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3D Shape Reconstruction of Small Bodies From
Sparse Features

Benjamin Jarvis , Gary P. T. Choi , Benjamin Hockman, Benjamin Morrell , Saptarshi Bandopadhyay ,
Daniel Lubey, Jacopo Villa, Shyam Bhaskaran, David Bayard, and Issa A. Nesnas

Abstract—The autonomous approach of spacecraft to a small
body (comet or asteroid) relies on using all available information at
each phase of the approach. This letter presents new algorithms for
global shape reconstructions from sparse tracked surface points.
These methods leverage estimates from earlier phases, such as
rotation pole, as well as a priori knowledge, such as a genus-0
body (i.e. without boundaries or topological holes). A mapping al-
gorithm is proposed, which performs faithful reconstructions while
enforcing genus-0 output through spherical parameterization. To
estimate the shape of permanently shadowed regions of the body, a
symmetry reconstruction method is added to the reconstruction
algorithms. This method is shown to substantially increase the
reconstruction accuracy but is subject to the symmetry of the
body perpendicular to the rotation pole. The proposed mapping
algorithm is compared to state-of-the-practice surface reconstruc-
tion algorithms, assessing their accuracy and ability to correctly
generate genus-0 shape models for 2400 datasets and three small
bodies. The proposed spherical parameterization algorithm per-
formed consistently with the state-of-the-practice while being the
only algorithm to always produce genus-0 shape models.

Index Terms—Mapping, computational geometry, computer
vision for automation.

I. INTRODUCTION

THE exploration of small celestial Near-Earth bodies (aster-
oids and comets) benefits scientific exploration and enables

the development of technologies for future applications such as
in-situ resource utilization and planetary defence. The interest
in small-body exploration is evident from recent missions, such
as NASA’s OSIRIS-REX, ESA’s Rosetta, and JAXA’s Hayabusa
missions. Operating these missions require extensive planning
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and countless person-hours to accomplish. Due to this, there is
growing motivation to leverage spacecraft autonomy to enable
further and more frequent exploration of small bodies, at a lower
cost. An essential part of enabling this is accurate and robust
shape reconstruction of the target body during approach.

An autonomous approach pipeline consists of a number of
different phases; at each step there is an effort to leverage all
available information to further inform the approach [1]. We
focus here on the phase of the approach when visual features
are first able to be reliably tracked, generating a coarse set of
corresponding 100–1000 3D landmarks that form a sparse point
cloud representing the small body [2]. We aim to generate a
global 3D map of the small body, leveraging all available prior
information, primarily, the 3D landmarks and pole of rotation
(determined through pole-from-silhouette algorithms [3]). The
goal for the resulting global shape model is to enable initial
gravity estimates and to inform a future dense-mapping phase. A
particular requirement for gravity estimation is to have a water-
tight, genus-0 surface (i.e., a spherical topology).

Throughout the approach, there is a desire to track fewer but
more accurate features for longer durations in order to reduce
uncertainties in the orbit determination. Therefore, coarse shape
reconstruction is performed with fewer features, especially in
the earlier phases of the approach. Shape reconstruction using
sparse data can produce inconsistent results using existing map-
ping approaches. One notable inconsistency is the generation
of shapes with non-spherical topologies, a situation where the
reconstructed shape of the body has holes or results in multiple
incorrect separate bodies (non-genus-0). To address these chal-
lenges, we propose a mapping algorithm that is robust to sparse
data and guarantees a genus-0 reconstruction. We present an
analysis of this algorithm along with the existing state-of-the-
practice methods for coarse watertight reconstruction.

Another challenge that is specific to mapping small celestial
bodies is the presence of large permanently shadowed regions,
which are never visible. To address the lack of information in
these shadowed regions, we propose a technique for “filling
in” these regions with artificial points that are inferred from an
assumption of symmetry and our knowledge of the rotation pole.

II. RELATED WORK

The mapping of small bodies is an extensively studied prob-
lem with various techniques for producing accurate Digital
Terrain Maps (DTMs) [4]. Stereo Photoclinometry (SPC) is
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the most widely used method due to its ability to model the
topography and light source to produce accurate DTMs while
simultaneously refining the pose estimate [5], [6]. However, this
is a human-intensive process that relies on extensive ground
analysis and communication with the spacecraft, limiting its
use in autonomous operations [1]. The use of Simultaneous
Localization and Mapping (SLAM) techniques for small-body
mapping has been explored in recent years, however, these
have primarily relied on range sensors [7] or have suggested
incorporating ground-based measurements [8], which constrains
operations. While additional data from earlier phases could
be incorporated, such as visual-hull shapes reconstructed from
observing the body’s silhouettes [3], this paper focuses on the
feasibility of solely using landmarks from feature tracking.
Promising results have been found with landmark only meth-
ods [9], however, this analysis did not construct a mesh and
used randomly sampled landmarks that did not account for any
permanently shadowed regions.

Over the past several decades, there has been a large body
of work on surface reconstruction and mapping of point
clouds [10]–[12]. The “Cocone” algorithm [13] constructs the
3D Voronoi diagram for the point cloud and filters out points
using conical constraints defined by each point’s surface normal,
followed by a Delaunay triangulation to connect neighbouring
points. “Tight Cocone” [14] is a variant for reconstructing
watertight surfaces which performs imperfect hole closing by
peeling the convex hull. The “Powercrust” method [15] grows
spheres from the vertices of the Voronoi diagram that are interior
to the body until they intersect the point cloud. The process is
repeated for the exterior vertices and the points formed from
the intersection of these interior and exterior spheres forms a
watertight estimate of the surface. These intersection points are
then triangulated using the Delaunay method. “Poisson surface
reconstruction” [16] requires the estimated surface normal of
landmarks to form a continuous vector field to generate an
isosurface. The vector field is an approximation of the gradient
of the indicator function, a binary function that identifies points
inside the body, which is derived by solving a Laplace equation.
While these methods have proven to be highly effective for
many science and engineering applications, they either change
the position of input points, produce a mesh with topological
holes, or both.

To take the topology of the input point clouds into considera-
tion in the mapping and meshing process, one common approach
is to make use of point cloud parameterization [17], [18]. In
particular, Choi et al. [19] proposed a method for meshing
point clouds with spherical topology via spherical conformal
parameterization. The method generates a faithful triangular
mesh based on the input points without introducing new points
or changing the position of the input points. The resulting mesh
is guaranteed to be genus-0. However, the method primarily
focuses on dense point clouds and does not produce accurate
reconstructions for coarse point clouds, this will be shown in
Section VI-B.

Applying symmetry assumptions for shape reconstruction
from partial visibility is an extensive area of research applied
to a range of applications. It has been proposed for non-invasive

model generation in biomedicine [20], and widely investigated
for scene reconstruction to aid in 3D mapping [21], and grasp-
ing [22]. Much of this research focuses on the detection of sym-
metry, whether that relies on user input and prior knowledge [23],
or is computed with no prior [24], [25]. To determine the sym-
metry planes, these methods all rely on having high accuracy
and dense partial reconstructions of the shape, which enables
precise detection of any symmetry and accurate reconstruction
of the occluded regions. An equatorial symmetry assumption
was applied to improve the initial volume estimate of Comet 67P,
to construct unobserved regions in the southern hemisphere [26].

III. SPHERICAL PARAMETERIZATION

In this section, we develop a novel spherical parameterization
method for coarse point clouds and use it for surface recon-
struction (see Fig. 1). Our proposed method primarily follows
the prior approach [19], with modifications in several key steps
for improving the performance. Note that directly mapping the
point clouds onto a sphere is difficult because of their shape
variation. Therefore, we achieve a spherical parameterization
by first mapping a point cloud onto the 2D plane, and then map
the plane onto the unit sphere.

The first step of the proposed algorithm is to approximate the
Laplacian on the input point cloud (denoted as P = {vi}ni=1,
where n is the total number of points). Note that in the prior
method [19], the Laplacian is approximated using the moving
least squares (MLS) method, which involves the approximation
of higher order derivatives and hence does not work well for
coarse point clouds and may significantly affect the subsequent
computation (see Section VI for experimental results). There-
fore, here we use a local mesh approach for constructing the
Laplacian. We first approximate the local 1-ring neighborhood
N(vi) of each point vi by applying the 3D Delaunay trian-
gulation method on P and extracting the local connectivity.
Using the local 1-ring neighborhoods, we can construct ann× n
Laplacian matrix L using the cotangent formula [27], with its
(i, j)-entry Lij given by:

Lij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1

2
(cotαij + cotβij), if vj ∈ N(vi),

− ∑
m �=i

Lim if j = i,

0 otherwise,

(1)

where αij , βij are the angles opposite to the edge [vi, vj ] in
N(vi) (see [27] for more details). However, as the 3D Delaunay
method produces a convex volume, certain points in P may
get omitted in the above computation. To resolve this issue,
we use the modified local mesh method in [28] to handle the
omitted vertices and approximate their local connectivity. More
specifically, for each omitted vertex, we find its k-nearest neigh-
bors and use the principal component analysis (PCA) to project
them onto its tangent plane, where k is set to be 25 in practice.
We can then approximate the local 1-ring neighborhood by
constructing the 2D Delaunay triangulation for all the projected
points. This allows us to compute the cotangent weights in
Eq. (1) for the omitted points and incorporate them with L,
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Fig. 1. Surface reconstruction via spherical parameterization. We first map the input point cloud to the unit sphere via a composition of several mappings and
then apply the spherical Delaunay triangulation on the spherical parameterization, from which we obtain a reconstructed surface of the point cloud.

thereby getting an n× n modified Laplacian matrix L̃ with all
omitted points handled. Then, for any mapping g : P → R2, we
can approximate the Laplacian Δ using L̃ as follows:

Δg(vi) =
∑

vj∈N(vi)

L̃ij(g(vj)− g(vi)), (2)

where L̃ij is the (i, j)-entry of L̃.
Now, we obtain a spherical parameterization of P based on

the approach in [29]. More specifically, we map P onto a planar
triangular domain by solving the Laplace equation:

Δg = 0. (3)

Note that the above equation is an n× n sparse linear system
and can be easily solved numerically using iterative methods.
In the case that P is too coarse or noisy such that the cotangent
Laplacian causes degenerate solutions, we can simply remove
the outlier points that form non-manifold geometry in the local
mesh approximations and replace the cotangent Laplacian with
the Tutte Laplacian [30], which is more robust to extreme angles
in the local geometry. We then apply the inverse stereographic
projection ϕ−1 to obtain a spherical parameterization:

ϕ−1(x, y) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
,
−1 + x2 + y2

1 + x2 + y2

)
,

(4)
where (x, y) are the Cartesian coordinates of a point on the 2D
plane. Now, note that the composition ϕ−1 ◦ g (i.e. applying g
followed by ϕ−1) is a spherical parameterization that maps P
onto the unit sphere. As ϕ−1 is a conformal (angle-preserving)
map and g is the solution of the Laplace equation (3), the spher-
ical parameterization ϕ−1 ◦ g has low geometric distortion. To
further improve the conformality ofϕ−1 ◦ g, we apply the south-
pole mapping scheme in [19], which involves computing another
stereographic projection with respect to the south pole of the
sphere and solving another Laplace equation with the outermost
points fixed, followed by the inverse south-pole stereographic
projection. Finally, we apply the Möbius area correction scheme
in [31] to reduce the area distortion of the spherical parame-
terization. More specifically, we search for an optimal Möbius
transformation τ(z) = az+b

cz+d (where a, b, c, d with ad− bc �= 0
are the complex variables to be optimized) such that composing
the spherical parameterization with ϕ−1 ◦ τ ◦ ϕ minimizes the
average area distortion of all triangles in the local mesh ap-
proximation. Since Möbius transformations are conformal, the
conformality of the parameterization will not be affected by this
step. This completes the proposed spherical parameterization
method for coarse point clouds.

Fig. 2. Not to scale diagram showing the relative position of the spacecraft,
small-body, and sun. The solar phase angle, θ, determines the region of the body
permanently shadowed, shown by the black region.

With the spherical parameterization, we can directly apply
the spherical Delaunay triangulation method [32] to construct
a genus-0 triangular mesh of the unit sphere based on the
parameterized points, which naturally induces a triangular mesh
on the input point cloud P . Note that the spherical Delaunay
triangulation method ensures that the two angles α, β opposite
to each edge on the sphere satisfy α+ β ≤ π, which effectively
reduces the occurrence of sharp triangles and hence maximizes
the regularity of the triangulation. Since the distortion of the
spherical parameterization is optimized in our proposed method,
the induced triangulation on P will also be highly regular.
Moreover, as the topology of P is preserved under the spherical
parameterization, the reconstructed surface is guaranteed to be
genus-0. Finally, we apply the edge flipping operator from [33]
to minimize vertex curvature and smooth the reconstruction.
As this only affects local connectivity, it does not introduce
non-genus-0 features.

IV. SYMMETRY RECONSTRUCTION

Unlike planets, whose rotation axes are generally normal
to their orbital plane, the “obliquity” of asteroids and comets
tends to be totally random. As a result, seasonally, there can
often be large regions of permanent shadow on the northern or
southern hemispheres that are unobservable with visual sensors
(see Fig. 2). Thus, the challenge of meshing sparse point clouds
to form a global shape model can be exacerbated by large “holes”
in the data set. Applying reconstruction algorithms directly to
these point clouds results in a large planar region. However,
we can leverage prior estimates of the pole orientation (e.g.
through Silhouette methods [3]), the body’s centroid [1], and
an assumption that small bodies often have a strong north-south
symmetry in their shape to “fill in” large holes in point-cloud data
as a preprocessing step to improve the robustness and accuracy of
global shape reconstruction. This section describes our “symme-
try reconstruction” algorithm. It differs from existing symmetry
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Fig. 3. Symmetry reconstruction steps applied to a simplified model of Vesta,
(a) 3D point cloud, lighter colour indicates points on the far side of the body. (b)
Planar projection of hemisphere containing the shadowed region. (c) Elliptical
reflection of the planar projection with hole boundary marked. (d) 3D point
cloud with hole boundary marked. (e) Side view of the 3D point cloud with hole
boundary marked and mirror plane shown (red). (f) Side view of the 3D point
cloud showing reflected points (red).

reconstruction methods due to the sparseness of information.
The sparseness prevents methods that detect symmetry [24],
[25]; instead, we rely on our initial assumption of north-south
symmetry, similar to [23]. We separate this algorithm into two
stages, boundary detection, and point mirroring.

A. Boundary Detection

Initially, we determine whether there is a permanently shad-
owed region using our knowledge of the sun location and pole
estimate, shown in Fig. 2. We then identify which points lie on
the boundary of this region. This is done by analysing the point
cloud, prior to mapping, and leveraging an assumption that the
rotation pole lies within the region.

Fig. 3 shows the steps for boundary detection of the shad-
owed region and symmetry reconstruction. Initially, we apply
an orthographic projection along the z axis of the shadowed
hemisphere, which we identify from the sun position, forming
a 2D projection on the xy-plane.

Detecting the boundary points can be simplified by altering
the point cloud so that the hole boundary lies on the exterior of
the 2D projection. We do this by using least squares to fit an
ellipse to the points of the orthographic projection. The major,
a, and minor, b, axes of the ellipse are then used to generate an
elliptical reflection, (x,′ y′), using Eq. (5):

x′ =
a2b2x

b2x2 + a2y2
, y′ =

a2b2y

b2x2 + a2y2
. (5)

With the bounding points of the shadowed region now at the
edges of the elliptical reflection they are selected by computing
the concave hull using a nearest neighbors approach [34]. This
allows concavities in the boundary to be identified, as shown in
Fig. 3(c).

B. Point Mirroring

After the boundary points of the hole are detected, they
can be used to calculate mirror planes and determine which
points should be reflected to fill the shadowed region with a

Fig. 4. Top row: Ground truth shape models for Eros, Itokawa, and Vesta, with
sample landmarks for a90◦ sun phase shown in red. Middle row: Reconstructions
using original point clouds coloured with the Hausdorff distance. Bottom row:
Reconstructions after applying symmetry assumptions coloured with the Haus-
dorff distance. The Hausdorff distance is normalised by the maximum diameter
of the respective body.

TABLE I
COMPARISON OF SYMMETRY METRICS FOR THREE KNOWN BODIES

The distance is a metric for body symmetry through distance to a
mirrored hemisphere. For comparison, each body is normalized
by its maximum diameter. As expected from observation, Eros
and Vesta are more symmetric than Itokawa.

symmetrical assumption. Initially we find the nearest mirrored
neighbors for each of the boundary points. This is done for
each boundary point, X = (x, y, z), by finding the point on
the opposite hemisphere,Xi = (xi, yi, zi), which minimizes the
distance function:

d(X,Xi) =
√

wx(x− xi)2 + wy(y − yi)2 + wz(z + zi)2.

(6)
Where we set wx = wy = 9 and wz = 1, this difference in
weighting is because the best plane of symmetry may not be the
body equatorial plane. Minimizing the z-component avoids this
simplification and emphasizing x and y improves the continuity
between the mirrored and measured points.

After defining these mirror planes, one at the border of the
shadowed region and one on the visible hemisphere of the body
(Fig. 3(e)), the relative position of all points lying above the
visible plane are found. These points are then reflected and
rotated to align with the other plane. The result is a symmetry
estimated point cloud of the body (Fig. 3(f)).

As shown in Fig. 4, small bodies have varying levels of
symmetry, affecting the accuracy of the reconstruction method
described above. This fact is further shown in Table I, where
the symmetry of each example body is analyzed with a metric
similar to that proposed by Alvin et al. [23].

V. TESTING METHOD

To analyse the performance of the proposed surface recon-
struction algorithm we require point clouds and ground-truth
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information for a range of conditions. We generate these by
computing the observability of points on the body, using this to
generate a realistic sample.

To determine landmark observability we apply the Hidden
Point Removal (HPR) operator, introduced by Katz et al. [35],
to high-resolution models of small bodies. These initial shape
models are normalized by their maximum diameter, to allow
scale-independent comparisons. The HPR operator allows us
to find which points are both illuminated and in view of the
spacecraft. Simulating this over a full rotation of the body and
tracking each points visibility, allows an output point cloud to
be selected probabilistically. Selecting point clouds with this
method, as opposed to a feature tracking method, isolates the
reconstruction error from any landmark errors that could be
introduced.

All test data presented in this paper simulates a spacecraft
performing a hover directly above the equator of the small body
(Fig. 2). The distance of the spacecraft from the body was chosen
to be 100 times the body maximum diameter, consistent with
distances that feature tracking may be performed [1]. To test the
performance of the symmetry reconstruction method, we vary
the sun elevation.

We define a Sun Phase Angle, shown in Fig. 2, which describes
the elevation between the spacecraft and the sun in the small-
body-centered inertial frame. For example, zero phase angle has
the sun directly behind the spacecraft.

Eros, Itokawa, and Vesta were the primary small bodies cho-
sen for analysis as they are representative of typical asteroids that
might be encountered. They also display varying shape aspects
such as high curvature, concave regions, and differing levels of
symmetry, as shown in Table I. Additionally, they benefit from
being extensively studied, enabling access to high-resolution
shape files that were used to generate test datasets. The anal-
ysis presented here was conducted on sampled point clouds
of 100–1000 points, in 100 point increments, and sun phase
angles of 15◦ → 90◦, in 5◦ increments. Five point clouds were
generated for each scenario resulting in 800 unique point clouds
for each body. All algorithms were then tested on the same point
clouds with results averaged for each scenario. The minimum
sun phase angle was limited to 15◦ as smaller angles resulted in
a shadowed region that was often too small for hole detection at
low point densities. The performance increase of the symmetry
reconstruction was also found to be negligible at such small sun
phase angles.

To analyse the accuracy of reconstructions, we use the vol-
umetric error to ground truth and the mean Hausdorff dis-
tance [36] normalized by the maximum diameter of the ground-
truth body. The Hausdorff distances between the reconstructed
surface and the ground truth, are the minimum distance between
the reconstructed vertices and those of the ground-truth model.
The mean Hausdorff distance is a widely used metric for recon-
struction accuracy. Normalizing by the ground-truth diameter
gives a dimensionless parameter for comparison across different
bodies. Volumetric error is considered as it is the main measure
for accuracy of a gravity estimate, a primary motivator for coarse
shape models.

Fig. 5. Comparison of normalized mean Hausdorff distance for varying bodies
with symmetry hole filling applied for 1000 point datasets.

Fig. 6. Effect of symmetry hole filling applied to 400 point reconstructions of
Itokawa, (a) and (c), and Vesta, (b) and (d). With results compared to a perfect
ellipsoid.

VI. RESULTS

We independently assess the performance of the mapping
algorithm with and without applying symmetry reconstruction.
We then analyze the performance of our parameterization algo-
rithm on the symmetry reconstructed datasets, with comparison
to state-of-the-practice methods.

A. Symmetry Reconstruction

We analyze the performance of the symmetry method for
different small bodies with varying sun-phase angles. We find
that even on Itokawa, symmetry reconstruction has benefits for
shape reconstruction.

Fig. 5 compares the mean Hausdorff distance for recon-
structed bodies using the parameterization algorithm with the
symmetric method for 1000-point datasets. Fig. 5 shows con-
sistent results with Table I: Eros and Vesta performing similarly
and much better than Itokawa. The improved performance on
Eros over Vesta may result from the larger surface area of Vesta,
which leads to lower density of points.

Fig. 6(b) and 6(d) show that applying symmetry reconstruc-
tion on bodies with high symmetry, such as Vesta, substantially
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TABLE II
SUMMARY OF COARSE 3D MAPPING METHODS

improves reconstruction accuracy for all cases above our 15◦

cut-off. This is further shown on a perfectly symmetrical el-
lipsoid, demonstrating the efficacy of the method. The results
on a less-symmetric body, Itokawa, are shown in Fig. 6(a) and
6(c). We see that reconstruction accuracy suffers below 40◦,
however volume error is still improved after applying symmetry.
For applications of coarse maps to gravity estimation, volume
error is more important, hence we favor the use of the symmetry
assumption for coarse shape generation.

B. Genus-0 Reconstructions

We present analysis of the proposed parameterization algo-
rithm against the state-of-the-practice. For comparison we select
three common algorithms, Screened Poisson Surface Recon-
struction [37], Powercrust [15], and Tight Cocone [14]. They
were primarily chosen as they enforce watertight reconstruc-
tions, a requirement for asteroid shape models.

A summary of key aspects of the reconstruction algorithms
is shown in Table II. While Tight Cocone and Powercrust use
spatial representations of the Voronoi diagram, Screened Pois-
son Surface Reconstruction is a representation of the implicit
surface defined by the gradient function of the point normals. The
calculation of this implicit surface can be adjusted with a range
of parameters, which require tuning based on the point cloud. To
address the different point densities, we apply two sets of tuning
parameters. The main change between these variations is the
degree of the B-spline used to estimate the indicator function.
A higher degree B-spline was used for very sparse data, as it
produces a smooth interpolation across undersampled regions.
Additionally, the resolution of the voxel grid used to compute the
surface was adjusted. Computing the solution with larger voxels
improved the reconstruction for sparse data, but excessively
smoothed the shape at higher densities. In both cases, the final
reconstruction was still represented at the same resolution.

The main benefit of the proposed parameterization algorithm
over existing methods is the enforcement of genus-0 reconstruc-
tion. While existing algorithms can enforce watertight recon-
structions, they do not have any guarantees for the genus of the
output. For a mapping scenario where the body is known to
be genus-0, this is a valuable constraint. Especially for coarse
reconstructions, robustness of shape consistency is preferable
to a slight increase in accuracy. As such, for our comparison,
in addition to the mean Hausdorff distance and volume error,
we add a third metric of the number of non-genus-0 reconstruc-
tions. More specifically, for a genus-0 surface with v vertices, e
edges and f faces, we must have v − e+ f = 2. Therefore, by
computing the value of v − e+ f for the surfaces reconstructed

Fig. 7. Examples of reconstructions that are not genus-0. (a) Powercrust and
Cocone both showed reconstructions with a hole passing through the mesh. (b)
Poisson would create multiple volumes for a single reconstruction. (c) Power-
crust generated multiple non-genus-0 shapes at reflected point discontinuities
on Itokawa (top right).

TABLE III
GENUS-0 RECONSTRUCTIONS FROM 800 POINT CLOUDS PER BODY

by different methods, we can count the number of non-genus-0
reconstructions.

While not always common, existing algorithms all showed
multiple reconstructions that were not genus-0.1 Examples of
these are shown in Fig. 7. Powercrust and Cocone both exhibited
non-genus-0 reconstructions due to holes passing through the
body (Fig. 7(a)). Poisson, however, creates separate volumes
around isolated points (Fig. 7(b)). These can easily be removed
in a clean-up step, however, they are included as non-genus-0
reconstructions due to the loss of information. While this be-
haviour was greatly reduced with the coarse tuning parameters,
it still occurred for some reconstructions of Itokawa. It should
be noted that these results are collected from symmetry recon-
structed datasets, so are influenced by the symmetry assumption.

Table III shows that our parameterization method is the only
algorithm to always produce genus-0 reconstructions. While
Cocone produced the least non-genus-0 reconstructions, the
ones it produced, as shown in Fig. 7(a), result in inaccurate
shape models. Fewer genus-0 reconstructions were produced
for Itokawa, due to its low symmetry causing sharp changes be-
tween mirrored and measured points. Poisson, with dense tuning
parameters, and Powercrust were the most affected, regularly
producing the results shown in Fig. 7(b) and 7(c) respectively.

As mentioned earlier, the prior parameterization-based
method [19] relies on the MLS method for approximating the
Laplacian and does not work well for coarse point clouds. Fig. 8
shows several point clouds and the surface reconstructions pro-
duced by our method and the method [19]. It can be observed that

1It should be noted that Cocone and Powercrust occasionally produce a non-
watertight mesh, however in these cases the hole was bordered by three vertices,
meaning a simple hole closing algorithm could repair the mesh by adding the
missing face. As this is a trivial clean-up step, these was not counted among
non-genus-0 reconstructions
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Fig. 8. Surface reconstruction results produced by our method and the prior
spherical parameterization method [19]. The three example point clouds are
from Eros, Itokawa, and Vesta respectively.

Fig. 9. Visual comparison of reconstructions of Eros with 800 points and 15 ◦
sun phase,with the distribution of the Hausdorff distance shown. (a) Ground
Truth, (b) Poisson, (c) Powercrust, and (d) Spherical Parameterization.

Fig. 10. Accuracy of reconstructions of Itokawa with 800 points.

the poorly approximated Laplacian in [19] leads to highly dis-
torted triangulations. By contrast, our method produces meshes
with much better triangle quality.

C. Reconstruction Accuracy

Here we assess the accuracy of reconstructions with our pa-
rameterization algorithm compared to the state-of-the-practice,
and showcase the effect of non-genus-0 reconstructions. To inde-
pendently assess the parameterization, symmetry reconstruction
is applied for all algorithms. Fig. 9 shows reconstructions of
the same point cloud with different algorithms. The difference
between faithful reconstructions, Fig. 9(c) and 9(d), and implicit
reconstructions, Fig. 9(b), can be seen both visually, and through
the distribution of the Hausdorff distance, shown in Fig. 9.

The effect of the non-genus-0 reconstructions can be seen
clearly in the performance of the Cocone algorithm in Fig. 10.
The sharp peaks in Hausdorff distance at 25◦ and 40◦ are caused
by shape models which had holes passing through them, as in
Fig. 7(a). The main advantage of the parameterization algorithm

Fig. 11. Accuracy of Eros reconstructions using each algorithm and the
symmetry method. (a) Mean Hausdorff distance with 200 points. (b) Volume
error with 200 points. (c) Mean Hausdorff distance with 1000 points. (d) Volume
error with 1000 points. (e) Mean Hausdorff distance with 30 ◦ sun phase. (f)
Volume error with 30 ◦ sun phase.

is that it avoids this behaviour, resulting in more consistent
performance across a range of conditions, leading to higher
confidence in the shape model. Additionally, Fig. 10 shows the
reconstruction accuracy increasing as the solar phase decreases.
This is due to the increased visibility of the body, leading to less
of the body being reconstructed through symmetry; this result
is consistent with Fig. 6(c).

Fig. 11 shows the performance of all algorithms on recon-
structions of Eros with 200 and 1000 point clouds with symmetry
applied. Generally, consistent performance among algorithms
is observed, especially for dense data, as shown in Fig. 11(c).
As expected we see that the coarse tuning for Screened Pois-
son Reconstruction is the most consistent performer at 200
points, however performs poorly at 1000 points due to excessive
smoothing. We typically see correlation between the faithful
(parameterization and Tight Cocone) and interpolating (Power-
crust and Poisson) algorithms. This is expected for the faithful
algorithms as the shape models contain the same vertices, with
only connectivity varying between results. Being constructed
from an implicit function, the results from Poisson display more
variability, noticeable in Fig. 11(a) and 11(c) with sudden drops
in Hausdorff distance. It should be noted this variability has been
observed to cause decreases, Fig. 11(a) and 11(c), and increases,
Fig. 10 at 20◦, in the mean Hausdorff distance.

While Fig. 11 shows that parameterization performs con-
sistently with existing algorithms, we demonstrate this further
by looking at all the reconstructions of Itokawa, with varying
point density and sun phase angle. Fig. 12 shows the same
behaviour as Fig. 11(d), where parameterization is among the
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Fig. 12. Comparison of reconstruction volume error between spherical param-
eterization and existing algorithms. Shown with a linear color scale bounded by
the best and worst performing algorithm for each condition.

best performers at low sun phase, but degrades relative to the
best performing alternative at high sun phase. We also see that
parameterization performs better with increasing point density.
This is not surprising given the increased mesh vertices from
its faithful reconstruction begin to gain similar resolution to the
interpolation algorithms. The poor relative performance at high
phase angles could be due to inaccuracies in the mirrored points,
which become more noticeable on a faithful reconstruction.

VII. CONCLUSION

Generating a shape model of a small body from sparse feature
tracked points presents a number of difficulties. This letter
addresses these by presenting a spherical parameterization algo-
rithm that can robustly generate water-tight genus-0 shape mod-
els and handle permanently shadowed regions using symmetry
assumptions. The approach to address permanent shadows was
shown to improve volumetric error in all cases, even for a low-
symmetry body when the mean Hausdorff distance increased
at high sun phase. Our combined approach is a method for
shape reconstruction from sparse landmarks which guarantees
consistent topology without sacrificing accuracy compared to
the state-of-the-practice.
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