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Kirigami, the creative art of paper cutting and folding, and 
the tessellations derived from it have recently emerged as 
prototypical routes towards a new class of mechanical meta-

materials. Indeed, various studies have focused on quantifying the 
geometry and kinematics of deployment of a given kirigami pat-
tern, and their potential as auxetic structures and shape-morphing 
sheets1–18, the so-called forward problem. From a mathematical, 
physical and a technological perspective, perhaps an even more 
interesting question is the inverse problem: can one design the kiri-
gami tessellations in a closed, compact subset of the plane, so that it 
can be deployed into a prescribed final shape in two or three dimen-
sions? Here, we pose this puzzle as a constrained optimization prob-
lem and solve it in a range of situations.

The simplest planar deployable kirigami patterns are based on 
periodic tilings of the plane using triangles, squares and hexagons, 
although other complex tessellations inspired by art and architec-
ture have been explored recently4,19. Here we focus on using the 
quadrilateral kirigami pattern for ease of exposition; however, our 
methods generalize to any periodic pattern (see Supplementary 
Information, Section 1). In Fig. 1a, we show the quad tessellation of 
the plane in its compact and deployed state, with the cuts along the 
edges of the quads designed to allow for rotational in-plane deploy-
ment about a set of hinges. This pattern constitutes a one-degree-of-
freedom mechanism whose planar deployment yields a continuous 
family of self-similar shapes that terminates at self-intersecting con-
figurations. The basic unit cell underlying this pattern is also shown 
in Fig. 1a in both its undeployed and deployed states and shows the 
mathematical constraints that define the system: pairs of deployed 
edges contract to the same edge in the undeployed state, and simul-
taneously sets of deployed angles contract to the same single vertex 
in the undeployed state. Given an initially periodic tiling of a patch 
of the plane with this unit cell, we can state our inverse design prob-
lem thus (as shown in Fig. 1b): how should the unit cell be modu-
lated in space to approximate a given planar shape in its deployed 

state and still be able to tile a patch of the Euclidean plane compactly 
when undeployed?

To find a solution requires us to search for potentially admissible 
results in the deployed space. A first step in this process is to quan-
tify the constraints that will allow the deployed initialization geom-
etry to correspond to a valid kirigami pattern that can compactly 
close onto a Euclidean patch. The necessary and sufficient contract-
ibility conditions imply that a valid deployed configuration must 
be able to contract (undeploy) the configuration into a generalized 
kirigami pattern that closes consistently along the cuts without any 
mismatch or overlap in lengths and angles. As illustrated in Fig. 1b, 
the contractibility constraints are: (1) every pair of edges with edge 
lengths a, b in the deployed space that correspond to the same cut 
must satisfy the condition

a2 � b2 ¼ 0 ð1Þ

(2) Every set of four angles in the deployed space that correspond 
to an interior node must sum to 2π, so that

θ1 þ θ2 þ θ3 þ θ4 ¼ 2π ð2Þ

where θi are angles in the deployed space as illustrated in Fig. 1a (see 
Supplementary Information, Section 2 for the analogous formula-
tion for other kirigami tessellations).

To be able to deploy a kirigami pattern to match a given shape, 
we also need to ensure that for a given boundary curve ∂S

I
 we have a 

valid deployed configuration. This can be formulated as boundary-
shape matching constraints that force all nodes on the boundary of 
the deployed configuration to lie exactly on ∂S

I
. Mathematically, for 

every boundary node pi
I
, this implies that

pi � epik k2¼ 0 ð3Þ
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where epi
I
 is the projection of pi

I
 onto ∂S

I
 and k k

I
 is the Euclidean 

2-norm. In addition to matching the target boundary shape in the 
deployed configuration, we can also control the shape of the kiri-
gami tessellations in their undeployed states by introducing bound-
ary angle constraints (see Supplementary Information, Section 2 
for details).

While the constraints described above ensure consistency 
between corresponding edges and angles, they do not prevent the 
faces from overlapping in the deployed state. To enforce this, we use 
the following non-overlapping constraint at every angle between 
two adjacent faces:

hðb� aÞ ´ ðc� aÞ; n̂i≥0 ð4Þ

where a, b and c are the nodes of adjacent faces, so that (b, a, c) 
forms a positive (right-hand ordered) angle between the two faces, 
and n̂ ¼ ð0; 0; 1Þ

I
 is the outward unit normal.

To find an admissible deployed kirigami structure, we must sat-
isfy the above interior and boundary conditions—this will yield a 
compact tiling that is related to the deployed state via a non-affine 
contraction. This can be framed as a constrained optimization 
problem whose solution is sufficient to guarantee a valid deployed 
configuration of a generalized kirigami pattern that approximates a 
prescribed shape. However, without a regularization procedure, the 
solution is likely to be very rough with large gradients in the shapes 
of the quads. To produce a smooth kirigami tessellation, we there-
fore minimize the following objective function:

1
M

XM

i¼1

X

j

ðαij � βijÞ
2 þ

X

k

ðaik � bikÞ2
 !

ð5Þ

where αij ; βij
I

 are a pair of corresponding angles in two adjacent cells 
and aik ; bik

I
 are the corresponding edge lengths in two adjacent cells, 

and M is the total number of pairs of adjacent cells, subject to the 
constraints (1)–(4).

Finally, we need a reasonable first approximation to the given 
deployed configuration that matches the prescribed boundary curve. 
This initial condition can be obtained via, for example, a conformal/
quasi-conformal map20,21, although we could use any approximation 
that preserves the number and connectedness of the quads.

We solve the optimization problem numerically using MATLAB’s 
built-in optimization routine fmincon (see Supplementary 
Information, Section 3), noting that the problem is undercon-
strained with multiple admissible deployed kirigami patterns (see 
Supplementary Information, Sections 2 and 4). Once we find a valid 
deployed structure, we can contract this into its compact pattern 
form by rotating the faces and thus shrinking the entire structure. 
We note here that our formulation of the optimization problem 
shows some algorithmic similarities to our recent study of gener-
alized origami tessellations22. This is both natural and inevitable, 
given the presence of geometrical constraints in both problems as 
well as a condition of shape matching; indeed, many problems in 
physical geometry requiring the ability to design shapes subject to 
constraints will also fall within this framework.

To illustrate the effectiveness of our approach, we first design 
generalized kirigami patterns to approximately solve an ancient 
mathematical problem—that of circling the square—and a modern 
one, making an egg shape from a square. In Fig. 2a, we show that by 
distorting a periodic kirigami tiling of a square (see Supplementary 
Information), the deployed configurations can match either a circle 
or an egg. We can also use this method to generate novel general-
ized kirigami patterns that, when deployed, approximate different 
boundary shapes. Figure 2b shows two generalized kirigami pat-
terns; one deployed to approximate a domain with a boundary of 
mixed curvature, and the other deployed to approximate a rectangle 
(see Supplementary Information, Section 4 for more generalized 
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Fig. 1 | Inverse design framework. a, A quad kirigami tessellation and its deployed configuration, with an enlargement of the unit cell of the quad kirigami 
tessellation and its deployed configuration. Every pair of corresponding edges are connected by a red dashed line. The set of angles corresponding to the 
same node are highlighted in blue. In a valid deployed configuration of a generalized kirigami pattern, every pair of edges should be equal in length, that 
is a = b, and every set of corresponding angles should add up to 2π, that is, θ1 þ θ2 þ θ3 þ θ4 ¼ 2π

I
. b, Our inverse design framework. Given a standard 

kirigami tessellation, we start with an initial guess in the deployed space. Here the initial guess shown is a conformal map from the standard deployed 
configuration to the disc. The initial guess is usually invalid, violating either the edge length constraint or the angle constraint, or not exactly matching the 
target boundary shape. We then solve a constrained optimization problem to morph the initial guess until it becomes a valid deployed shape, satisfying all 
constraints. Finally, we use a simple contraction procedure to obtain the generalized kirigami pattern.
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kirigami patterns with other base tessellations). These generalized 
kirigami patterns with different base tessellations exhibit different 
behaviours in terms of their effective porosity and overall magnifica-
tion relative to their compact state (see Supplementary Information, 
Section 5). These examples naturally raise the question: what are 
the limits of kirigami design? One expects that these generalized 
kirigami patterns can only achieve a range of relative area changes, 
perimeter changes and curvature changes on deployment, and 
we can provide theorems on these bounds (see Supplementary 
Information, Section 6). However, since these bounds are a strong 
function of cut topology, it is possible, nevertheless, to generate a 
large variety of shapes.

Increasing the accuracy of the approximation using kirigami tes-
sellations can be achieved by using a larger number of smaller tiles, 
suggesting that there is an accuracy–effort trade-off in matching a 
prescribed shape. Figure 2c shows several generalized kirigami pat-
terns for circling the square with increasing accuracy; with more 
tiles, the boundary of the deployed pattern gets closer to a perfect 
circle (see Supplementary Information, Section 4 for multiresolu-
tion results for other patterns). To quantitatively assess the accu-
racy of the patterns for the approximation, we define the boundary 
layer area of a generalized kirigami pattern by the total area of the 

gaps between the target boundary shape and the boundary of the 
deployed configuration. Figure 2c shows that the boundary layer 
area (denoted by A) decreases as the number of tiles (denoted by n2)  
increases following the power law A / ðn2Þ�1=2 ¼ n�1

I
. To further 

explain this, we approximate every boundary gap by a triangle and 
measure the change in the average triangle base length ~l

I
 and aver-

age triangle height ~h
I

 for different resolutions. We observe that 
~l / n�1

I
 and ~h / n�1

I
, and hence the average area of the triangles 

~a / n�2

I
. As the number of boundary gap triangles is approximately 

4n, we have A  4n~a / n�1

I
.

While our inverse design approach guarantees that the end-
points of deployment, that is the deployed and undeployed states, 
exist, our method so far is agnostic to the path of deployment. To 
explore the deployment process of our patterns, we now extend our 
purely geometrical approach to a mechanical model by having lin-
ear springs along the edges and diagonals of the quads, and simple 
torsional springs at the nodal hinges to model the ligaments there. 
Then, the total mechanical energy of the system is given by

Eðx1; x2; :::; xNÞ ¼
1
Ns

X

i;j
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Fig. 2 | Generalized planar kirigami patterns. a, Examples of generalized kirigami patterns produced by our method for getting a circle or an egg shape 
from a square on deployment. b, Examples of generalized kirigami patterns produced by our method for achieving boundary shapes with mixed curvature 
or zero curvature. It can be observed that our method is capable of producing generalized kirigami patterns that match boundary curves with different 
curvature properties when deployed. c, Examples of circling the square with different resolutions (number of tiles = 8 × 8, 16 × 16, 20 × 20), together 
with a log–log plot of the boundary layer area against the number of tiles. Here, the boundary layer area is defined as the total area of the gaps between 
the circle and the boundary of the deployed kirigami patterns. The dots on the log–log plot represent kirigami patterns with different numbers of tiles 
(4 × 4, 8 × 8, 12 × 12, 16 × 16, 20 × 20) and the straight line is the least-square regression line. The result shows that there is an accuracy–effort trade-off in 
approximating a prescribed shape using generalized kirigami tessellations.
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where xi are the locations of the nodes, θi are the angles between 
every pair of edges created under the cuts, lij are the rest lengths 
of the extensional springs, Ns is the total number of extensional 
springs, Nc is the total number of torsional springs and λ is the ratio 
of the torsional spring constant to the extensional spring constant. 
A larger λ corresponds to a thicker ligament, which has a stronger 
tendency to close up. By iteratively moving the boundary nodes 
towards the target boundary shape and solving for the intermediate 
deployed configurations by minimizing (6), we obtain a continuous 
deployment path. Figure 3a shows the energetics of the deployment 
simulations as a function of λ: as λ → 0, we see the appearance of 
bistability, while for sufficiently large λ, monostability is observed.

To test our predictions experimentally, we fabricated a physi-
cal model by laser cutting a sheet of super-stretchable abrasion-
resistant natural rubber. Figure 3b shows the deployment snapshots 
of a fabricated model with monostability, demonstrating that the 
simulated path and real deployment have similar behaviours (see 
Supplementary Information, Section 4 for another fabricated model 
of a generalized kagome kirigami pattern).

Our inverse design approach has so far focused on approximat-
ing planar shapes. However, we now show that it can be extended 
to fit surfaces in three dimensions as well, so that the undeployed 
pattern space is in R2

I
 while the deployed space is in R3

I
. To fit a sur-

face S in R3

I
, we replace the boundary shape matching constraints 

(3) by the surface matching constraints so that every node xi in the 
deployed configuration satisfies the condition

xi � exik k2¼ 0 ð7Þ

where exi
I
 is the projection of xi onto S and k k

I
 is the Euclidean 

2-norm. The extra constraints for controlling the boundary shape 
of the undeployed configuration in the planar case (analogous to 
equation (3)) can be directly extended to the surface fitting problem 
(see Supplementary Information, Section 7).

One can easily note that the contractibility constraints for sur-
face fitting are the same as in equations (1) and (2). For the non-
overlapping constraints, to prevent adjacent faces in the deployed 
configuration from overlapping with or intersecting each other, we 
replace the unit normal n̂

I
 in equation (4) by the normal computed 

using one of the two faces. This implies that we must enforce the 
following inequality constraints for every pair of adjacent faces in 
the deployed configuration:

hðb� aÞ ´ ðc� aÞ; ðc� aÞ ´ ðd� aÞi≥0 ð8Þ

where a, b, c and d are the nodes of adjacent faces, so that (b, a, c) 
form a positive (right-hand ordered) angle between the two faces 
and similarly (c, a, d) also form a positive (right-hand ordered) 
angle.

In addition to the above constraints, we need to enforce the con-
dition that the faces are planar so that the volume of the tetrahedron 
associated with each face F vanishes, corresponding to the planarity 
constraint:

VolumeðFÞ ¼ 0 ð9Þ

More explicitly, for quad tessellations the constraint becomes

hðb� aÞ ´ ðc� aÞ; d� ai ¼ 0 ð10Þ

where a, b, c and d are the four points of the quad F (see 
Supplementary Information for generalizations to other base tes-
sellations). We note that this condition, which is automatically sat-
isfied for planar deployment, differentiates the three-dimensional 
deployment problem from the two-dimensional one.

Finally, to get smooth solutions, we extend the objective function 
(5) and the contraction process from our planar design approach 
to three-dimensional surface fitting. This allows us to determine a 
valid generalized kirigami pattern that can be deployed to approx-
imate a prescribed surface in three dimensions by solving a con-
strained optimization problem using fmincon in MATLAB, with 
equations (1), (2) and (7)–(9) to be satisfied.

In Fig. 4 we show several generalized kirigami patterns that can 
be deployed to fit surfaces of varying complexity, such as those 
with monotonic positive and negative gauss curvature (Fig. 4a,b). 
Additionally, just as for planar deployments, we can impose extra 
boundary angle constraints to produce different pattern design 
effects such as using rectangular quad patterns that can be deployed 
to fit either a hyperbolic paraboloid as shown in Fig. 4a or an ellip-
tic paraboloid as shown in Fig. 4b. Our approach also allows us to 
design surfaces with complex non-monotonic Gauss curvature, 
for example a periodic patch of an egg-carton shape (Fig. 4c) and 
a bivariate Gaussian (Fig. 4d). In all these examples, we see that 
our kirigami algorithm provides locally planar tessellations that 
approximately tile surfaces in R3

I
 that have non-zero curvature in 

general. This suggests that the effective surface curvature of the 
holes between the piecewise planar tilings must be non-zero. To 
quantify this, we fit every hole in the deployed configurations of 
our generalized quad kirigami patterns by a bicubic Bézier sur-
face, and compute the mean curvature and the Gaussian curvature 
of the interpolant (see Supplementary Information, Section 7 for 
the details); the rightmost columns in Fig. 4 show that the holes 
between the planar tilings are indeed curved.

To simulate the physical process of deployment, we extend the 
planar energetic model into three dimensions, with an additional 
planarity constraint enforced to ensure that all quads remain pla-
nar through the simulations. Figure 5a shows the deployment 
simulations with the four boundaries of a generalized kirigami 
pattern pulled towards the target positions for fitting a hyperbolic 
paraboloid. While the intermediate states are warped, the final 
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Fig. 3 | Planar deployment of generalized kirigami tessellation.  
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pulling points and L0 is the average rest length of the extensional springs. 
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deployment of a monostable fabricated model.
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deployed configuration resembles the shape of a smooth hyper-
bolic paraboloid very well. Furthermore, just as planar deployment 
can be either bistable or monostable depending on the value of the 
torsional spring constant λ, we see the same effect in three-dimen-
sional deployment as well; when λ is large enough, the deployment 
becomes monostable.

Our inverse design framework is agnostic to the range of possi-
ble deployment trajectories aimed towards the target three-dimen-
sional shape, for example by applying displacements to multiple 
parts of the boundary, as well as fabrication methods of physical 
kirigami structures. Figure 5b shows the manual deployment of a 
physical model of a hyperbolic paraboloid fabricated by laser cut-
ting a natural rubber sheet model. We can also create generalized 
kirigami patterns by creating a mould into which one can pour a liq-
uid polymer and cross-linking it (see Supplementary Information, 
Section 7 for a fabricated model produced using polydimethylsilox-
ane (PDMS) and generalized kagome kirigami patterns for surface 
fitting obtained by our method).

Our inverse design approach allows us to create non-periodic 
compact kirigami patterns that when deployed can approximate 
any given shape in two or three dimensions. Simple fabrica-
tion methods using cutting and moulding allow us to verify our 
designs for a few planar and three-dimensional deployable shapes. 
When our geometry-based constrained optimization framework 
is generalized to account for the mechanical response of the til-
ings and hinges, we see that the response of the generalized kiri-
gami patterns can be tuned to switch between monostability and 
bistability. Altogether, harnessing the underlying topological and 
geometrical complexity of kirigami in a constrained optimiza-
tion framework opens the path for the use of generalized kirigami 
tesselations as the building blocks of shape-morphing mechani-
cal metamaterials. Simultaneously, the present work on inverse 
design of kirigami together with our ability to solve the inverse 
design problem in origami22 suggests a follow-up question: can 
we combine origami and kirigami, coupling geometry, topology 
and mechanics, to create structures that morph from any shape 
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to a given shape with a given mechanical response in two or  
three dimensions?
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Fig. 5 | Three-dimensional deployment of generalized kirigami 
tessellation. a, Energetics of the three-dimensional deployment simulations 
of the pattern in Fig. 4a with different choices of λ. Here ΔL is the average 
displacement of the pulling points and L0 is the average rest length of 
the extensional springs. The insets show the initial, intermediate and 
final configurations of the pattern under deployment. b, Snapshots of the 
deployment of a monostable fabricated model, with thin threads used 
for pulling the four sides. Both the numerical simulation and physical 
deployment results fit the hyperbolic paraboloid very well.
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Methods
Experiment. The physical models shown in Figs. 3 and 5 were fabricated by 
perforating patterns on super-stretchable abrasion-resistant natural rubber sheets 
with a laser cutter. See Supplementary Information for further details and another 
physical model fabricated using PDMS.

Numerical computations. The numerical computations (solving the constrained 
optimization problem and analysing energetics) were conducted with custom 
MATLAB code. Analytic gradients of the constraints and objective functions are 
provided to the fmincon constrained optimization routine within the MATLAB 

environment. See Supplementary Information for further details on the constraints, 
objective functions and initial conditions.
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The data that support the findings of this study are available from the 
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Computer codes used in this study are available from the corresponding author  
on request.
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