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In this work, we develop a framework for shape
analysis using inconsistent surface mapping.
Traditional landmark-based geometric morphometr-
ics methods suffer from the limited degrees of
freedom, while most of the more advanced non-
rigid surface mapping methods rely on a strong
assumption of the global consistency of two surfaces.
From a practical point of view, given two anatomical
surfaces with prominent feature landmarks, it is
more desirable to have a method that automatically
detects the most relevant parts of the two surfaces
and finds the optimal landmark-matching alignment
between these parts, without assuming any global
1-1 correspondence between the two surfaces. Our
method is capable of solving this problem using
inconsistent surface registration based on quasi-
conformal theory. It further enables us to quantify
the dissimilarity of two shapes using quasi-conformal
distortion and differences in mean and Gaussian
curvatures, thereby providing a natural way for shape
classification. Experiments on Platyrrhine molars
demonstrate the effectiveness of our method and shed
light on the interplay between function and shape
in nature.

1. Introduction

The use of mathematical mappings for quantifying
shape variation began a century ago with the seminal
work of D’Arcy Thompson [1], in which a theory
of transformations was proposed for studying planar
projections of biological shapes, such as fish and
human skull, with the aid of a deformed underlying

THE ROYAL SOCIETY

PUBLISHING

© 2020 The Author(s) Published by the Royal Society. Al rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2020.0147&domain=pdf&date_stamp=2020-10-07
mailto:lmlui@math.cuhk.edu.hk
http://orcid.org/0000-0001-5407-9111
http://orcid.org/0000-0002-9152-0743

grid. Shape registration, the process of aligning two shapes, is commonly done by computing a
mapping that deforms one of them (called the source shape) to match the other one (called the
target shape). Establishing a registration between the two shapes makes it easy to compare them
and highlight their geometric difference. As the shapes to be compared usually contain certain
similar features, it is common to extract a number of feature points (called the landmarks) from
each of them and enforce their correspondence under the mapping, thereby reducing geometric
mismatch in the resulting shape registration. Given two sets of corresponding landmarks
representing two shapes, traditional geometric morphometrics methods such as the Procrustes
superimposition method [2] use rigid (translational and rotational), isotropic/anisotropic scaling
and shear transformations to align them for quantifying their shape difference. Because of the
limited degrees of freedom of these transformations, more advanced non-rigid mappings such
as the thin plate splines method [3], surface matching via currents [4,5], large deformation
diffeomorphic metric mapping (LDDMM) [6-9] and stationary velocity fields (SVF) [10-13]
have been considered. In general, any mapping between two surfaces will unavoidably induce
distortion in angle or area (or both). There has been a vast number of works aiming to
achieve angle-preserving (conformal) [14-24] and area-preserving (authalic) [25-31] mappings
(see [32-34] for detailed surveys on the subject). These methods, however, do not allow for an
exact matching of the corresponding landmarks on two surfaces and hence hinder the accurate
quantification of shape variation.

In recent years, quasi-conformal theory has emerged as a useful tool for geometry processing
and medical imaging [35-42]. In particular, landmark-matching quasi-conformal mapping
methods have been developed for image and surface registration [43-45] and applied for the
analysis of the cerebral cortex [46], hippocampus [47], colon [48], vertebral bone [49], vestibular
system [50], human face [51], insect wing [52,53], teeth [54], etc. However, in the above-mentioned
works, the shapes are always assumed to be with a global 1-1 correspondence. In other words,
every point on one shape is assumed to correspond uniquely to a point on another shape. For
instance, in [54], the occlusal surfaces of the teeth were manually delineated by dental experts,
and the quasi-conformal mappings between the teeth assumed a 1-1 correspondence between
the segmented tooth boundaries. While the assumption of the global 1-1 correspondence ensures
that the entire shapes are considered, it may not always yield the best registration as there may be
errors in the steps of data acquisition, surface reconstruction, or manual delineation for certain
datasets, such that some parts of one preprocessed surface in fact do not correspond to any
position of another preprocessed surface. Having a landmark-matching mapping method which
is capable of finding an optimal registration between two surfaces without any assumption of a
complete surface correspondence would provide a useful alternative approach for shape analysis,
which can be carried out based on the optimal registration results without being affected by the
inconsistent parts.

In this work, we propose a new framework for shape analysis based on a recent algorithm
for inconsistent surface registration [55]. Unlike the prior quasi-conformal mapping methods, the
inconsistent surface registration method does not assume any global correspondence between
two shapes, making it particularly suitable for tackling general shape analysis problems. Given
two inconsistent surfaces with prescribed landmark constraints, we first apply the method to
find an optimal landmark-matching quasi-conformal mapping between them. This gives a 1-1
correspondence between the common regions of the two surfaces, which are automatically
determined by the method. The remaining inconsistent regions of the two surfaces are not
aligned, and hence, the quantification of the shape variation of two surfaces can be focused on the
common regions without being affected by the inconsistency of the overall shapes. In particular,
we evaluate the quasi-conformal distortion, mean curvature difference, and Gaussian curvature
difference between the common regions of two shapes and use them to construct a dissimilarity
measure between the two shapes. Based on the dissimilarity measure between every pair of
shapes, we can then perform a cluster analysis to study the shape variation. We demonstrate
the effectiveness of our proposed framework by using it to analyse a set of mammalian
teeth [56,57].
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The rest of the paper is organized as follows. In §2, we review some mathematical concepts
relevant to our method. In §3, we describe our proposed framework for shape analysis via
inconsistent surface registration. In §4, we describe the tooth dataset used in our work and present
our results. We conclude our work and discuss future directions in §5.

2. Mathematical background

(a) Quasi-conformal theory

Here, we review the basics of quasi-conformal theory and refer the readers to [58] for more details.
Conformal maps preserve angles and hence the local geometry, and quasi-conformal maps are
a generalization of conformal maps. Intuitively, conformal maps send infinitesimal circles to
infinitesimal circles, while quasi-conformal maps send infinitesimal circles to infinitesimal ellipses
with bounded eccentricity. Mathematically, a map f : C — C is said to be a quasi-conformal map if it
satisfies the Beltrami equation

of

P wf(z)

of
a7 2.1
Py 2.1)
for some complex-valued function pus(z) with [[4f(z)llcc <1. uf is called the Beltrami coefficient
of f, which captures the quasi-conformal distortion of f (figure 1). In particular, the maximum
magnification and the maximum shrinkage of the infinitesimal ellipses are given by |f;|(1+

| /Lf|) and [f|(1— | wrl) respectively, and hence, the aspect ratio of the ellipses, also known as

ijitj } It is noteworthy that if ;s =0 then the right-hand side of

equation (2.1) becomes 0, which implies that f is conformal.

Quasi-conformal maps can also be defined between two Riemann surfaces Sq, Sy in R3 with the
aid of local charts. In our work, S; and S, are considered to the simply connected open surfaces.
Therefore, if a mapping f : S — S, can be decomposed into f = v lohog, where¢:S; — Cand
¥ :Sp — C are two conformal maps and / is a quasi-conformal map on the complex plane, then
the quasi-conformal distortion of f can be represented by the quasi-conformal distortion of .

the dilatation, is given by

(b) Differential geometry of surfaces

In our work, curvatures are used for quantifying shape difference. Here, we briefly review the
theory of surface curvatures and refer the readers to [59] for details. Let S be a smooth surface in
R3, and let p be a point in S. Denote the surface normal at p by N(p). Any normal plane containing
N(p) cuts the surface S in a plane curve. One can then evaluate the curvature of the plane curve
at p. Considering all possible normal planes at p, the principal curvatures «1(p) and «(p) are the
maximum and minimum values of the curvature of the resulting plane curve.

Using the principal curvatures, one can obtain the mean curvature H at p, which is given by
the average of the principal curvatures:

H(p) = 3(c1(p) + k2(p)). (2.2)

Note that the mean curvature is an extrinsic measure of curvature which depends on the
embedding of the surface in the ambient space. One can also obtain the Gaussian curvature K
at p, which is given by the product of the principal curvatures:

K(p) = k1(p)ica(p)- (2.3)

Unlike the mean curvature, the Gaussian curvature is an intrinsic measure of curvature which is
independent of the embedding of the surface in the ambient space.

Figure 2 shows the mean and Gaussian curvatures of five tooth surfaces. Altogether, the mean
and Gaussian curvatures capture both the extrinsic and intrinsic geometry of any smooth surface
in R3 and hence are useful for shape analysis.
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Figure 1. Infinitesimal circles are mapped to infinitesimal ellipses with bounded eccentricity under any quasi-conformal map
f. The maximum magnification, the maximum shrinkage, and the orientation change of the infinitesimal ellipses are |£,|(1 4
[ D), 121 (0 — | peg]) and arg(rer) /2, respectively. (Online version in colour.)
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Figure 2. Five example tooth surfaces in the mammalian molar dataset [56,57], colour-coded by the mean curvature H and
the Gaussian curvature K. Each column corresponds to one tooth surface. (Online version in colour.)

3. Proposed shape analysis framework

In this section, we describe our proposed shape analysis framework via inconsistent surface
registration. The framework is outlined in algorithm 1, and the details of each step are given
in the following sections.

(a) Inconsistent surface registration
(i) Overview

Let Sy, S be two simply connected open surfaces in R?, with corresponding landmarks {p,-}i.‘=1
and {q,-}f.‘zl. We aim to find two optimal common regions §2; C S and £2; C S; and an optimal
mapping f : £21 — §2», such that f is a bijective landmark-matching mapping satisfying

fle)=q, i=12,...,k 3.1)

In other words, £21 and §2> are the common regions on the two surfaces with a 1-1 correspondence
established by f. They contain the landmarks {p,'}i.‘z1 and {qi}if:l and capture the key shape
variation between the two surfaces. The remaining regions S;\£2; and S»\§2; are the inconsistent
parts of the two surfaces, which will not be taken into account for quantifying the shape variation
of the two surfaces. Furthermore, f minimizes the geometric distortion between £2; and £ in
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Algorithm 1. Shape analysis via inconsistent surface registration.

Input: A set of simply connected open surfaces {S;}!_; with corresponding landmarks.
Output: n x n pairwise landmark-matching mapping results between the optimal
subdomains, an n x n dissimilarity matrix D, and clustering labels {li};':y

1 fori<1tondo

2 forj <« 1tondo

3 Compute the landmark-matching optimal registration f;; : £2; C S; — £2; C Sj, where
£2;, 2; are the optimal subdomains of S; and S; determined by the inconsistent
surface registration method (§3a);

4 Using the registration results, obtain an n x n dissimilarity matrix D with D(i, j) capturing
the quasi-conformal distortion, normalized mean curvature difference and normalized
Gaussian curvature difference between S; and S; (§3b);

5 Using the dissimilarity matrix D, perform a clustering analysis and obtain the clustering
labels {/;}__; (§3c).

source

optimal =
\ optimal landmark- . inconsistent 73
conformal matching quasi- , surface y
parametrization conformal map - i registration PR
_ _ > - :

target

Figure 3. The procedure of the inconsistent surface registration. Given two surfaces $;, S, with landmark constraints, we first
conformally parametrize the two surfaces onto the plane. Then, we find an optimal landmark-matching quasi-conformal map
h: X — X’ between two optimal subdomains (the common regions) on the two flattened shapes. Finally, we obtain the desired
inconsistent registration f : £2; — £2; where £2; C § and £2, C S, are the two optimal subdomains that correspond to X
and X', respectively. (Online version in colour.)

terms of the norm of the Beltrami coefficient ||, which provides us with a measure of quasi-
conformal dissimilarity of the two common regions 21 and §2>. The procedure of the registration
is illustrated in figure 3.

(i) Conformal parametrization

Following the approach in [55], we start with flattening the two surfaces S; and S, using
conformal parametrization. This effectively simplifies the registration problem as we then only
need to handle a planar registration problem. In particular, we compute two free-boundary
conformal parametrizations ¢ : S — C and ¢ : S, — C.

Two major advantages of using free-boundary conformal parametrizations are as follows.
First, when compared to parametrizations onto a prescribed shape such as the unit disc or a
rectangle, free-boundary parametrizations in general have a lower conformal distortion due to
the larger flexibility in the flattened shape. Consequently, the discrepancy between the planar
registration result and the surface registration result can be reduced. Second, flattening the
surfaces onto a standardized shape assumes that the surfaces have a global 1-1 correspondence,
which is established via the standardized planar shape. However, in our problem, we do not
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assume any global 1-1 correspondence between the input surfaces. It is therefore more natural to
use free-boundary parametrizations.

Among the existing free-boundary conformal parametrization methods, the least-square
conformal map (LSCM) method [15] is used in our framework. LSCM produces a free-boundary
conformal flattening map by solving the following energy minimization problem:

1 1
minJ ~IVull® + = Vull? = Vu - Vot, (3.2)
v 2 2

where u and v are the coordinate functions. More details of the problem formulation and the
computational procedure can be found in [15].

(iii) Optimal planar registration

After obtaining the conformally flattened domains ¢(S1) and ¥/(S2), the next step is to find an
optimal landmark-matching quasi-conformal map % : ¢(S1) — C with

Wopi) =¥ ), i=12,...,k (3.3)

There are infinitely many quasi-conformal mappings that satisfy the landmark-matching
constraints. Among them, we search for two optimal subdomains X C ¢(S1) and X' C ¥(S2) and a
1-1 mapping h : X — X’ that minimize the following energy (see [55] for more details):

E(X, X, h) = J

-8R+ | (Ml + 19m2), (3.4)
h(X)UX’ X

subject to the landmark constraints h(¢(p;)) =v(q;), i=1,2,...,k. Here, I : ¢(S1) > R and I»:
¥(S2) — R are some matching intensities to be prescribed, and I}f :=1I1 o h~1is the deformed image
of I; under h. py, is the Beltrami coefficient of /1. The first integral aims at establishing a meaningful
pointwise correspondence by minimizing the shape mismatch error between the two subdomains
X and X' in terms of the prescribed intensities, and the second integral is a regularization term
that minimizes the local geometric distortion (measured by |uy|) and promotes the smoothness
of the mapping (measured by |Vpuy). In practice, we set the matching intensities I1, I, based on
the Gaussian curvature of the two surfaces, with an appropriate normalization such that 0 <1Ij,
12 <1:

K1 — min K1 K2 — min Kz

L=

_ -, = 2 3.5
max K7 — min Kj 27 max Ky — min K3 (3:5)

A splitting scheme was used for solving the above optimization problem iteratively in [55],
which involves alternately solving the landmark-matching quasi-conformal mapping problem
and the intensity-based registration problem. In this work, we modify the splitting scheme by
first solving the intensity-based registration problem using the Demons method [60,61], and then,
the landmark-matching quasi-conformal mapping problem using the Linear Beltrami Solver [37]
at each iteration. This ensures that the intensity mismatch error and quasi-conformal distortion
decrease throughout the iterations. Moreover, as our modified splitting scheme always ends with
a landmark-matching step, the prescribed landmarks are exactly matched, thereby producing an
optimal landmark-matching inconsistent planar registration. In practice, we set the maximum
number of iterations to be #jter = 20. The algorithm is outlined in algorithm 2.

(iv) Final inconsistent shape registration between surfaces

After finding the two optimal subdomains X and X’ and the optimal landmark-matching quasi-
conformal map i : X — X, we can obtain two corresponding common regions §2; C S and §2, C
Sy by 21 = ¢ 1(X) and 2, = v 1(X'). It is easy to see that all corresponding landmarks in S; and
Sy are guaranteed to be in £21 and £27, and they are exactly matched under /.

14100207 -9k ¥ 205§ 204g edsyjeuinol/bioBuysiigndiiaposiefos



Algorithm 2. Inconsistent planar registration.

Input: Two conformally flattened domains ¢(S1) and (S2) of two simply connected open
surfaces S1, S» with corresponding landmarks {pi}i.‘:1 and {qi};‘:l.
Output: An optimal landmark-matching quasi-conformal map : X — X', with X C ¢(S1)
and X' C ¥(Sy).
1 Sett=0;
2 Initialize & to be the identity map;
3 if 35 Ih(@(pi) — v (@)ll2 > O or [ I} — Ip| > 0 then
4 fort < 1 to njt,, do
5 Update h by solving the intensity-matching registration problem using the Demons
method [60,61];
Update h by solve the landmark-matching quasi-conformal mapping problem
using the Linear Beltrami Solver [37];

=}

Finally, the landmark-matching inconsistent shape registration mapping f:£2; — 2, is
given by
f=vlohog. (3.6)

Since ¢ and  are conformal, the quasi-conformal distortion of f is equal to that of /.

(b) Quantifying the dissimilarity between inconsistent shapes

For any simply connected open surfaces S1, Sy, using the method introduced in §3a, we obtain
a landmark-matching quasi-conformal map f:£21 C S1 — £ C So. We can then quantify the
difference between S; and Sy using the correspondence between 21 and §2;. More specifically,
three important shape indices can be considered:

(i) The quasi-conformal distortion us of the mapping f, which captures the effort needed
to deform £2; to match £27 in terms of the eccentricity of the infinitesimal circle packing.
Note that by quasi-conformal theory, for any quasi-conformal map f, we always have

0<lusl <1 (3.7)

(ii) The normalized mean curvature difference %|I~J1 (f) — Hy| under the optimal registration
f, where Hy, H, are the normalized mean curvature difference of S; and S, with 0 < |Hy|,
|H,| < 1. Note that with the normalization, we always have |Hy f) — Hyl<1- (-1)=2

and hence
0<3IH() —Hal<1. (3.8)

(iii) The normalized Gaussian curvature difference % |K1(f) — K»| optimal registration f, where
Ky, K5 are the normalized Gaussian curvature difference of $; and Sy with 0 < |Ky|, |Ka| <
1. Again, with the normalization, we always have |K;(f) — K2| <1 — (=1) =2 and hence

0<3IKi(f) — Kol <1. (3.9)

In the global Teichmiiller mapping framework [54], the Teichmiiller distance, mean curvature
difference and Gaussian curvature difference are combined for quantifying the shape difference
between the two given surfaces. Note that the global Teichmiiller maps give a constant
Teichmiiller distance defined over the entire domain. While the Teichmdiller distance is capable
of representing the quasi-conformal distortion of the overall shapes as a scalar quantity, its value
may be significantly affected by the correspondence between the inconsistent parts of the two
given surfaces under the global Teichmdtiller mapping. By contrast, with the aid of the inconsistent
shape registration, we can focus on the quasi-conformal distortion and the curvature differences
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between the optimal common regions of the two surfaces. Now, we define the combined shape
index 8(S1, S2) as follows:

8(51,52) = ﬁ Lz (05|l/~f| + glfll(f) —Hy| + %|I~<1(f) - 1~<2|> , (3.10)

where A(£21) is the area of the optimal region £21, and «, 8, y > 0 are the weighting factors for the
three quantities with « + g + y = 1. It follows that

1 1
0<68(51,5)<——— <— 1=1. 3.11
<5(51,52) < 5= ng @+ B+7) = s L?l (3.11)

Alternatively, one can obtain a landmark-matching quasi-conformal map g: 2, C S; — £21 C S1.
This gives us

1 N N N .
8(52,51) = A JQ (Ollltgl + ngz(g) — Hi| + %IKz(g) - K1|> , (3.12)

and similarly, we have 0 < §(Sz, S1) < 1. Based on the above quantities, we define the dissimilarity
d between two inconsistent surfaces S1 and S, by

d(S1,52) = min{8(S1, S2),8(S2, 51)} € [0, 1]. (3.13)
Note that a dissimilarity matrix for n shapes is an n x n matrix satisfying the following two

properties:

(i) The matrix is symmetric.
(ii) All diagonal entries of the matrix should be zero, as there is no dissimilarity between a
shape and itself.

Now, after computing the pairwise mappings between all n surfaces {S;}}_;, we define an n x n
matrix D by D(i, j) = d(S;, S;). By the definition of d, we have

D(i, ) = d(S;, 5j) = min(3(S;, 5, 5(5}, S} = d(S;, S7) = M(j, ) (3.14)
for all 1 <i,j <n. Also, since the identity map I : S; — S; is conformal, we have
D(i,i)=d(S;, S;) = LJ a-0+ E|H- i+ Lk -k ) =0 (3.15)
7 71 A(Q) o 2 1 1 2 1 7

for any «, B, y. Therefore, D satisfies both conditions (i) and (ii) and is a valid dissimilarity matrix.

(c) Cluster analysis based on geometric difference

After obtaining the dissimilarity matrix D that captures the shape difference of the n surfaces
{Si}iL, in terms of the quasi-conformal distortion, the normalized mean curvature difference and
the normalized Gaussian curvature difference, we can then cluster the surfaces into different
groups according to their pairwise geometric dissimilarity with the aid of clustering algorithms.

Cluster analysis is a well-studied topic in statistics, and many useful algorithms have been
proposed. In this work, we consider two widely used clustering methods, namely the hierarchical
clustering method and the k-means clustering method. Below, we briefly describe the two
methods and refer the readers to [62] for more details.

The hierarchical clustering method starts by linking pairs of surfaces which are close together
into binary clusters, i.e. clusters with exactly two objects, based on the dissimilarity measure
encoded in D. It then continues to link these binary clusters with each other to form bigger
clusters. Ultimately, all n objects are linked together in a binary hierarchical cluster tree. Then,
one can cluster all n surfaces into a certain number of clusters by cutting off the hierarchy at
different levels in the binary tree.
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The k-means clustering method aims to cluster n observations into k clusters, such that each
observation belongs to the cluster with the nearest mean. Each observation is required to be a
p-dimensional coordinate vector. Starting from our dissimilarity matrix D, we can first apply the
multidimensional scaling (MDS) method to construct an optimal projection of the 1 shapes onto
a p-dimensional Euclidean space, so that each shape S; is represented by a data point x; € R”.
In particular, MDS aims to minimize the difference between |x; —x;|| and D(,j), so that the
information of the pairwise distances given by D is optimally translated into a set of coordinates.
Now, given the 1 points {x;}}_; and a prescribed positive integer k, the k-means clustering method
looks for an optimal grouping of the points into k clusters Cy,Cy,...,Cg, such that the sum of
the squared distance between each data point and the centre of its corresponding cluster, i.e.
Z}‘:l ercj Ix — n; |2, is minimized. Here, Rjis the mean of the points in G;.

4. Experiment
(a) Dataset

To demonstrate the effectiveness of our proposed shape analysis framework, we study
the Platyrrhine (New World monkey) molar dataset [56,57], which consists of 50 second
mandibular molar specimens of primates publicly available at the biological data archive
MorphoSource [63]. The specimens were obtained from the American Museum of Natural History,
the Smithsonian Institution National Museum of Natural History, the Harvard University
Museum of Comparative Zoology, and the Stony Brook University Museum of Anatomy. The 50
molars were evenly collected from five genera, namely Alouatta (also known as Howler monkeys),
Ateles (also known as Spider monkeys), Brachyteles (also known as woolly spider monkeys),
Callicebus (also known as titis) and Saimiri (also known as squirrel monkeys). Table 1 records
the genus and species of each specimen. The specimens were discretized in the form of triangle
meshes, each containing about 5000 vertices and 10000 faces (see [56,57] for more details of the
data acquisition and preprocessing procedure). We further preprocessed the meshes to ensure
that they are all simply connected, open and without any non-manifold vertices or edges.

Note that for each molar in the dataset, the most prominent features are the four cusps. To
establish a correspondence between the common parts of two molars, such features should be
consistently aligned. Therefore, we extracted the four vertices at the apex of the four cusps
as landmarks. The landmark-matching inconsistent shape registration method described in the
above section ensures that the four landmarks are exactly matched under the mappings, so that a
systematic comparison between the molars can be subsequently performed.

Figure 2 shows five example molar surfaces in the dataset colour-coded by the mean and
Gaussian curvatures. Figure 4 shows all 50 molar surfaces in the dataset, each with the four
prescribed landmarks labelled.

(b) Implementation

The proposed framework and the relevant algorithms were implemented in Matlab. The linear
systems were solved using the Matlab backslash operator (\). The computations were performed
on a Windows PC with a quad core processor and 16 GB RAM. To accelerate the computations of
the 50 x 50 = 2500 pairwise mappings between all 50 tooth meshes, we used the par f or function
in the Parallel Computing Toolbox in Matlab, with all four CPU cores of the PC utilized. The
computation of each registration mapping took around 40s, and the computations of all 2500
pairwise mappings took around 8 h in total.

The cluster analysis was also done using Matlab. For hierarchical clustering, we used the
Matlab built-in functions | i nkage and cl ust er. For multidimensional scaling, we used the
Matlab built-in function ndscal e. For k-means clustering, we used the Matlab built-in function
kmeans with the parameter Repl i cat es being 100.
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Table 1. The list of the 50 tooth specimens adapted from the Platyrrhine molar dataset [56,57].

genus species specimen ID
Alouatta Alouatta seniculus 32
e gy
i ;bil i g
e g
e g
e g
o g
o do
i bfl i G
s bd i e
......................... Ate/esAte/esbelzebuth3

Brachyteles Brachyteles arachnoides 19

Callicebus Callicebus donacophilus 2
Giebusrauates g
Gt o L
T e
Gl L
b trauatus G
e Ly
Gl e

(Continued.)
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Table 1. (Continued.)

genus species specimen ID

(allicebus donacophilus 17
Gi 'liféb‘il's"déhé'cbbhi'/b's' ......................... L

........... T
G G
G e
G i
G L
G G
G G
G G
G G
G gy

(c) Pairwise mapping result

We first consider computing pairwise mappings between the molars using various methods.
As shown in figure 5, for rigid transformation methods such as the Procrustes superimposition
method [2] and the iterative closest point (ICP) method [64], the two sets of corresponding
landmarks cannot be exactly matched, and the remaining parts of the two molars are also
misaligned. As for non-rigid transformation methods, we observe that while the thin plate splines
(TPS) method [3] is able to match the two sets of landmarks, the induced deformation of the source
surface is large and hence the overall shapes are largely mismatched. Also, while the non-rigid
ICP method [65] is capable of deforming the source surface to match the overall geometry of
the target surface, the landmarks are not exactly matched. In summary, all of the above methods
either suffer from being unable to exactly match the landmarks or to match the surface geometry.
In contrast to the above methods, our inconsistent surface registration approach is capable of
exactly matching all landmark pairs and appropriately deforming the source surface to match
the target surface. This demonstrates the effectiveness of our approach for computing pairwise
mappings between surfaces.

One may wonder whether the issue of mismatches in the mapping results produced by the
above-mentioned prior methods will be resolved if only the common regions of the two surfaces
are considered. Here we make use of the common regions of the two surfaces determined by
the inconsistent surface registration method and repeat the mapping experiment in figure 5. As
shown in figure 6, there are still mismatches of the landmarks and/or the surface geometry in all
mapping results. This suggests that the inconsistent surface registration is important for ensuring
a good mapping between the surfaces, and it cannot be replaced with a simple combination of
some common region detection methods and the prior mapping methods.

From the inconsistent surface registration result, one can easily quantify the difference between
two shapes. Specifically, because of the 1-1 correspondence between the optimal subdomains
of the source and the target surfaces, we can assess the quasi-conformal distortion (in terms of
the norm of the Beltrami coefficients |u|), the normalized mean curvature difference, and the
normalized Gaussian curvature difference between them. A comparison between two molars is
shown in figure 7. It can be observed that the norm of the Beltrami coefficients |u| effectively
captures the cusp difference between the two molars. The normalized mean curvature difference
and the normalized Gaussian curvature difference also highlight subtle shape difference between
different parts of the two molars. This suggests that our approach is useful for quantifying shape
difference.
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Figure 4. The 50 tooth specimens in the Platyrrhine molar dataset [56,57], each with four prescribed landmarks at the four
cusps. The specimens are plotted according to the specimen IDs in table 1, with the first row showing specimens 1-6, and the
second row showing specimens 7-12, etc. (Online version in colour.)

To highlight the difference between our approach and the previous global landmark-
matching quasi-conformal Teichmdiiller mapping method [54], we further consider comparing
the two molars that are inconsistently segmented (figure 8). For the previous global quasi-
conformal mapping method, the inconsistent parts of the two surfaces will be included in the
computation. Hence, the global registration is largely distorted and fails to reflect the actual

14100207 9Lk ¥ 205§ 20ig edsy/jeuol/bio-buiysiigndiiaposiefos



source target Procrustes superimposition iterative closest point (ICP)

thin plate splines (TPS) non-rigid ICP our method

Figure 5. Computing a mapping between two molars. Top row (left to right): the source surface with four landmarks, the
target surface with four landmarks, the mappings produced by the Procrustes superimposition method [2] and the iterative
closest point (ICP) method [64]. Bottom row (left to right): the mappings produced by the thin plate splines (TPS) method [3],
the non-rigid ICP method [65], and our inconsistent surface registration method. (Online version in colour.)

Procrustes superimposition iterative closest point (ICP) thin plate splines (TPS) non-rigid ICP

Figure 6. The mappings between the common regions of the two molarsin figure 5 produced by the Procrustes superimposition
method [2], the iterative closest point (ICP) method [64], the thin plate splines (TPS) method [3] and the non-rigid ICP
method [65]. It can be observed that even only the common regions of the molars are considered, the methods are still unable
to exactly match the landmarks and/or the surface geometry. (Online version in colour.)

shape correspondence of the two molars. By contrast, our approach prevents such misalignment
by optimally detecting the common regions of the two meshes. With the weaker assumption on
the global surface correspondence, our approach is applicable to a wider class of shape analysis
problems.

(d) Cluster analysis of Platyrrhine molars

After demonstrating the effectiveness of our method for pairwise mappings, we deploy the
method to register all 50 x 50 =2500 pairs of the Platyrrhine molars. This provides us with
the quasi-conformal distortion, the normalized mean curvature difference, and the normalized
Gaussian curvature difference between the optimal subdomains of each pair of molars. We then
proceed to use these quantities to cluster the 50 specimens into different groups.

(i) Binary clustering

We first consider clustering all specimens in the Platyrrhine molar dataset into two groups using
the hierarchical clustering method, with some specific choices of the shape index weighting
factors «, B, y for building the dissimilarity matrix D examined.
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Figure 7. Quantifying the shape difference between two molars using our inconsistent surface registration method. Left
column: the normalized mean curvature and the normalized Gaussian curvature of the source molar surface. Middle column:
the normalized mean curvature and the normalized Gaussian curvature of the target molar surface. Right column: the norm
of the Beltrami coefficients | 1|, the normalized mean curvature difference and the normalized Gaussian curvature difference
computed based on the inconsistent surface registration result. (Online version in colour.)

source target inconsistent surface registration  global surface registration

Figure 8. A comparison between our inconsistent surface registration approach and the global landmark-matching quasi-
conformal Teichmiiller mapping method [54]. Here, the source mesh (leftmost) and the target mesh (second left) are
inconsistently segmented. Our inconsistent surface registration approach successfully identifies and registers the common
regions of the two meshes (second right). On the contrary, the landmark-matching Teichmiiller mapping method [54]
constructs a global 1-1 correspondence between the two meshes including the inconsistent parts, thereby leading to an overall
misalignment with a large distortion (rightmost). (Online version in colour.)

If only the quasi-conformal distortion is considered (i.e. « =1, $=0, y =0) or only the
normalized mean curvature difference is considered (i.e. « =0, g =1, y =0) for constructing the
dissimilarity matrix, almost everything is clustered into one group. This suggests that simply
using the quasi-conformal distortion or the mean curvature is insufficient to distinguish between
the shapes of the Platyrrhine molars. However, for « =0, =0, y =1, i.e. only the normalized
Gaussian curvature difference is considered, we observe that all 10 Saimiri specimens are clustered
into one group, while the other 40 specimens are clustered into another group (figure 9 (left)).
One may wonder if there is any relationship between the shape of the teeth and their biological
functions. Referring to the diets of these species, it is noteworthy that Saimiri are insectivores, i.e.
animals that eat mainly insects, while the other four genera are not [66]. This suggests a potential
intrinsic geometric difference between the molars of different genera due to a difference in diet.

More relationships between function and shape can be observed for some other choices of
non-zero «, f, y. For instance, for («, B, y) = (0.25,0.375,0.375), all 20 specimens from Alouatta and
Brachyteles are clustered into one group, and the other 30 specimens from Ateles, Callicebus and
Saimiri are clustered into another group (figure 9 (right)). Interestingly, Alouatta and Brachyteles
are folivores, i.e. animals that eat primarily leaves, while the species in the other three genera in
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Figure 9. The binary clustering results produced by the hierarchical clustering method using our proposed dissimilarity
measure, visualized on the multidimensional scaling (MDS) plane. The specimens from different genera are represented using
different markers, and the colours of the markers represent the clustering result. The numerical label of each node corresponds
to the specimen ID in table 1. For the result shown on the left, the parameters («, 8, ) = (0, 0, 1) are used for constructing
the dissimilarity matrix D. One of the resulting clusters consists of all Saimiri specimens (insectivores), while the other one
consists of all non-insectivores. For the result shown on the right, the parameters (¢, 8, ) = (0.25, 0.375, 0.375) are used for
constructing D. One of the resulting clusters consists of all Alouatta and Brachyteles specimens (folivores), while the other one
consists of all non-folivores. (Online version in colour.)

the dataset are non-folivores [66]. According to the theory of primate adaptations [67], folivores
are characterized by molars with extensive development of shearing crests for reducing the leaves
into small particles so as to enhance digestion. It can be observed qualitatively from the images
in figure 4 that the Alouatta and Brachyteles teeth have relatively taller cusps and deeper shearing
crests when compared with the teeth from the other genera, which is possibly captured by such
combination of shape index parameters «, 8, y. Once again, our shape analysis framework sheds
light on the interplay between functions and shapes.

(ii) Clustering into five groups

It is also natural to ask if our method is capable of clustering the molars from different genera into
different groups. To answer this question, we consider clustering the entire molar dataset into five
groups using the k-means clustering method and evaluating the classification accuracy based on
their respective genera. Here, the classification accuracy is defined by the percentage of correct
cluster label pairs (i.e. two specimens from the same genus are with the same cluster label, or two
specimens from different genera are with two different cluster labels) among all distinct pairs of
specimens. The multidimensional scaling (MDS) method is first used to construct a projection of
the molars onto the two-dimensional plane. Then, the k-means clustering is performed with k = 5.

We vary each of the parameters «, B, y in the dissimilarity matrix D from 0 to 1, with an
increment of 0.05. The maximum classification accuracy is 96.98%, achieved by multiple choices
of parameters («, 8, y) with « ranging from 0.1 to 0.25, g ranging from 0.15 to 0.55, and y ranging
from 0.3 to 0.6. Figure 10 (top left) shows the classification result for one of the optimal sets
of parameters («, 8, ) =(0.2,0.4,0.4). It can be observed that all specimens from Alouatta and
Brachyteles are correctly clustered, and only one specimen from Ateles and one from Callicebus are
wrongly clustered.

For comparison, we consider clustering the 50 specimens into five groups using the Procrustes
method [2], the ICP method [64], the TPS method [3], the non-rigid ICP method [65] and the
global Teichmiiller mapping method [54]. More specifically, we apply the methods to compute the
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Figure10. The clustering results produced by the k-means clustering method with k = 5using different dissimilarity measures,
visualized on the multidimensional scaling (MDS) plane. The specimens from different genera are represented using different
markers, and the colours of the markers represent the clustering result. The numerical label of each node corresponds to the
specimen ID in table 1. Top row (left to right): the clustering results obtained by our method, the Procrustes superimposition
method [2], and the Iterative Closest Point (ICP) method [64]. Bottom row (left to right): the clustering results obtained by the
Thin Plate Splines (TPS) method [3], the non-rigid ICP method [65] and the global Teichmiiller mapping method [54]. (Online
version in colour.)

Table 2. The performance of different methods for clustering the 50 Platyrrhine molars into five groups, with the MDS
dimension being 2. For each method, the 95% confidence interval on the classification accuracy and the leave-one-out
cross-validation (LOOCVY) accuracy are provided.

method
our proposed method

classification accuracy
96.29-96.93%

LOOCV accuracy

50 x 50 pairwise mappings and form dissimilarity matrices. We then apply the k-means clustering
on the dissimilarity matrices and evaluate the classification accuracy. The clustering results are
shown in figure 10. Table 2 records the performance of different approaches for the clustering
experiment, from which it can be observed that our method is more accurate than all other
methods. The Procrustes method and the ICP method achieve a moderate classification accuracy
possibly because only rigid transformations are considered. The TPS method achieves a relatively
low classification accuracy due to the fact that it matches the prescribed landmarks while the
overall shapes may be largely mismatched as previously illustrated in figure 5. The non-rigid ICP
method performs better than other prior methods but is not as accurate as our proposed method.
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Figure 11. The clustering results obtained by our proposed method with different multidimensional scaling (MDS) dimensions
used, visualized on the respective MDS space. The specimens from different genera are represented using different markers,
and the colours of the markers represent the clustering result. The numerical label of each node corresponds to the specimen ID
intable 1. (Online version in colour.)

Table 3. The performance of different methods for clustering the 50 Platyrrhine molars into five groups, with the MDS
dimension being 1or 3.

MDS dimension method classification accuracy LOOCV accuracy

1 our proposed method 85.24-85.65% 78%

The better classification achieved by our method can be explained by the fact that the quasi-
conformal distortion, the normalized mean curvature difference and the normalized Gaussian
curvature difference are all captured by our dissimilarity matrix D. While the Teichmdiller method
also considers the curvature differences and the quasi-conformal distortion (in terms of the
Teichmiiller distance), it computes a global registration between two surfaces, and hence, the
results are affected by the inconsistent parts of the surfaces. By contrast, our method computes an
optimal inconsistent mapping between the surfaces, which effectively excludes the inconsistent
parts in the subsequent shape analysis. The higher classification accuracy achieved by our method
demonstrates the importance of the inconsistent shape registration for shape clustering.

To assess the predictive performance of different methods and test if overfitting occurs, we
further perform a leave-one-out cross-validation (LOOCV) on each method. Our method achieves
a LOOCYV accuracy of 94%, which is the highest among all approaches as shown in table 2. This
indicates that our method is highly accurate for predicting new data.

In the above experiments, the MDS dimension is set to be 2 for embedding the shape data
into a real vector space. One may wonder whether the results will be different if another MDS
dimension is used. As shown in figure 11, our proposed method is capable of classifying the molar
surfaces accurately for different MDS dimensions. Table 3 records the classification accuracies for
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all above-mentioned methods with different MDS dimensions, from which it can be observed that
our method achieves the best overall performance among all approaches.

Altogether, the experimental results suggest that our proposed framework is capable of
revealing the relationship between shape and phylogeny.

5. Conclusion and future works

Over the past several decades, numerous shape analysis methods have been developed using
different mathematical tools in differential geometry, complex analysis, geometric measure
theory, fluid mechanics, etc. However, most of the existing methods assume that there is a global
1-1 correspondence between every pair of shapes to be compared, which may lead to inaccuracies
in the shape analysis of some datasets. In this work, we have proposed a new framework for
quantifying shape variation via inconsistent surface registration. Given a set of simply connected
open surfaces with prescribed landmarks, we compute an optimal landmark-matching quasi-
conformal map between each pair of surfaces. Instead of assuming a global 1-1 correspondence
such that every part of one surface corresponds to a certain part of the other surface, our approach
searches for the optimal subdomains on the two surfaces that yield the best correspondence.
This prevents the mapping results from being affected by the potential segmentation errors in
the data. We then quantify the dissimilarity of the surfaces by evaluating the quasi-conformal
distortion, the normalized mean curvature difference, and the normalized Gaussian curvature
difference using the correspondence between the optimal subdomains. This further enables us to
cluster the shapes based on their geometric difference. We have demonstrated the effectiveness of
our proposed framework by deploying it on a mammalian tooth dataset. In particular, unlike
the prior shape matching methods, our framework allows for the accurate quantification of
shape difference between two tooth surfaces, with the prescribed landmarks exactly matched
and the common regions optimally aligned. Our method also successfully produces geometry-
based clustering results that highly correlate with the underlying biological difference between
the specimens.

Note that our proposed framework allows for the exact correspondence of feature landmarks
in computing the optimal inconsistent shape registration, based on the assumption that the
prescribed landmark positions are precise. In case there are potential manual errors in the
landmark labelling step so that an inexact landmark-matching registration is more desirable,
we can simply add an intensity-matching step at the end of algorithm 2, thereby producing
an optimal landmark-guided registration with a small degree of landmark mismatch allowed.
Also, our method can be potentially extended for surfaces with other topology, such as genus-0
closed surfaces and high-genus surfaces. For instance, to handle genus-0 closed surfaces, one may
replace the current conformal flattening step with a spherical conformal parametrization step [46]
followed by the stereographic projection. For high-genus surfaces, one may replace the current
conformal flattening step with a conformal parametrization onto a fundamental domain on the
plane. It is also possible to modify the shape dissimilarity measure for different shape analysis
tasks. For instance, in case it is desirable to take the amount of common area shared by the two
surfaces into account, one may add an extra area difference term % in the combined

shape index in equation (3.10) and an extra term % in equation (3.12). The newly added

terms will be zero if and only if the common regions are the two entire surfaces, and hence the
new dissimilarity measure will be able to capture the area variation of the surfaces.

In the future, we plan to deploy our inconsistent shape analysis framework to study other
biological shapes. In particular, our method is suitable for analysing human faces as each human
face contains prominent landmarks such as the eyes, the nose and the mouth, while it is usually
hard to precisely segment the face boundary due to three-dimensional scanning errors and
potential hair occlusions, etc. We also plan to investigate the combination of our method with
other landmark-free anatomical surface mapping methods such as [68] for further improving the
accuracy of shape classification.
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