The
plots of the critical transition density ρ∗ obtained from our simulations under the most efficient selection rule against the
number of choices k = 1, 2, 4, 8, 16, 32 for different pattern size. In each plot, the dotted line indicates the theoretical minimum
density ρmin = (4L − 4)/L2 for getting a 1-DOF structure. (b) The plots of the critical transition density ρ∗ obtained from
our simulations under the least efficient selection rule against the number of choices k for different pattern size. Note that the
theoretical maximum density for getting a 1-DOF structure isρmax = 1.

(b) The optimal number of choices k
As shown in the above analyses, having the ability to sample k candidates and select one among
them (the power of k choices) dramatically changes the rigidity percolation behaviour in origami.
Ideally, using a large k allows us to consider more candidates at each step and can lead to a better
result. However, examining the effect of more candidates also increases the computational cost. It
is natural to search for an optimal value of k that gives a satisfactory performance while being as
small as possible.

To quantify how the change in the number of choices k affects the rigidity percolation
transition, here we define the critical transition density ρ∗ as the minimum ρ with the probability
of getting a 1-DOF structure P ≥ 1/2 in our simulations. As shown in figure 6a, under the most
efficient selection rule, ρ∗ decreases and approaches the theoretical minimum density ρmin =
(4L − 4)/L2 as the number of choices k increases. As for the least efficient selection rule, from
figure 6b, we can see that ρ∗ increases rapidly from approximately 0.85 (for k = 1) to exactly 1 (for
all k ≥ 2).

From the above results, it is clear that k = 2 is an optimal choice for delaying the rigidity
percolation transition, as it achieves the same effect (with ρ∗ = 1) as other larger k, while requiring
less computation. As for accelerating the rigidity percolation transition, we further consider the
difference between the critical transition density and the theoretical minimum density, i.e. ρdiff =
ρ∗ − ρmin. As shown in figure 7a, the values of ρdiff from the simulation results decrease rapidly
with k. Also, it can be observed that for any fixed k, the value of ρdiff increases gradually with the
pattern size L. Finally, note that ρdiff should be within the range [0, 1] for any k, L. Therefore, we
consider the following simple relationship between ρdiff, k and L: ρdiff = a(1 + b(k/L))−c, where
a, b, c are parameters. By fitting the simulation results using the above model, we obtain

ρdiff(L, k) ≈
(

1 + 7.8k
L

)−1.4
. (3.5)

It can be observed in figure 7b that the fitted model matches the simulation results very well.
The simple scaling law above provides an efficient way to determine a suitable value of k to
achieve a target accuracy for the sharp transition. For instance, in order to have an accuracy of
ρdiff = ρ∗ − ρmin ≈ 0.05, we need k ≈ 0.96L. Also, to achieve ρdiff ≈ 0.01, we need k ≈ 3.3L.

In the above analysis, we considered the optimality of the number of choices k in terms of the
difference ρdiff. Alternatively, one may assess the optimality of k by considering the sharpness
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Figure 7. Analysis of the critical percolation transition and the percolation transition width under the most efficient selection
rule for L × L Miura-ori structures. (a) The values of ρdiff = ρ∗ − ρmin from the simulation results. Here, each data
point represents the result obtained from a set of 500 simulations with a specific pair of parameters (L, k) (where L=
5, 10, 15, 20, 25, 30 and k = 1, 2, 4, 8, 16, 32), (b) the fitted values ofρdiff by equation (3.5), (c) the percolation transition width
ρw = ρ1 − ρ0 from the simulation results and (d) the fitted values ofρw by equation (3.8).

of the rigidity percolation transition. Specifically, we define the percolation transition width as
ρw = ρ1 − ρ0, where ρ1 is the minimum ρ with P = 1 and ρ0 is the maximum ρ with P = 0 in our
simulations. Note that this transition period corresponds to the time interval between the earliest
step where all simulated structures become fully rigid (i.e. 1 DOF) and the latest step where none
of them is fully rigid. Hence, the difference ρ1 − ρ0 quantifies the transition width from floppy
to rigid structures. It is natural to ask whether increasing k can lead to a decrease in ρw and a
sharper transition. Surprisingly, the transition width ρw generally first increases as we increase
the number of choices from k = 1 to some small k (see figure 7c). Then, the transition width
eventually decreases as we further increase k. A possible explanation of this counterintuitive
observation is that while introducing choices generally allow both ρ1 and ρ0 to move towards the
theoretical transition value ρmin, they do not necessarily change at the same rate. In the electronic
supplementary material, S3, we further provide the statistics of different values of ρa (defined as
the maximum ρ with P = a) and ρb (defined as the minimum ρ with P = b), from which we can
see a similar trend for different choices of the transition interval. In other words, increasing the
sharpness of the rigidity percolation transition width requires a relatively large k, while simply
increasing from k = 1 to k = 2 may lead to an adverse effect. When k is sufficiently large, one can
always select the globally optimal facet in the entire origami structure at every step. Therefore, the
theoretical critical density for getting a 1-DOF structure can be exactly achieved, and the structure
will not be 1 DOF at any ρ smaller than the theoretical density. Consequently, for a L × L origami
structure, the transition width will become 1/L2 if k is sufficiently large.

The above observations motivate us to consider fitting ρw by separately fitting ρ0 and
ρ1. In particular, note that as k increases, we should have ρ0 ≈ ρmin − 1/L2. Hence, we
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consider ρ0 ≈ (ρmin − 1/L2) + (1 − (ρmin − 1/L2)) exp(−a0kb0/Lc0 ), where a0, b0, c0 are parameters.
Similarly, note that as k increases, we should have ρ1 ≈ ρmin. Hence, we consider ρ1 ≈ ρmin +
(1 − ρmin) exp(−a1kb1/Lc1 ), where a1, b1, c1 are parameters. We obtain the following fitted models
for ρ0 and ρ1 (see also the electronic supplementary material, S3, for more details of the model
formulations and results):

ρ0 ≈ 4L − 5
L2 +

(
1 − 4L − 5

L2

)
exp

(
−6.3

√
k
L

)
(3.6)

and

ρ1 ≈ 4L − 4
L2 +

(
1 − 4L − 4

L2

)
exp

(
−0.15

k1.2
√

L

)
, (3.7)

and hence we obtain the following fitted model for ρw:

ρw(L, k) ≈ 1
L2 +

(
1 − 4L − 4

L2

)
exp

(
−0.15

k1.2
√

L

)
−
(

1 − 4L − 5
L2

)
exp

(
−6.3

√
k
L

)
. (3.8)

As shown in figure 7d, the fitted model qualitatively matches the overall trend of the simulated
ρw. Notably, it shows a similar initial increase for small k followed by a gradual decrease.
Using equation (3.8), we have an alternative way to determine the number of choices k needed
for achieving a target sharpness of the rigidity percolation transition. For instance, to achieve
ρw ≈ 0.1 for the pattern size L × L = 30 × 30, we need k ≈ 39 = 1.3L. To achieve ρw ≈ 0.05, we need
k ≈ 48 = 1.6L.

(c) The general rectangular case
After performing the analyses on the square case where the Miura-ori structures have the same
number of rows and columns of quads (m = n = L), we consider the general rectangular case with
m and n not necessarily the same. In particular, it is natural to study whether the explosive rigidity
percolation transition is affected not only by the pattern size (mn) and the number of choices (k)
but also by the ratio between the two dimensions (m/n).

Note that for m = 1 or n = 1, the resulting origami structure is just a strip of quads, and hence
the DOF is always greater than 1, even if all quads are planar. Therefore, in the following,
we consider integers m, n ≥ 2. In particular, for a given positive integer S representing the
pattern size, we consider expressing S = mn for all possible combinations of m, n ≥ 2 (see
figure 8 for an illustration). Analogous to the previous case, 500 simulations were performed
for each combination of (m, n) and each number of choices k, and the probability of obtaining a
1-DOF structure P was calculated at various quad planarity constraint densities ρ. The difference
between the critical transition density, ρdiff = ρ∗ − ρmin, and the percolation transition width,
ρw = ρ1 − ρ0, can then be analysed as in the square case.

In figure 9a, we consider all combinations mn = 100 with m, n ≥ 2 and study the relationship
between ρdiff and log(m/n) for different k. It can be observed for any fixed k, the transition width
ρw is higher as log(m/n) is closer to 0, i.e. the square case m = n. By contrast, as the ratio between
m and n becomes more extreme, the transition width decreases significantly. In particular, the
transition width is always at the minimum when either m = 2 or n = 2. This can be explained
by the fact that for m = 2 or n = 2, all facets of the origami structure are boundary facets. Then,
putting either m = 2 or n = 2 into equation (2.11), we have

ρmin = 2(2) + 2(mn/2) − 4
2(mn/2)

= mn
mn

= 1. (3.9)

In other words, turning the initial floppy structure into a 1-DOF structure requires explicitly
adding the planarity constraints to all facets. Consequently, the smallest ρdiff is always achieved
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..........................................................Figure 8. General m × nMiura-ori structures. For Miura-ori structures with S= 36 facets, all dimensions including 2 × 18,
3 × 12, 4 × 9, 6 × 6, 9 × 4, 12 × 3 and 18 × 2 are considered.

in this case. Besides, we can easily see that increasing the number of choices k leads to a decrease
in ρdiff. Now, from the symmetry of ρdiff about log(m/n) = 0, it is natural to ask whether one can
approximate ρdiff using a simple polynomial in log(m/n) together with the information at the
peak of the curves. This motivates us to consider the following model for ρdiff for general (m, n, k):

ρdiff(m, n, k) ≈
(

1 + 7.8k√
mn

)−1.4
(

1 −
(

log(m/n)
log(mn/4)

)2
)

. (3.10)

Here, the factor (1 + 7.8k/
√

mn)−1.4 follows from the square case in equation (3.5). It is easy to see
that if m = n, equation (3.10) becomes identical to equation (3.5). Also, if n = 2, we have

(
log(m/n)

log(mn/4)

)2
=
(

log((mn/2)/2)
log(mn/4)

)2
= 1 (3.11)

and hence equation (3.10) becomes 0. Similarly, if m = 2, we have ((log(m/n))/(log(mn/4)))2 =
(−1)2 = 1. This shows that equation (3.10) matches the expected ρdiff at the peak and the
two endpoints. As shown in figure 9b, the fitted ρdiff for mn = 100 matches the simulation
results very well. To further verify this relationship, we performed additional simulations for
mn = 25, 36, 49, 64, . . . , 400, with all possible m, n ≥ 2 and number of choices k = 1, 2, 4, 8, 16, 32
considered (500 simulations for each combination of (m, n, k), over 260 000 simulations in total). As
shown in figure 9c, the simulated ρdiff and the fitted ρdiff are highly consistent (see the electronic
supplementary material, S4, for more results).

As for the rigidity percolation transition width ρw, in figure 10a, we again plot the simulated
ρw for mn = 100, from which we see a roughly symmetric trend. Moreover, comparing the results
for different k, it can be observed that increasing the number of choices from k = 1 to some small
k leads to a slight increase in the transition width ρw, which is consistent with our observation in
the square case (L × L) in the previous section. Then, as k further increases, the transition width
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(c)

(a) (b)

Figure 9. Analysis of the difference between the critical transition density and the theoreticalminimumdensityρdiff = ρ∗ −
ρmin for general m × n Miura-ori structures. (a) The simulated ρdiff against log(m/n) for mn= 100 obtained based on the
most efficient selection rule. Here, each data point represents the result obtained from a set of 500 simulations in a specific
set-up (m, n, k) (where mn= 100 with m, n≥ 2 and k = 1, 2, 4, 8, 16, 32), (b) the fitted ρdiff for mn= 100 obtained using
our model and (c) the plot of the simulated ρdiff against the fitted ρdiff for different combinations of (m, n, k) with mn=
25, 36, 49, 64, . . . , 400 and k = 1, 2, 4, 8, 16, 32. The red line represents y = x.

gradually decreases. To quantitatively describe the above observations, here we extend equation
(3.8) by using the general formula in equation (2.11) for ρmin and replacing L with

√
mn. We obtain

the following approximation formula of ρw for the general rectangular case:

ρw(m, n, k) ≈ 1
mn

+
(

1 − 2m + 2n − 4
mn

)
exp

(
−0.15

k1.2

(mn)1/4

)

−
(

1 − 2m + 2n − 5
mn

)
exp

(
−6.3

√
k

(mn)1/4

)
. (3.12)

As shown in figure 10b, the fitted ρw for mn = 100 matches the simulation results very well.
Analogous to the above analysis for ρdiff, in figure 10c, we further compare the simulated ρw

and the fitted ρw for all combinations (m, n, k) with mn = 36, 49, 64, . . . , 400 and k = 1, 2, 4, 8, 16, 32.
It can be observed that the simulated and fitted values are highly consistent (see the electronic
supplementary material, S4, for more results).
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(a) (b)

(c)

Figure 10. Analysis of the rigidity percolation transitionwidthρw for generalm × nMiura-ori structures. (a) The simulatedρw

against log(m/n) formn= 100 obtained based on themost efficient selection rule. Here, each data point represents the result
obtained from a set of 500 simulations in a specific set-up (m, n, k) (wheremn= 100 withm, n≥ 2 and k = 1, 2, 4, 8, 16, 32),
(b) the fittedρw formn= 100 obtained using ourmodel and (c) the plot of the simulatedρw against the fittedρw for different
combinations of (m, n, k) withmn= 25, 36, 49, 64, . . . , 400 and k = 1, 2, 4, 8, 16, 32. The red line represents y = x.

Altogether, our analysis shows that the phenomena we observe in the square case can be
naturally extended to the general rectangular case via a simple modification in the fitted models.

4. Discussion
In this work, we have studied the rigidity percolation in origami structures and demonstrated
how the power of k choices together with some simple selection rules can lead to explosive rigidity
percolation transition in origami, which is also highly consistent with the observations in kirigami
systems [49]. Moreover, we have derived simple formulae that relate k with the origami pattern
size and the sharpness of the rigidity percolation transition. More broadly, our work suggests that
we can easily control the rigidity of mechanical metamaterials using a fusion of deterministic and
stochastic approaches, thereby shedding light on the design of mechanical metamaterials with
potential applications to mechanical information storage and soft robotics.

While we have focused on the Miura-ori pattern in this work, it is noteworthy that our analyses
of infinitesimal rigidity rely only on the edge, diagonal and facet planarity constraints and hence
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are also applicable to other origami patterns. In our future work, we plan to study a wider class
of origami structures to analyse how the structural arrangements of the origami facets affect the
rigidity percolation transition. Another natural next step is to extend our study to the control of
two- or three-dimensional structural assemblies [51–53].
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