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Abstract
With the advancement in 3D scanning technology, there has been a surge of interest in the
use of point clouds in science and engineering. To facilitate the computations and analyses
of point clouds, prior works have considered parameterizing them onto some simple planar
domains with a fixed boundary shape such as a unit circle or a rectangle. However, the
geometry of the fixed shape may lead to some undesirable distortion in the parameterization.
It is therefore more natural to consider free-boundary conformal parameterizations of point
clouds, which minimize the local geometric distortion of the mapping without constraining
the overall shape. In this work, we develop a free-boundary conformal parameterization
method for disk-type point clouds, which involves a novel approximation scheme of the
point cloud Laplacian with accumulated cotangent weights together with a special treatment
at the boundary points. With the aid of the free-boundary conformal parameterization, high-
quality point cloud meshing can be easily achieved. Furthermore, we show that using the
idea of conformal welding in complex analysis, the point cloud conformal parameterization
can be computed in a divide-and-conquer manner. Experimental results are presented to
demonstrate the effectiveness of the proposed method.
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1 Introduction

With the rapid development of computer technology, the acquisition and use of geometric
data have become increasingly popular [1]. The simplest form of geometric data obtained
by 3D scanners is a set of points in R

3, which is also known as a point cloud. Point clouds
have been widely studied for 3D modeling [2,3], object detection [4], shape analysis [5] etc.
and have recently become a subject of interest in machine learning [6–9]. However, working
with point clouds in the three-dimensional space is usually complicated and computationally
expensive. It is therefore desirable to have a method for projecting the point clouds onto a
lower dimensional space without distorting their shape, such that the computations can be
further simplified.

Surface parameterization is the process of mapping a complicated surface onto a sim-
pler domain. Over the past several decades, numerous efforts have been devoted to the
development of surface parameterization algorithms with applications in science and engi-
neering. In general, any parameterization must unavoidably induce certain distortion in area,
angle, or both. Therefore, two major classes of surface parameterization methods are area-
preserving (authalic) parameterizations and angle-preserving (conformal) parameterizations.
Prior area-preserving parameterization methods include Lie advection [10], optimal mass
transport (OMT) [11–14], density-equalizing map (DEM) [15,16], stretch energy minimiza-
tion (SEM) [17] etc. These methods focus on preserving the size of the area elements but
not their shape. Previous works on conformal parameterization include harmonic energy
minimization [18,19], least-square conformal map (LSCM) [20], discrete natural conformal
parameterization (DNCP) [21], angle-based flattening (ABF) [22,23], Yamabe flow [24],
circle patterns [25], spectral conformal map [26], Zipper algorithm [27], Ricci flow [28,29],
boundary first flattening [30], conformal energy minimization [31] etc. (see [32–34] for
detailed surveys on the subject). These parameterization methods preserve angles and hence
the local geometry of the surfaces,which is desirable inmany applications. Manyof them (e.g.
[20,26,30]) also allow the boundary of the parameter domain to vary from a standard shape
and achieve a more flexible parameterization result. In recent years, quasi-conformal theory
has been utilized for conformal parameterization [35–40] and applied to surface remeshing
[41,42], image registration [43,44], biological shape analysis [45–47] and material design
[48]. However, most of the above parameterization methods only work for surface meshes
with the structural connectivity prescribed.

Unlike surface meshes, point clouds do not contain any information of the connectivity of
the points and hence are more difficult to handle in general. There have only been a fewworks
on the parameterization of point cloud data [49–55]. In particular, to compute the conformal
parameterization of a point cloud, it is common to approximate theLaplace–Beltrami operator
at every vertex using integral approximation [56,57], the moving least-square (MLS) method
[58–60] or the local mesh method [61], and then solve the Laplace equation with some
boundary constraints. However, most of the existing approximation schemes only work well
for the case of fixed boundary constraints, inwhich the boundary shape of the target parameter
domain is usually set to be either a circle or a rectangle. Enforcing such a fixed boundary
shape creates undesirable geometric distortion in the parameterization result. A possible
remedy is to consider a free-boundary conformal parameterization, in which the positions
of only two boundary points are fixed for eliminating translation, rotation and scaling, and
each of all the remaining boundary points is automatically mapped to a suitable location
according to the geometry of the given point cloud. In this work, we develop a free-boundary
conformal parameterization method for disk-type point clouds (Fig. 1). In particular, we
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Fig. 1 A gallery of disk-type point clouds. As the underlying surface of each of them is a simply-connected
open surface, it is natural to consider the conformal parameterization of these point clouds onto planar domains
with a single boundary. Moreover, the large variation of the point cloud boundary shapes suggests the need of
a free-boundary conformal parameterization method which takes the boundary shapes into consideration

construct the point cloud Laplacian by accumulating cotangent weights at different local
Delaunay triangulations. Also, as the free-boundary parameterization relies heavily on the
approximation of the Laplacian at the boundary, we propose a new approximation scheme
with a novel angle criterion for handling the approximation at the boundary points. The
parameterization method can be utilized for high-quality point cloud meshing. Furthermore,
by extending the idea of partial welding [39], we can solve the parameterization problem by
decomposing the point cloud into subdomains, solving the parameterization for each of them,
and finally gluing them seamlessly. This approach can largely simplify the computation for
parameterizing dense point clouds while preserving the conformality of the mapping.

The rest of the paper is organized as follows. In Sect. 2, we highlight the contributions
of our work. In Sect. 3, we review some mathematical concepts related to our work. The
proposed method is then described in detail in Sect. 4. Experimental results are presented in
Sect. 5 to demonstrate the effectiveness of our proposed method. In Sect. 6, we describe the
application of our method to point cloud meshing. In Sect. 7, we discuss the extension of
our proposed method using the idea of partial welding. We conclude the paper and discuss
possible future works in Sect. 8.

2 Contributions

The contributions of our work are three-fold:

(i) We develop a free-boundary conformal parameterization method for disk-type point
clouds. Our method involves a new approximation scheme for the point cloud Lapla-
cian with a novel angle criterion for handling the possible non-convexity of the point
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cloud boundary. Experimental results show that the proposed angle criterion leads to a
significant improvement in the conformality of the parameterization.

(ii) Using the proposed free-boundary parameterization method, we can easily produce high-
quality triangular meshes for disk-type point clouds.

(iii) We further extend the proposed parameterization method using the idea of partial weld-
ing, which enhances the flexibility of the computation of the free-boundary conformal
parameterization of point clouds.

3 Mathematical Background

3.1 Harmonic Maps

Let S be a surface in R
3. A map f : S → R

2 is said to be a harmonic map if it is a critical
point of the following Dirichlet energy [18]:

ED( f ) = 1

2

∫
S
|∇ f |2d A. (1)

f is also the solution to the Laplace equation

Δ f = 0. (2)

To see this, one can consider the following energy

E( f , v) =
∫
S
∇ f · ∇v. (3)

Letu be a critical point toEq. (1) andv be a test function that vanishes on ∂S. Bydifferentiating
E(u, u + tv) with respect to t , one can show that u minimizes ED by the Stoke’s theorem or
integration by part.

3.2 Conformal Maps

LetU ⊂ C. Amap f : U → C is said to be a conformal map if f (x, y) = u(x, y)+ iv(x, y)
satisfies the Cauchy–Riemann equations:

⎧⎪⎨
⎪⎩

∂u

∂x
= ∂v

∂ y
,

∂u

∂ y
= − ∂v

∂x
.

(4)

Consequently, a conformal map can be viewed as a critical point of the following energy:

EC ( f ) = 1

2

∫
U

[(
∂u

∂x
− ∂v

∂ y

)2

+
(

∂u

∂ y
+ ∂v

∂x

)2
]
d A. (5)

Note that conformal maps preserve angles and hence the local geometry of the shape, with
infinitesimal circles mapped to infinitesimal circles. To see this, let γi : [−ε, ε] → U , ε > 0
with i = 1, 2 be two curves satisfying that γi (0) = z with γ ′

i (0) = vi , i = 1, 2. We have

( f ◦ γ1)
′(0)( f ◦ γ2)

′(0)
‖( f ◦ γ1)′(0)( f ◦ γ2)′(0)‖ = [ f ′(z)]2γ ′

1(0)γ
′
2(0)

‖ f ′(z)‖2‖γ ′
1(0)γ

′
2(0)‖

= v1v2

‖v1v2‖ . (6)
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This shows the angle-preserving property of conformal maps.
Conformal maps and harmonic maps are closely related. Note that if S is a simply-

connected open surface, it can be represented using a single chart (U , φ). Then, the concept
of conformal maps can be naturally extended for surfaces. Now, by rewriting Eq. (1) in the
following form

ED( f ) = 1

2

∫
U

|∇ f |2d A = 1

2

∫
U

(u2x + u2y + v2x + v2y)d A, (7)

one can see that

EC ( f ) − ED( f ) =
∫
U

(
uyvx − uxvy

)
d A = −

∫
U

(
∂ f

∂x
× ∂ f

∂ y

)
d A. (8)

Note that

(
∂ f

∂x
× ∂ f

∂ y

)
d A is the area element of f (U ). Hence, the right-hand side of the

above equation is the total area of f (U ). Denoting it by A( f ), we have

EC ( f ) = ED( f ) − A( f ) ≥ 0. (9)

Since f is conformal if and only if EC ( f ) = 0, conformal maps can be viewed as the
harmonic maps achieving the maximum area.

3.3 Möbius Transformation

A Möbius transformation f : C → C is a conformal map on the (extended) complex plane
in the form

f (z) = az + b

cz + d
, (10)

with a, b, c, d ∈ C satisfying ad − bc 
= 0.
It can be observed that f maps the three points (0,− d

c ,∞) to ( bd ,∞, a
c ) on the extended

complex plane. By making use of the three-point correspondence, one can utilize Möbius
transformations for transforming a planar shape into some desired target shape while pre-
serving conformality.

4 ProposedMethod

Given a point cloud P representing a simply-connected open surface, our goal is to find
a free-boundary conformal parameterization f : P → R

2. Below, we first introduce a
free-boundary conformal parameterization method for triangulated surfaces. We then extend
it for parameterizing point cloud surfaces in a free-boundary manner by proposing a new
approximation scheme for the point cloud Laplacian. In particular, a novel angle criterion
is used for improving the approximation at the point cloud boundary and yielding a more
accurate conformal parameterization result.

4.1 Discrete Natural Conformal Parameterization (DNCP) for Triangulated Surfaces

The discrete natural conformal parameterization (DNCP) method [21] is a method for
computing free-boundary conformal parameterizations of triangulated surfaces. Let S =
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(V, E,F) be a simply-connected open triangulated surface, where V = {vi }1≤i≤n is the set
of vertices, E is the set of edges, and F is the triangulation. The DNCP method finds the
desired conformal parameterization f : S → R

2 by linearizing Eq. (9). More specifically,
the Dirichlet energy ED( f ) in Eq. (1) can be discretized using the cotangent formula [18]:

ED( f ) = 1

2

∑
(p,q):[vp,vq ]∈E

cot αpq + cot βpq

2
| f (vp) − f (vq)|2, (11)

where αpq , βpq are the opposite angles of the edge [vp, vq ]. If we write f as a 2n× 1 vector
with f = ( fx , fy)T = (x1, x2, . . . x, y1, y2, . . . , yn)T where f (vi ) = (xi , yi )T , then we
have

ED( f ) = 1

2
f T

(
L 0
0 L

)
f , (12)

where L is an n × n matrix with

Li j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1

2
(cot αi j + cot βi j ), if [vi , v j ] ∈ E,

− ∑
m 
=i

Lim = 1

2

∑
m:[vi ,vm ]∈E

(cot αim + cot βim) if i = j,

0 otherwise.

(13)

The area term A( f ) in Eq. (9) can be discretized by considering all edges on the surface
boundary ∂S:

A( f ) = 1

2

∑
(vi ,v j )∈∂S

(xi y j − x j yi ) = 1

2
(xT yT )Marea

(
x
y

)
. (14)

Here, Marea is a 2n × 2n matrix in the form of

Marea =
(

0 M1

M2 0

)
, (15)

where M1(i, j) = M2( j, i) = 1
2 and M1( j, i) = M2(i, j) = − 1

2 if (vi , v j ) is an edge on
the boundary with positive orientation.

Altogether, Eq. (9) can be discretized and rewritten in the following matrix form:

EC ( f ) = 1

2
( f Tx f Ty )

((
L 0
0 L

)
− Marea

) (
fx
fy

)
. (16)

Minimizing EC ( f ) is then equivalent to solving the following matrix equation:
( (

L 0
0 L

)
− Marea

)(
fx
fy

)
= 0. (17)

To remove the freedom of rigidmotions and scaling, DNCP adds two boundary constraints
to map the farthest two vertices in V to (0, 0) and (1, 0) in R

2. Readers are referred to [21]
for more details.

As a remark, in general the Laplace–Beltrami operator for triangulated surfaces is dis-
cretized as Δ = M−1L , where L is the cotangent Laplacian and M is a mass matrix for
normalizing area, which is usually constructed based on Voronoi or barycentric cells (see
[62] for more details). However, in the above-mentioned formulation of the free-boundary
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parameterization problem, Δ is approximated using the cotangent Laplacian only (i.e. with
M being an identity matrix). In other words, every vertex is considered to be with unit mass.
In fact, this is consistent with the discretization of the area term A( f ) in Eq. (14), in which
the boundary vertices are also treated to be with uniform weight. If we use a Voronoi or
barycentric mass matrix M for the Laplace–Beltrami discretization, the matrices M1, M2

in the area matrix Marea in Eq. (15) should also be replaced with M−1M1 and M−1M2.

Then, Eq. (17) becomes

(
M−1L −M−1M1

−M−1M2 M−1L

) (
fx
fy

)
= 0, from which it is clear that the

choice of the mass matrix M does not affect the solution. Therefore, one can simply use the
cotangent Laplacian for the Laplace–Beltrami discretization in the DNCP method.

4.2 Point Cloud Laplacian with Angle-Based Convexity Modification

For our problem of free-boundary conformal parameterization of point clouds, the above
mesh-based discretization cannot be directly applied. In particular, the cotangent Laplacian
in Eq. (12) cannot be constructed because of the absence of the connectivity information
in point clouds. To resolve this issue, a possible way is to develop an alternative approxi-
mation of the Laplacian. Note that the cotangent Laplacian only involves the neighbors of
every vertex. This motivates us to consider reconstructing the local geometric structure at
every vertex of the point cloud and approximating the Laplacian using the local structure.
More specifically, we construct the point cloud Laplacian by accumulating cotangent weights
obtained from different local Delaunay triangulations. Moreover, as the free-boundary con-
formal parameterization relies heavily on the approximation of the point cloud Laplacian
at the boundary, we further develop a novel angle-based convexity modification scheme for
handling the Laplacian approximation at the boundary points. Altogether, this allows us to
achieve an accurate point cloud parameterization result.

To obtain the accumulated cotangent weights, we make use of the k-nearest-neighbors
(kNN) algorithm, aswell as the principal component analysis (PCA)method and theDelaunay
triangulation method. Let P = {vi }ni=1 be a point cloud surface with an oriented boundary
Γ = ∂P , and k be a prescribed kNN parameter. We first find the k-nearest neighbors Nk

i =
{vn1 , vn2 , . . . , vnk } of each vertex vi . To capture the local geometric information around vi ,
we apply PCA to find the three principal directions {e1i , e2i , e3i } of these k data points, and
take the plane span(e1i , e

2
i ) passing through vi as the tangent plane of vi . We project Nk

i to
the tangent plane and get Ñ k

i = {̃vn j }kj=1, using the projection formula

ṽn j = vn j − 〈vn j , e
3
i 〉e3i . (18)

Then, we construct the 2D Delaunay triangulation for Ñ k
i . Note that the Delaunay triangula-

tion maximizes the minimal angle of each triangle and the construction algorithm is provably
convergent. Consequently, we can obtain a nice triangulation representing the local geomet-
ric structure around each vertex. Based on the local Delaunay triangulation around each vi ,
we obtain the one-ring neighborhood Ri of vi . We can then apply the cotangent formula in
Eq. (13) to construct an n × n matrix L pc

k,i using the angles in Ri . More explicitly, we have
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Fig. 2 Capturing the concavity of the point cloud boundary. a Boundary points captured without applying the
angle criterion. b Boundary points captured with the angle criterion applied

⎧⎪⎪⎨
⎪⎪⎩
L pc
k,i (i, j) = L pc

k,i ( j, i) = −1

2
(cot αi j + cot βi j ) if v j ∈ Ri ,

L pc
k,i (i, i) = 1

2

∑
j :v j∈Ri

(cot αi j + cot βi j ),
(19)

and all other entries of L pc
k,i are set to be zero. Unlike the matrix L in Eq. (13), which is

computed based on the entire triangulated surface, our matrix L pc
k,i only covers the local

structure around vi . Therefore, the point cloud Laplacian for P can be approximated by
accumulating the cotangent weights in all L pc

k,i , with i = 1, 2, . . . , n.
While the above local Delaunay-based method gives a good approximation of the point

cloudLaplacian at the interior vertices, the approximation at the point cloud boundary ∂Pmay
be inaccurate due to the concavity of boundary points. For instance, if ∂P contains a concave
corner at a vertex vi , the one-ring neighborhood at vi will likely create a convex boundary
by wrongly connecting some of its neighboring boundary points under the above-mentioned
approximation process (see Fig. 2a), thereby causing inaccuracy in L pc

k,i . For fixed-boundary
parameterization problems, such inaccuracies may not affect the parameterization result as
there will be fixed-boundary constraints for all boundary points. However, for our free-
boundary conformal parameterization problem, there are only two fixed boundary points
in computing the parameterization and hence the result can be significantly affected by the
inaccurately approximated Laplacian at the boundary. This motivates us to develop a novel
scheme for handling the approximation at the point cloud boundary.

More specifically, note that the above-mentioned issue is due to the possible non-convexity
of the point cloud boundary. At such non-convex regions, the Delaunay triangulation will
produces certain sharp triangles. To correct this, we remove those triangles that contain an
angle which is either too large or too small (see Fig. 2b). This can be done by prescribing
an angle range (c1, c2) and checking if every boundary angle θ satisfies the following angle
criterion:

c1 < θ < c2. (20)

After removing all those triangles that violate this angle criterion, we obtain the matrices
L pc
k,i for all the boundary points.

With all nmatrices L pc
k,1, L

pc
k,2, . . . , L

pc
k,n computed, we assemble them to form the approx-

imation of the point cloud Laplacian for the entire P . It is noteworthy that a triangulation
is constructed locally at each vertex, and so the triangulations at all points together contain
overlapping triangles. As each triangle has three vertices, most of the angles are consid-
ered three times in the collection of all L pc

k,i . For instance, suppose [vp, vq , vr ] is a triangle
in NF (vp), i.e. the 1-ring Delaunay triangulation around the vertex vp . In the Laplacian
matrix L pc

k,p, this triangle contributes a weight to the 9 entries (p, p), (p, q), (p, r), (q, p),

123



Journal of Scientific Computing            (2022) 90:14 Page 9 of 26    14 

(q, q), (q, r), (r , p), (r , q), (r , r). Since having a triangle [vp, vq , vr ] in NF (vp) implies
that vp, vr are close to vq , it is likely that the points vp, vr are in the 1-ring vertex neighbor-
hoodNV (vq) of the vertex vq . Similarly, it is likely that vp, vq ∈ NV (vr ). Hence, it is likely
that [vp, vq , vr ] ∈ NF (vq) and [vp, vq , vr ] ∈ NF (vr ) and so it will contribute a weight to
the same 9 entries in each of L pc

k,q and L pc
k,r . In other words, the same cotangent weights are

likely counted three times. Hence, we obtain the approximated point cloud Laplacian L pc
k

by summing up all L pc
k,i and dividing it by 3:

L pc
k = 1

3

n∑
i=1

L pc
k,i . (21)

We remark that there are two major differences between our approximation and the prior
approximation methods. First, a difference between our method and the moving least-square
(MLS) method [59] or the local mesh method [61] is in the consideration of overlapping
triangulations. The MLS method approximates the derivatives locally at each vertex vi by
fitting a local patch of vi using a combination of polynomials with some prescribed weight
functions, in which no triangulations are considered. While the local mesh method also
approximates the Laplace–Beltrami operator by constructing a local triangulation at each
vertex vi and considering its one-ring neighborhood Ri , the triangulation at vi only affects
the values at the i-th row of the Laplacian matrix it creates:

Δ( f (vi )) =
∑

j :v j∈Ri

wi j ( f (v j ) − f (vi )), (22)

where wi j is the cotangent weight. In other words, the approximations at two neighboring
points vi , v j are handled separately in the localmeshmethodwithout any coupling procedure.
By contrast, in our proposed approximation scheme, the matrix L pc

k,i obtained from the local

triangulation at vi contains nonzero entries not only at the i-th row but also at L pc
k,i ( j, i) for

all j with v j ∈ Ri . The approximations at all points are then coupled by summing up all
L pc
k,i and dividing it by 3 in Eq. (21). Second, when compared to other prior local Delaunay-

based point cloud Laplacian approximation schemes with accumulated cotangent weights
[55,63,64], our proposed scheme involves an extra step of handling the approximations at
boundary vertices using the angle criterion. As we discussed above, this plays an important
role for the free-boundary conformal parameterization problem we are considering in this
work.

Altogether, with the neighboring geometric information appropriately coupled at both
the interior and boundary of the point cloud and the special treatment for the point cloud
boundary, our proposed approximation method yields a better result for the free-boundary
conformal parameterization problem. Quantitative comparisons between the approximation
schemes are provided in Sect. 5.

4.3 Algorithmic Procedure of the Proposed Point Cloud Conformal Parameterization
Method

Using the proposed approximation L pc
k of the point cloud Laplacian constructed in Eq. (21)

and the area matrix Marea constructed in Eq. (15), we can obtain a free-boundary conformal
parameterization f = ( fx , fy)T of the point cloud P by solving a linear system similar to
Eq. (17):
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( (
L pc
k 0
0 L pc

k

)
− Marea

) (
fx
fy

)
= 0. (23)

For the boundary constraints, we follow the DNCP method [21] and map the farthest two
points in P to (0, 0) and (1, 0). This eliminates the rigid motions and rescaling of the param-
eterization result and ensures that the overall boundary shape is determined automatically.
The proposed method for computing free-boundary conformal parameterizations of point
clouds is summarized in Algorithm 1.

Algorithm 1: Free-boundary conformal parameterization of point clouds
Input: A point cloud P = {vi }ni=1 with disk topology with (oriented) boundary indices

∂P = (b1, b2, . . . , bl ), the prescribed kNN parameter k, and the prescribed angle range (c1, c2)
(in degrees) for the boundary angles.

Output: A free-boundary conformal parameterization f : P → R
2.

1 for i = 1, . . . , n do
2 Find the k-nearest neighbors Nk

i = {vn1 , . . . , vnk } of vi ;

3 Use PCA to find the first three principal directions {e1i , e2i , e3i } of Nk
i ;

4 Project Nk
i to the tangent plane formed by e1i , e

2
i passing through vi and obtain Ñ k

i using the
projection formula in Eq. (18);

5 Construct a Delaunay triangulation T i
k for Ñ k

i ;
6 Extract the one-ring neighborhood Ri of vi ;
7 if vi ∈ ∂P then
8 Delete those triangles with θ ≤ c1 or θ ≥ c2 and update Ri ;

9 Compute the matrix L pc
k,i of the one-ring neighborhoods Ri using cotangent formula in Eq. (19);

10 Obtain the point cloud Laplacian L pc
k using Eq. (21);

11 Construct the area matrix Marea using Eq. (15);
12 Obtain f by solving the linear system in Eq. (23);

5 Experimental Results

The proposed algorithm is implemented in MATLAB, with the backslash operator (\) used
for solving the linear systems. For the computation of the k-nearest neighbors, we use the
built-in MATLAB function knnsearch. For the computation of the 2D Delaunay trian-
gulation, we use the built-in MATLAB function Delaunay. The parfor function in the
MATLAB parallel computing toolbox is used for speeding up the computation. We adopt
point cloud models from online libraries [65,66] for testing the proposed free-boundary con-
formal parameterization algorithm. The experiments are performed on a PC with an Intel
Core i7-1065G7 quad core CPU and 16 GB RAM. For simplicity, the kNN parameter is set
to be k = 25 unless otherwise specified.
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Fig. 3 Examples of free-boundary conformal parameterizations of point clouds produced by the proposed
method (Algorithm 1). Left: The input point clouds. Middle: The parameterization results. Right: The his-
tograms of the norm of the point cloud Beltrami coefficients |μ|

5.1 Free-Boundary Conformal Parameterization of Point Clouds

Figure 3 shows three point cloud models and the free-boundary conformal parameterizations
achieved using Algorithm 1, from which it can be observed that our proposed method is
capable of handling point clouds with different geometry. To assess the conformal distortion
of each point cloud mapping, we compute the point cloud Beltrami coefficient (PCBC)
μ [67], which is a complex-valued function defined on each vertex of the point cloud. In
particular, |μ| ≡ 0 if and only if the point cloud mapping is perfectly conformal. As shown
in the histograms of |μ|, the parameterizations produced by our proposed method are highly
conformal.

For a more quantitative analysis, Table 1 records the computation time and the conformal
distortion of the proposed method for various point cloud models. For each example, we
search for an optimal set of angle criterion parameters (c1, c2) ∈ [0, 20] × [100, 180] using
a simple marching scheme with an increment of 2.5 for c1 and an increment of 10 for c2 (see
Fig. 4 for an illustration). It can be observed that our method is highly efficient and accurate.
For comparison, we also consider running the proposed method without the angle criterion
step by setting (c1, c2) = (0, 180) (i.e. using the point cloud Laplacian with accumulated
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Fig. 4 An illustration of the effect of different choices of the angle criterion parameters (c1, c2) in Algorithm 1
on the conformal distortion of the point cloud parameterization. Here, the point cloud used is the first model
in Fig. 3

cotangent weights [63,64]). The results show that the angle criterion step effectively reduces
the conformal distortion by over 30% on average. This suggests that the proposed angle
criterion step is important for yielding an accurate parameterization result.

One may be interested in the robustness of the proposed method. Note that the kNN
parameter k is used for the construction of the local mesh, in which the 1-ring neighborhood
is used for getting the cotangent weights. Using a very small k may lead to inaccuracies in
approximating the 1-ring neighborhood, while using a very large k may not be necessary
as most of the points will likely be outside the 1-ring neighborhood or even far away from
the reference point. In practice, we find that k = 25 works well for the models we have
considered. More specifically, Fig. 5 shows the conformal distortion of the parameterization
obtained by our proposed method with different k. It can be observed that the distortion is
usually relatively large when a very small k (e.g. k = 10) is used. As the value of k increases,
the distortion gradually decreases as the local 1-ring neighborhood approximation is more
and more accurate. After reaching around k = 20, the distortion stabilizes and so k = 25
is already sufficient for yielding a good parameterization result for all of the models. As
for the angles (c1, c2) in the angle criterion, note that the experiments presented in Table 1
cover a large variety of point clouds with different boundary shape, and the optimal values
for (c1, c2) are similar in all experiments (with c1 ≈ 15 and c2 ≈ 120). Therefore, we expect
that setting similar values for c1 and c2 is sufficient for yielding a notable improvement in
conformality for general point clouds. One of the possible future works would be to devise a
method for determining the optimal values of (c1, c2) directly based on the geometry of the
point cloud.

5.2 Comparison with Fixed-Boundary Conformal Parameterization

After assessing the performance of the proposed free-boundary conformal parameterization
method, we compare it with the point cloud rectangular conformal parameterization method
[54], which maps a disk-type point cloud onto a rectangular domain. As shown in Fig. 6, our
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Fig. 5 The conformal distortion (in terms of Mean(|μ|)) achieved by the proposed free-boundary conformal
parameterization method with different choices of the kNN parameter k

Fig. 6 Comparison between our proposed free-boundary conformal parameterization method and the rectan-
gular conformal parameterization method [54] for point clouds. For each point cloud model, we apply the two
methods and record the mean of the norm of the point cloud Beltrami coefficients (PCBC) |μ|

proposed method results in a lower conformal distortion when compared to the rectangular
parameterization method. More quantitatively, the distortion by our method is 65% lower
than that by the rectangular parameterization method on average. The better performance of
our method can be explained by the fact that while the existence of a conformal map from
a simply-connected open surface onto a rectangle is theoretically guaranteed, the additional
rectangular boundary constraint may induce numerical inaccuracy in the computation of
the point cloud rectangular conformal parameterization. By contrast, the proposed method
computes a free-boundary conformal parameterization, in which the input point cloud can
be flattened onto the plane more naturally according to their overall geometry.

Figure 7 shows the computation time for our proposed parameterization method and the
rectangular parameterization method [54]. It can be observed that the time required increases
approximately linearly with the number of points for both methods. More specifically, the
slope for our method is ≈ 2.6× 10−4, and that for the rectangular method is ≈ 7.2 × 10−4.
This suggests that our method is over 60% faster than the rectangular method on average.
The improvement in computation time achieved by our method can be explained by the fact
that our method only requires solving the linear system in Eq. (23), while the rectangular
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Fig. 7 The computation time for the proposed free-boundary conformal parameterization method and the
rectangular conformal parameterization method [54] for point clouds. The markers correspond to the point
cloud models in Table 1. The best-fit lines for the two methods are also provided

method involves not only solving a linear system to map the point cloud onto a square but
also optimizing the height of the rectangular domain to achieve conformality.

Besides, note that the point cloud Laplacian in Eq. (21) can be used for calculating the
Dirichlet energy ED( f ) (Eq. (12)) of a point cloud mapping f : P → R

2. Similarly, we can
replace the cotangent weight in Eq. (19) with the locally authalic weight [21] and calculate
the locally authalic Chi energy Eχ ( f ) to measure the local 1-ring area distortion of a point
cloud mapping f :

Eχ ( f ) =
∑
vi∈P

∑
v j∈NV (vi )

cot γi j + cot δi j
|vi − v j |2 | f (vi ) − f (v j )|2, (24)

where γi j and δi j are the two angles at a vertex v j in the approximated 1-ring vertex neighbor-
hoodNV (vi ) of the vertex vi (see [21] for more details). Table 2 records the value of Eχ for
our proposed method and the rectangular parameterization method [54]. By considering the
ratio Eχ ( fours)/Eχ ( frect), where fours and frect are our parameterization and the rectangular
parameterization respectively, it can be observed that our method reduces the Chi energy
by over 30% on average. This suggests that our proposed method is more advantageous
than the rectangular parameterization method in terms of not only the conformality and the
computational cost but also the local area distortion.

5.3 Comparison with Other Point Cloud Laplacian Approximation Schemes

One may also wonder whether some other existing approximation schemes of the Laplace–
Beltrami operator can lead to a more accurate free-boundary conformal parameterization
when compared to our proposed approximation scheme in Eq. (21). Here we apply Algo-
rithm 1 with the local mesh method [61] and the moving least squares (MLS) method [59]
to obtain free-boundary parameterizations and evaluate the conformality of the results. Note
that in the MLS method, the Laplacian matrix is approximated using a linear combination
of derivatives obtained from a local parametric approximation of the kNN of each point. At
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Table 2 The local area distortion of the point cloud parameterizations

Model Eχ ( fours) Eχ ( frect) Eχ ( fours)/Eχ ( frect)

Cloth 1.2246e+04 2.3857e+04 0.5133

Julius 2.6134e+04 5.8201e+04 0.4490

Niccolò da Uzzano 4.0008e+04 5.0443e+04 0.7931

Max Planck 2.4843e+04 5.7683e+04 0.4307

Chinese lion 3.4569e+04 2.7245e+04 1.2688

Sophie 4.2953e+04 7.9225e+04 0.5422

Alex 9.0598e+04 1.0714e+05 0.8456

Twisted hemisphere 2.4911e+04 3.6771e+04 0.6775

Eχ ( fours) and Eχ ( frect) are the locally authalic Chi energy for our free-boundary parameterization method
and the rectangular parameterization method [54] respectively

Fig. 8 Comparison between our proposed scheme (Eq. (21)), the local mesh method [61] and the moving
least squares (MLS) method [59] for approximating the point cloud Laplacian. For each point cloud model, we
apply Algorithm 1 with the two Laplacian approximation schemes to compute the free-boundary conformal
parameterization, and record the mean of the norm of the point cloud Beltrami coefficients (PCBC) |μ|

a boundary point vi , the local coordinate system constructed using the kNN Nk(vi ) only
consists of points from one side of vi and hence the Laplacian approximation is highly inac-
curate. Therefore, here we evaluate the performance of the MLS method by constructing a
Laplacian with the MLS method used for the interior points and the local mesh method used
for the boundary points.

As shown in Fig. 8, the conformal distortion of the parameterizations achieved by Algo-
rithm 1 with our proposed approximation scheme is lower than that achieved by Algorithm 1
with the local mesh method and the MLS method. More quantitatively, the conformal dis-
tortion achieved by our proposed approximation scheme is 70% lower than that by both the
local mesh method and the MLS method. This suggests that our proposed approximation
scheme is important for yielding an accurate free-boundary conformal parameterization of
point clouds.
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σ = 0.5 σ = 1 σ = 1.5 σ = 2Original (σ = 0)

Fig. 9 Free-boundary conformal parameterization of noisy point clouds with a Gaussian noise. The leftmost
column shows the real-world facial point cloud obtained using theKinect 3D scanner [54], the parameterization
result and the histogram of the norm of the point cloud Beltrami coefficient (PCBC) |μ|. The other columns
correspond to the noisy point clouds with different σ

5.4 Parameterizing Noisy Point Cloud Data

It is natural to ask whether the proposed parameterization method works well for noisy
point clouds. Here, we consider a real-world facial point cloud obtained using the Kinect 3D
scanner [54] (see Fig. 9, leftmost). We apply the proposed parameterization method on this
point cloud, and the histogram of the norm of the PCBC |μ| shows that the parameterization is
highly conformal. To further study the performance of the proposed parameterizationmethod,
we consider adding different level of noise to the facial point cloud. Specifically, we add a
Gaussian noise with mean 0 and standard deviation σ = 0.5, 1, 1.5, 2 using the MATLAB’s
normrnd function. Figure 9 shows the noisy facial point clouds and the parameterization
results. Note that even for the examples with a large σ , the peaks of the histograms of |μ| are
still close to 0, which suggests that the conformal distortion is satisfactory.

We further compare the conformal distortion achieved by our proposed method and the
rectangular parameterization method [54] for parameterizing these noisy point clouds. As
shown in Fig. 10, our proposed parameterization method results in better conformality when
compared to the rectangular parameterization method for all levels of noise. This demon-
strates the effectiveness of our method for handling noisy point cloud data.

6 Application to Point CloudMeshing

The proposed free-boundary conformal parameterization method can be used for meshing
disk-type point clouds. More specifically, after parameterizing a point cloud onto the plane,
we can compute a 2DDelaunay triangulation of all points, which induces a mesh structure on
the input point cloud. Note that every non-boundary edge e in a 2D Delaunay triangulation
is shared by exactly two triangles, in which the two angles α, β opposite to e always satisfy
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Fig. 10 Comparison between our proposed parameterization method and the rectangular parameterization
method [54] for parameterizing noisy point clouds (see Fig. 9 for the point cloudswith different noise parameter
σ ). For each example and each method, the mean of the norm of the point cloud Beltrami coefficient (PCBC)
|μ| is recorded

the following property:

α + β ≤ π. (25)

In other words, angles that are too acute or too obtuse are avoided as much as possible in
2D Delaunay triangulations. Such high-quality triangulations are desirable in many practi-
cal applications. As demonstrated by the numerical experiments presented in Sect. 5, the
proposed free-boundary conformal parameterization method results in a lower conformal
distortion when compared to other parameterization approaches. Therefore, the above-
mentioned nice property of the 2D Delaunay triangulations is well-preserved in the resulting
triangular meshes of the 3D point clouds via our parameterization method. Figure 11 shows
two examples of meshing point clouds via our parameterization method, from which it can
be observed that the resulting triangles are highly regular.

For a more quantitative assessment, we consider the Delaunay ratio of a point cloud
triangulation [53]:

r = Number of non-boundary edges satisfying α + β ≤ π

Total number of non-boundary edges
. (26)

Table 3 records the Delaunay ratio of the point cloud triangulations created via our
free-boundary conformal parameterization method and the rectangular conformal param-
eterization method [54]. In all experiments, our free-boundary parameterization approach
produces triangular meshes with a higher quality when compared to the rectangular boundary
parameterization approach. This shows that our proposed free-boundary conformal parame-
terization method is more advantageous for point cloud meshing.

7 Extending the Proposed ParameterizationMethod Using Partial
Welding

In our recent work [39], we proposed a parallelizable algorithm for the conformal parame-
terization of triangulated surfaces using the idea of partial welding. Here, we show that the
partial welding method can be naturally extended to point clouds, thereby providing a more
flexible way of computing the free-boundary conformal parameterizations of point clouds.

The partial welding method [39] is outlined below. Let S1, S2 be two discretized
domains on the complex plane with oriented boundary vertices ∂S1 = {a0, a1, . . . , an1},
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Fig. 11 Meshing point clouds via our proposed free-boundary conformal parameterization method. Left: The
input point clouds. Right: The resulting triangular meshes

Table 3 The Delaunay ratio r of the point cloud triangulations created via our proposed free-boundary con-
formal parameterization method and the rectangular conformal parameterization method [54]

Model Meshing via our method Meshing via rectangular map [54]

Cloth 0.9991 0.9814

Julius 1 0.9987

Niccolò da Uzzano 0.9979 0.9935

Max Planck 0.9984 0.9670

Chinese lion 0.9918 0.9805

Sophie 0.9994 0.9916

Alex 0.9980 0.9939

Twisted hemisphere 0.9955 0.9882

∂S2 = {b0, b1, . . . , bn2} and a partial correspondence
ai ↔ bi , i = 0, 1, . . . , k, (27)

where k ≤ min(n1, n2). The partial welding method finds two conformal maps φ1 : S1 → C

and φ2 : S2 → C such that φ1(ai ) = φ2(bi ) for all i = 0, 1, . . . , k. In other words, the
two domains are glued conformally along the corresponding vertices. To achieve this, the
method first computes a series of conformal maps to map S1 and S2 onto the upper half-
plane and the lower half-plane respectively, with a0, . . . , ak mapped to the upper half of the
imaginary axis (denoted the transformed vertices as A0, . . . , An1 ) and b0, . . . , bk mapped to
the lower half of the imaginary axis (denoted the transformed vertices as B0, . . . , Bn2 ). The
method then finds another series of conformal maps such that each pair of corresponding
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vertices (Ai , Bi ) are mapped to a point on the real axis, thereby gluing the two domains
(denoted the transformed vertices as Ã0, . . . , Ãn1 and B̃0, . . . , B̃n2 ). In other words, the two
desired maps φ1, φ2 are constructed by a composition of these conformal maps. Using this
idea of gluing two domains based on a partial correspondence, one can compute a conformal
parameterization of a simply-connected open surface by first partitioning it into multiple
domains, then conformally mapping each domain onto the complex plane and finally gluing
all flattened domains successively. Readers are referred to [39] for more details.

While the partial welding method is developed for the parameterization of triangulated
surfaces in [39], we note that the above-mentioned procedures only involve the boundary
points of each domain but not the triangulations. This suggests that the partial welding
method is naturally applicable to our point cloud parameterization problem.

Note that in the original partial welding algorithm [39], two auxiliary points an1+1 =
1
n1

∑n1
j=1 a j and an1+2 = ∞ are appended to ∂S1. Similarly, two auxiliary points bn2+1 =

1
n2

∑n2
j=1 b j and bn2+2 = ∞ are appended to ∂S2. These auxiliary points are used at the last

step of the algorithm in [39].More specifically, the last step considers aMöbius transformation

that sends
(
Ãn1+1, B̃n2+1, p = 1

2 ( Ãn1+2 + B̃n2+2)
)
to (−1, 1,∞) in order to normalize the

transformed boundary shapes. However, we notice that p may lie inside the interior of one
of the transformed domains in some rare cases. Pushing such p to ∞ will map a bounded
domain to an unbounded domain (see Fig. 12 for an illustration), which is undesirable.

Toovercome this potential problem, herewepropose the followingmodificationof thefinal
Möbius transformation step. If p lies inside the interior of either the transformed ∂S1 or ∂S2,
we consider the boundaryΓ = (∂S1∪∂S2−weld path)∪(endpoints of weld path) formed by
the red and grey curves in the top right panel of Fig. 12. Note that Γ must be a simple closed
curve as all the previousmaps are conformal. This suggests thatweonly need tofind an interior
point q in the bounded Jordan domain Ω̃ formed by Γ , and two other points Γ (1), Γ (l) ∈ Γ

where l ≈ |Γ |/2 ∈ N. To find an interior point in Ω̃ , we simply use a minimal axis-aligned
bounding box for Ω̃ , i.e. [min(Re(Γ )),max(Re(Γ ))] × [min(Im(Γ )),max(Im(Γ ))]. Then
we draw a vertical line x = 1

2 (min(Re(Γ )) + max(Re(Γ ))) and compute its intersections
with Γ . We sort the intersections by their distance to a point that lies on the line but outside
the bounding box. We then take the midpoint of the first two intersections as q , which must
lie inside int(Ω̃). Finally, the final Möbius transformation in the original partial welding
algorithm [39] can be replaced with a Möbius transformation sending (Γ (1), Γ (l), q) to
(−1, 1,∞). This ensures that the welded boundary shapes can be normalized without being
mapped to an unbounded domain.

An illustration of the proposed free-boundary conformal parameterization algorithm for
point clouds via partial welding is shown in Fig. 13. Given a point cloudP = {vi }ni=1, we first
partition it intom subdomains P1,P2, . . . ,Pm . We then compute a conformal parameteriza-
tion ϕi : Pi → C for each subdomain using Algorithm 1.We remark that for each point vij in

Pi , where j = 1, 2, . . . , |Pi |, we exclude all points in its k-nearest neighbors Nk,i
j that are not

in Pi for computing ϕi . Note that the parameterizations ϕ1, . . . , ϕm are independent of each
other and hence can be computed in parallel. Once all subdomains are flattened, we can use
the partial weldingmethod as described in [39] with the above-mentionedmodification of the
finalMöbius transformation step to glue all subdomains based on the partial correspondences
of their boundaries, thereby yielding a global free-boundary conformal parameterization of
P . The proposed free-boundary conformal parameterization method via partial welding is
summarized in Algorithm 2.

We remark that since the computations of all ϕi are independent, the input parameters
k, c1, c2 in Algorithm 1 for computing each ϕi can be set differently. In other words, the
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Fig. 12 An illustration of the potential occurrence of an unbounded domain under the final Möbius trans-
formation step in [39]. The two domains S1, S2 are to be welded partially, with the weld paths highlighted
in black. After the welding process, the two domains are welded along the weld paths, with the three points(
Ãn1+1, B̃n2+1, p = 1

2 ( Ãn1+2 + B̃n2+2)
)
marked in different colors. Since p lies inside the transformed

S2, a Möbius transformation sending p to ∞ will map the transformed S2 to an unbounded domain

Fig. 13 An illustration of the proposed free-boundary conformal parameterization method for point clouds via
partial welding. Given a human face point cloud, we first partition it into subdomains. We then conformally
flatten each subdomain onto the complex plane using Algorithm 1. Finally, we glue all flattened subdomains
using partial welding to obtain the global free-boundary conformal parameterization
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Algorithm 2: Free-boundary conformal parameterization of point clouds via partial
welding
Input: A point cloud P = {vi : 1 ≤ i ≤ N } with disk topology with boundary ∂P and the number of

subdomains m.
Output: A free-boundary conformal parameterization f : P → C.

1 Partition P into m subdomains P1,P2, . . . ,Pm with weld paths γi , i = 1, . . . ,m;
2 for i = 1 : m do
3 Extract the boundary ∂Pi = γi ∪ (∂P ∩ Pi ) for each subdomain;
4 for j = 1 : |Pi | do
5 if ∃ v ∈ Nk,i

j \ Pi then

6 Delete v from Nk,i
j ;

7 Do Line 3–6 in Algorithm 1;

8 Do Line 7–9 in Algorithm 1;

9 Do Line 10–12 in Algorithm 1 to get a free-boundary conformal parameterization ϕi : Pi → C.
Record the Laplacian matrix and the mapped boundary ϕi (∂Pi );

10 Perform partial welding [39] on the boundaries ϕ1(∂P1), ϕ2(∂P2), …, ϕm (∂Pm ) obtained in Line 9
with the modified final Möbius transformation step;

11 Use the Laplacian matrices obtained in Line 9 to compute a conformal parameterization ϕ̃i : Pi → C

for each Pi with the welded boundary constraints;
12 Combine ϕ̃1(P1), ϕ̃2(P2), . . . , ϕ̃m (Pm ) to form the final free-boundary conformal parameterization

f : P → C;

use of partial welding in Algorithm 2 allows us to have a more flexible choice of the local
approximation parameters for handling regions with different geometry.

Figure 14 shows several examples of free-boundary conformal parameterization of point
clouds produced by Algorithm 2. It can be observed that different subdomains can be
handled separately and then glued seamlessly to form the final free-boundary conformal
parameterization. The histograms of the norm of the Beltrami coefficients |μ| show that the
parameterizations are highly conformal.

8 Discussion

Whilemeshparameterizationmethods have beenwidely studied over the past several decades,
the parameterization of point clouds is much less understood. In this work, we have proposed
amethod for computing free-boundary conformal parameterizations of point cloudswith disk
topology. More specifically, we develop a novel approximation scheme of the point cloud
Laplacian, which allows us to extend the DNCPmesh parameterization method [21] for point
clouds with disk topology. The flexibility of the proposed parameterization method can be
further enhanced with the aid of partial welding [39]. The proposed method is capable of
handling a large variety of point clouds and achieves better conformality when compared to
prior point cloud parameterization approaches. The improvement in the conformality makes
the proposed point cloud parameterization method suitable for practical applications such as
point cloud meshing.

While we have used a universal k in our experiments, one can also use a varying k for
constructing the k-nearest neighborhood for different points without altering any other steps
in the proposed parameterization algorithm. By setting k based on the properties such as
curvature and density of the input point cloud, one may be able to further improve the
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Fig. 14 Examples of free-boundary conformal parameterizations of point clouds produced by the proposed
methodwith partial welding (Algorithm 2). Left: The input point clouds.Middle: The parameterization results.
Right: The histograms of the norm of the point cloud Beltrami coefficients |μ|. The colors indicate the
corresponding subdomains in the input point clouds and the parameterization results. For the first two models,
the kNN parameter is set to be k = 25. As the last model is much denser, the kNN parameter is set to be
k = 35

parameterization result. Also, note that as described in [39], the mesh-based partial welding
method for free-boundary conformal parameterization can be modified for achieving other
prescribed boundary shapes such as a circle. Analogously, Algorithm 2 should also be able to
bemodified for achieving other prescribed boundary shapes in the resulting parameterization,
thereby leading to an improvement in conformality and flexibility for such parameterization
problems.

As for possible future works, it will be interesting to consider combining the idea of tufted
cover [55] with the proposed angle criterion to further improve the approximation of the point
cloud Laplacian. We also plan to explore the use of the proposed parameterization method
for point cloud registration and shape analysis, and extend the proposed parameterization
method for the conformal parameterization of point clouds with some other underlying sur-
face topology. For instance, we should be able to extend Algorithm 2 for parameterizing
multiply-connected point clouds. More specifically, we can partition a multiply-connected
point cloud into simply-connected subdomains and compute the conformal parameterization
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of each of them using the proposed parameterization method, with the partial welding idea
utilized for ensuring the consistency between the boundaries of the subdomains.
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