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Inspired by the question of quantifying wing shape,
we propose a computational approach for analysing
planar shapes. We first establish a correspondence
between the boundaries of two planar shapes with
boundary landmarks using geometric functional data
analysis and then compute a landmark-matching
curvature-guided Teichmüller mapping with uniform
quasi-conformal distortion in the bulk. This allows
us to analyse the pair-wise difference between the
planar shapes and construct a similarity matrix on
which we deploy methods from network analysis
to cluster shapes. We deploy our method to study
a variety of Drosophila wings across species to
highlight the phenotypic variation between them,
and Lepidoptera wings over time to study the
developmental progression of wings. Our approach
of combining complex analysis, computation and
statistics to quantify, compare and classify planar
shapes may be usefully deployed in other biological
and physical systems.

1. Introduction
Biological form both constrains and enables biological
function. It is thus important to characterize biological
shape, and determine methods for its quantification,
comparison and classification. Geometric morphometrics
focuses on the use of landmark coordinates for shape
quantification [1]. For instance, one may quantify a
planar shape by its boundary, or by the location of
specific features in its interior. Furthermore, one needs
to find a way to compare different shapes based on the
locations of features along the boundaries and in the
interior; this may be done in terms of maps that transform
one shape onto another, using modern variants [2,3] of

2018 The Author(s) Published by the Royal Society. All rights reserved.
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the theory of transformations [4]. Finally, one needs a shape classification scheme based on these
comparisons, such as those based on machine learning and neural networks [5].

Here, we propose a computational morphometric method for planar shapes, a problem of
interest in many different fields, from computer vision to biological perception, from pathology
to palaeontology, from development to evolution. Our aim is to account for the differences in
both the boundaries and landmarks in the interior of compact planar domains by providing
an accurate 1-1 correspondence that facilitates meaningful comparison between two shapes,
and to furthermore enable the classification of multiple shapes. Current morphometric methods
typically consider either the boundary or the interior of shapes but not both, and do not
attempt to exactly match landmarks. For instance, Procrustes superimposition [6], which has
been widely used in planar morphometrics [7,8], matches landmarks via rigid transformations
up to scaling but does not allow for exact landmark or boundary matching. The Thin Plate Spline
method [9] allows one to compute non-rigid landmark-based transformations for measuring
local variation in shape [10] but does not allow for exact boundary matching or guarantee
bijectivity. A promising approach is the Large Deformation Diffeomorphic Method [11–13], which
allows for the computation of diffeomorphic mappings of shapes with landmarks; however, the
computation is expensive and thus hinders the pairwise comparison between a large set of shapes.
Recently, there has been a resurgence of an old method, the use of conformal maps, which are
angle-preserving functions to describe shape changes [14–16]. However, in general, maps cannot
handle landmark constraints because of the rigidity of these maps imposed by the Riemann
mapping theorem. Quasi-conformal maps, a generalization of conformal maps which allow a
certain degree of angular distortions with the presence of landmark constraints get around this,
and recent attempts [17,18] use quasi-conformal maps for morphometry based on variational
principles.

We build on advancements in quasi-conformal theory and functional data analysis and
develop a landmark-matching, curvature-guided Teichmüller mapping technique, which
overcomes all the above-mentioned problems. We then deploy the technique for comparison and
classification of planar wing shapes across developmental and evolutionary time scales.

2. Landmark-matching, curvature-guided Teichmüller maps for comparing
shapes

We start by considering S1, S2 as two planar shapes that we want to compare, as shown in
figure 1a. Let {lint1

k }mk=1 and {lint2
k }mk=1 be two sets of landmarks at the interior of S1 and S2,

respectively, and {lbdy1
k }nk=1 and {lbdy2

k }nk=1 be two sets of landmarks on the boundaries ∂S1 and
∂S2. Our goal is to find a map f : S1→ S2 that satisfies

f (lint1
k )= lint2

k , k= 1, 2, . . . , m (2.1)

and
f (l

bdy1
k )= l

bdy2
k , k= 1, 2, . . . , n. (2.2)

Moreover, it is desirable that f reflects the difference between S1 and S2 under the prescribed
landmark correspondences.

(a) Boundary matching based on curvature
To compute a landmark-matching Teichmüller map f : S1→ S2 between the two planar shapes,
we first need to determine the boundary correspondence ϕ : ∂S1→ ∂S2. It is natural to use
boundary curvatures to match the boundaries of S1 and S2, so that the highly curved parts of
∂S1 will correspond to the highly curved parts of ∂S2, while the relatively flat parts of ∂S1 will
correspond to the relatively flat parts of ∂S2. To represent the curvature variations of ∂S1 and
∂S2, we first define the accumulated arc length and the accumulated curvature of a planar curve
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Figure 1. (a) Two planar wing shapes that we want to compare. (b) A flow chart describing the approach following [23,24] for
computing discrete landmark-matching Teichmüller mappings (for details see electronic supplementary material, Algorithm
S1). We first discretize the images and use a curvature-guided boundary correspondence to obtain a landmark-matching initial
map (see text for details). Then we use an iterative scheme to make it converge to a landmark-matching Teichmüller map.
(c) A landmark-matching Teichmüllermap between two planar wing shapes. Small circles in the left shape aremapped to small
ellipses with a uniform aspect ratio in the right shape (see text for details). Red landmark points of vein intersections on the left
are also mapped to consistent locations on the right. The wing images are adapted from [28].

C by xt =
∑t

i=0 l(i) and yt =
∑t

i=0 κ(i). Here, l(i) and κ(i) are, respectively, the arc length and the
curvature approximated at the ith point on C. Then, the function ψ defined by ψ(xt)= yt for all t
encodes the curvature distribution of C. Using this idea, we obtain two functions ψ1,ψ2 that
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represent the curvature distributions of ∂S1, ∂S2, with a reparametrization of the domains of
ψ1,ψ2 to be [0, 1] and consider ψ1,ψ2 : [0, 1]→R.

Our next step is then to match the curvature distributions by aligning ψ1 and ψ2. To do this in
a reparametrization independent way, we use the square root velocity function (SRVF) dynamic
warping method [19,20] that considers a bijection from ψ1,ψ2 to the SRVFs q1, q2 : [0, 1]→R

defined by

q1 = sgn(ψ̇1)
√
|ψ̇1| and q2 = sgn(ψ̇2)

√
|ψ̇2|. (2.3)

Instead of aligning ψ1,ψ2 directly, the SRVF dynamic warping method aims to find the optimal
alignment of ψ1,ψ2 by aligning the SRVFs q1, q2 using a warping function

γ ∗ ∈ Γ := {γ : [0, 1]→ [0, 1] | γ (0)= 0, γ (1)= 1, γ is a diffeomorphism}. (2.4)

An optimal γ ∗ can be found by solving the following minimization problem

γ ∗ = argminγ∈Γ ‖q1 − (q2 ◦ γ )
√
γ̇ ‖2, (2.5)

where ‖ · ‖2 denotes the Euclidean 2-norm. Using dynamic programming to solve this problem,
we obtain a curvature-guided correspondence

ψ1(t)↔ψ2(γ (t)), t ∈ [0, 1]. (2.6)

This gives us the desired curvature-guided map ϕ : ∂S1→ ∂S2.
In case there are boundary landmark constraints as specified in equation (2.2), we partition ∂S1

and ∂S2 according to the boundary landmarks {lbdy1
k }nk=1 and {lbdy2

k }nk=1. This gives us n pairs of
corresponding boundary segments. For each pair of segments, we deploy the above procedures
and match them based on their curvature distributions. This results in a curvature-guided
boundary mapping ϕ : ∂S1→ ∂S2 that satisfies

ϕ
(

l
bdy1
k

)
= l

bdy2
k , k= 1, 2, . . . , n. (2.7)

(b) Quasi-conformal theory and Teichmüller maps
Conformal maps preserve angles and thus infinitesimal circles are mapped onto infinitesimal
circles. Relaxing this condition allows us to define quasi-conformal maps as follows—they are
homeomorphisms f : D⊂C→C satisfying the Beltrami equation ∂f/∂ z̄=μf (z)(∂f/∂z) for some
complex-valued function μf (z) with ‖μf (z)‖∞ < 1. Here μf is called the Beltrami coefficient of f .
Intuitively, this allows quasi-conformal maps to map infinitesimal circles to infinitesimal ellipses
with bounded eccentricity. To see this, let z0 be a point in D. The first-order approximation of f
around z0 is given by

f (z)≈ f (z0)+ fz(z0)(z− z0)+ fz̄(z0) z− z0

= f (z0)+ fz(z0)(z− z0 + μf (z0) z− z0), (2.8)

i.e. infinitesimal circles are mapped to infinitesimal ellipses with the maximum magnification
|fz|(1+ |μf |) and the maximum shrinkage |fz|(1− |μf |), so that the aspect ratio of the ellipses, the
dilatation, is (1+ |μf |)/(1− |μf |). Thus, the maximal dilatation of the quasi-conformal map f is
defined by Kf = (1+ ‖μf ‖∞)/(1− ‖μf ‖∞). A classical result is that among all quasi-conformal
maps, Teichmüller maps achieve a constant |μf (z)| over the entire domain D, so that every
infinitesimal circle on D is mapped to an infinitesimal ellipse with a constant aspect ratio [21].

Teichmüller map-based morphometrics have a number of natural advantages. First, given
a boundary correspondence ϕ : ∂S1→ ∂S2 and landmark constraints {l1i } ⊂ S1↔{l2i } ⊂ S2, there
exists a unique landmark-matching Teichmüller map f that achieves the minimum maximal
dilatation over the space of all landmark-matching quasi-conformal maps [22]. In other words,
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f = argminh:h|∂S1=ϕ, h(l1i )=l2i
Kh. Second, the bijectivity of Teichmüller map is guaranteed [21], giving

a 1-1 correspondence between every part of two shapes. Third, the Beltrami coefficient μf with
constant norm over the whole domain gives us a measure of how similar two shapes are. Since
|μf | always lies within [0, 1), and equals 0 if and only if f is conformal, if 1− |μf | = 1, then the two
shapes are identical up to conformal maps. If 1− |μf | � 1, there is a large local quasi-conformal
dissimilarity between the two shapes. Besides, if we denote w= f (z), by the definition of the
Beltrami coefficient we have

0=μf−1◦f =
(f−1 ◦ f )z̄

(f−1 ◦ f )z
= ((f−1)w ◦ f )fz̄ + ((f−1)w̄ ◦ f )f̄z̄

((f−1)w ◦ f )fz + ((f−1)w̄ ◦ f )f̄z
=
μf + (μf−1 ◦ f ) f̄z̄

fz

1+ (μf−1 ◦ f ) f̄z
fz

, (2.9)

which implies that |μf (z)| = |μf−1 (f (z))| for all z. Therefore, 1− |μf | provides an inverse consistent
measurement of similarity between the two shapes.

Using the boundary correspondence f |∂S1 = ϕ established in the last subsection, along with
efficient iterative and provably convergent algorithms [23–25], we can obtain a landmark-
matching, curvature-guided Teichmüller map f : S1→ S2 with the interior landmark constraints
in equation (2.1). Since f is Teichmüller, the norm of the associated Beltrami coefficient |μf |
is a constant, and the quantity 1− |μf | is a measure of quasi-conformal similarity between S1
and S2. The procedure is summarized in electronic supplementary material, Algorithm S1, and
depicted pictorially in figure 1, along with an example showing the map linking two planar
shapes corresponding to insect wings.

3. Statistical analysis of the quasi-conformal similarity matrix
Given a set of planar shapes {Si}pi=1, we can construct a p× p similarity matrix M, where the (i, j)th
entry of M represents a measure of similarity between Si and Sj defined in terms of the magnitude
of the Beltrami coefficients connecting these shapes. The values of all entries of M are within the
range [0, 1], where a larger value indicates a higher level of similarity. This sets the stage for
performing a statistical analysis on M and ultimately clustering the set of shapes.

(a) Adaptive thresholding
Graphically, the p× p similarity matrix M can be represented by a weighted directed graph with
p vertices, where every vertex represents a shape in the set {Si}pi=1, and every pair of vertices are
connected by two directed weighted edges. The weight of the directed edge [i, j] is given by Mij.
Intuitively, a larger weight Mij represents a higher level of similarity between Si and Sj from the
perspective of Si. Note that the similarity matrix M is dense since the graph is complete with p2 − p
edges. To highlight the important information in it, we use an adaptive thresholding algorithm
that iteratively modifies and sparsifies M.

More explicitly, given a thresholding parameter λ, to judge the importance of the edge [i, j]
from vertex i, we consider the quantity νi = M̄i + λσi, where M̄i and σi are, respectively, the
mean and the standard deviation of {Mik}pk=1. If Mij > νi we set Mij = 1. If not, we neglect
the edge by setting Mij = 0. For a pair of directed edges [i, j] and [j, i], there are exactly three
possibilities: (i) Mij =Mji = 1, i.e. Si and Sj are similar to each other, (ii) Mij =Mji = 0, i.e. Si, Sj
are dissimilar and (iii) Mij = 1, Mji = 0 or Mij = 0, Mji = 1, i.e. it is not clear that whether Si, Sj are
sufficiently similar to be grouped in one community. To better represent this, we symmetrize
M by taking M←− (M+MT)/2, so that Mij ∈ {0, 1

2 , 1} indicates the relationship of Si, Sj for all
i, j= 1, . . . , p. Algorithmically, we repeat the thresholding and symmetrizing steps on M until
the result converges. The final matrix M serves as a weighted adjacency matrix characterizing
the relationship of the shapes, and an algorithm for its construction is summarized in electronic
supplementary material, Algorithm S2, along with convergence proofs and the discussion on the
thresholding parameter λ.
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(b) Clustering and community detection
Finally, to cluster all shapes into several communities based on M, we apply a recent
community detection method [26] that accounts for the non-locality and asymmetry of the
connections between edges [27], noting that the importance of an edge to the two nodes
it connects may be different. Denoting the set of shapes S = {Si}pi=1, the similarity between
two communities CI, CJ ⊂ S is given by simIJ = simin − simout, where simin = (1/‖CI ∪ CJ‖2)∑

i,j∈CI∪CJ
gij represents the average similarity score inside the communities, and simout =

(1/(‖CI ∪ CJ‖ · ‖S\CI ∪ CJ‖))
∑

i∈S\CI∪CJ

∑
j∈CI∪CJ

gij represents the average similarity score
outside the communities. In each iteration, the communities with high simIJ are combined until
the grouping result stabilizes. The final communities formed represent the clustering result based
on our Teichmüller morphometric method. We remark that the clustering result is robust to the
choice of the community detection method. A comparison of the clustering results obtained using
different community detection methods is provided in the electronic supplementary material.

4. Quantifying wing shape in evolution and development

(a) Phenotypic variation of Hawaiian Drosophilawings
As an application of our Teichmüller-map morphometric framework, we study the Drosophila
wings in the Hawaiian Drosophila Wing Database [28], which consists of data drawn from
four ‘picture wing’ phylogenetic groups, including the adiastola group, the planitibia group, the
glabriapex group and the grimshawi group. We discretize every wing image from the different
species using a triangular mesh with approximately 9000 triangle elements. For each wing,
seven points are manually chosen as boundary landmarks, including the intersections between
the longitudinal veins L2, L3, L4, L5 and the wing boundary. Three intersections between the
veins are manually chosen as interior landmarks, including the intersections between L4 and
the anterior cross-vein (ACV) and the posterior cross-vein (PCV), and the intersection between
L5 and PCV. The 10 landmark locations are shown in electronic supplementary material, figure
S1. In figure 2, we show our landmark-matching Teichmüller map comparing a pair of wings
from the D. punalua and the D. silvestris species and observe that our approach is able to match
boundary and interior landmarks accurately. A comparison between our method and other
existing morphometric methods is provided in electronic supplementary material, Section S4 and
figure S6. A mathematical approach for assessing the difference between the veins of two wings
using the landmark-matching Teichmüller map is also discussed in electronic supplementary
material, Section S8.

In figure 3, we depict the 128× 128 similarity matrix whose elements Mij = 1− |μf (i, j)| are
calculated as discussed above (electronic supplementary material, Algorithm S1). This serves as
the initial step to apply our proposed adaptive thresholding algorithm (electronic supplementary
material, Algorithm S2) with the thresholding parameter λ= 1. Finally, we apply the community
detection method [26] on the thresholded similarity matrix. To visualize the result, we make
use of a multidimensional scaling (MDS) coordinate plane which projects the information of
a dissimilarity matrix onto the Euclidean plane, with the similarity information preserved as
distances between nodes. Every specimen in our dataset is visualized as a node on the plane.
In figure 4, we show our results and observe that the nodes are clustered into three groups, with
the species D. glabriapex (denoted by Community 1), D. planitibia (denoted by Community 2) and
D. grimshawi (denoted by Community 3) being a representative in each of them.

Of the 22 specimens in the glabriapex phylogenetic group, 20 (91%) of them are classified into
Community 1. Of the 33 specimens in the planitibia phylogenetic group, 28 (85%) of them are
classified into Community 2. Of the 41 specimens in the grimshawi phylogenetic group, 21 (51%)
of them are classified into Community 3 and 18 (44%) are classified into Community 1. Of the 32
specimens in the adiastola phylogenetic group, 18 (56%) of them are classified into Community
3 and 12 (38%) are classified into Community 1. From the above, we observe that Community 2
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D. punalua D. silvestris

Teichmüller mapping intensity difference (Teichmüller)

Figure 2. The landmark-matching, curvature-guided Teichmüller mapping between the species D. punalua and the species
D. silvestris. The top row shows the D. punalua and D. silvestriswings. The bottom row shows the Teichmüller map of D. punalua
onto D. silvestris, and the intensity difference between the Teichmüller mapping result and the D. silvestriswing. The D. punalua
and D. silvestriswing images are adapted from [28].
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Figure 3. The quasi-conformal similarity matrix obtained by our landmark-matching, curvature-guided Teichmüller mapping
method (electronic supplementary material, Algorithm S1) for the comparison between the wings in the Hawaiian Drosophila
Wing Database [28].

primarily consists of wings from the planitibia phylogenetic group but not the other three groups.
We deduce that the wings in the planitibia phylogenetic group share highly similar phenotypic
features and are very different from the wings in all other phylogenetic groups. Because of the
high percentage of specimens in the glabriapex phylogenetic group classified into Community 1,
there is also a high level of similarity among the wings in the glabriapex phylogenetic group.
By contrast, the adiastola phylogenetic group and the grimshawi phylogenetic group demonstrate
a higher level of shape diversity as both of the two groups are primarily classified into two
communities.

To understand the community detection results, we further analyse the phenotypic features of
the three communities photographically. The images of the wings in Community 1, Community 2
and Community 3 are shown in the electronic supplementary material. It can be observed that
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Figure 4. Visualizing the community detection result obtained by our Teichmüller morphometric framework on the MDS
coordinate plane. Every specimen is represented as a node on the plane constructed by multidimensional scaling. The nodes
are coloured based on their communities. Blue: Community 1. Red: Community 2. Green: Community 3. The shapes of the nodes
represent their phylogenetic groupings. Circle: adiastola group. Square: planitibia group. Triangle: glabriapex group. Diamond:
grimshawi group. The wing images shown are adapted from [28].

the wing geometries in the three communities are different in terms of the wing shapes and the
relative locations of the landmarks. The wings in Community 1 are typically with a relatively
round shape at the bottom of the wing boundary, and a relatively sharp wing tip. The intersection
between L5 and PCV is relatively far away from the wing boundary. The wings in Community 2
are typically with an elongated shape, and the intersection between L5 and PCV is relatively close
to the wing boundary. The wings in Community 3 are typically with a round silhouette. Also, the
intersection between L4 and ACV is relatively distal when compared with that in the other two
communities.

For the two species D. hemipeza and D. picticornis, which belong to the planitibia phylogenetic
group but are classified into Community 3, we note that their wings are different from the other
wings in the planitibia phylogenetic group. More specifically, the D. picticornis wing has a relatively
round shape and is more pigmented than all other wings in the planitibia phylogenetic group.
This can be explained by the early division in the phylogeny of the planitibia phylogenetic group
[29] that separates D. picticornis from the other species. For D. hemipeza, we observe that the
intersection between L4 and ACV is distal relative to the same landmark for the other wings
in the planitibia phylogenetic group. The above observations might explain the exceptions in the
community detection result for the planitibia phylogenetic group.

Our focus so far has been on landmarks based on signatures associated with venation network
motifs. Since our methods are agnostic to the type of pattern motif used as landmarks, we also
deployed it to see if it might shed light on wing pigmentation patterns, a trait that is controlled
by just a few genes [30], and is likely to be more labile. In the wings of the three communities we
considered, there are essentially three different pigment patterns. Community 1 consists primarily
of most specimens from the glabriapex phylogenetic group, around half of the specimens from the
grimshawi phylogenetic group, and around half of the specimens from the adiastola phylogenetic
group. The majority in this community possesses a moderate number of pigment spots, which
occur near the top part of the wing, the intersection between L4 and PCV, and the intersection
between L5 and PCV. Community 2 which primarily consists of most specimens from the planitibia
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phylogenetic group has wings that possess a small number of pigment spots, which occur near
the distal tips of L2, L3 and L4. Community 3 primarily consists of half of the specimens from the
grimshawi phylogenetic group, and half of the specimens from the adiastola phylogenetic group.
The majority in this community possesses a high level of pigmentation. It is perhaps surprising
that our Teichmüller-based classification which is solely based on wing boundary shape and
venation landmark positions also shows a clustering effect with respect to pigmentation patterns.
A plausible explanation for this is that there is crosstalk between the genes encoding for both
phenotypes, and may be worth exploring further using phylogenetic approaches in the future.

Going beyond venation network and wing pigmentation patterns, our Teichmüller map-based
methods can also be used for detecting subtle shape dissimilarities such as microevolutionary
patterns and bilateral asymmetry; an example of analysing the bilateral asymmetry of Hawaiian
Drosophila wings is provided in electronic supplementary material, Section S7, as an illustration
that might perhaps be expanded in the future.

A natural question that arises at this point is the connection between community detection
using Teichmüller morphometrics and other classification approaches using macroevolutionary
cladistics. While they are not the same, for comparison, we decided to start with our similarity
matrix and apply the leave-one-out cross-validation (LOOCV) [31], which uses one wing shape
as the validation data and the remaining wing shapes as the training data to classify it. We obtain
a classification accuracy of around 70% with respect to the phylogenetic groupings. For example
of ‘misclassification’ in our community detection result, wings of the species D. adiastola are split
into two communities. To further investigate this, we compare our clustering result with the result
obtained by the traditional geometric morphometrics approach [32] (see electronic supplementary
material, Section S9) and find that the traditional approach also splits the D. adiastola wings. This
suggests that the ‘misclassification’ of D. adiastola wings in our clustering result is not an error,
and instead that D. adiastola indeed exhibits multimodal wing patterns.

(b) Temporal development of Lepidoptera wings
Our proposed Teichmüller morphometric method (electronic supplementary material, Algorithm
S1) can also be used for analysing the temporal development of Lepidoptera wings. We deploy
our method on the forewings of the species Manduca sexta and Junonia coenia in [33] at the larval,
prepupal, pupal and adult stages. A Teichmüller map is computed between every two successive
stages. The constant norm of the Beltrami coefficient of the Teichmüller map between the two
stages, denoted by �|μ|, represents the local shear and the quasi-conformal dissimilarity between
the two shapes. While the local shear is a constant over the entire domain, the local area change
and orientation change may vary. We analyse the changes by constructing a circle packing on the
wing at the earlier temporal stage. Then we map the younger wing onto the older wing using the
Teichmüller map, and visualize it via the deformation of the circle packing on the older shape. In
general, the circles are deformed to ellipses with different size and orientation. The change in size
relative to the original circles reflects the local area change, and the change in orientation relative
to the original circles characterizes the local rotation. Here we quantify the change in size by the
quantity�A = (Area of ellipse)/(Area of circle) for each small circle, and the change in orientation
by�p =< 2 cos2 θ − 1>which averages over the 1-ring neighbourhood of every circle, where θ is
the orientation change of the circle under the mapping. Proximal-distal orientation of the major
axis is denoted by�p = 1 while an anterior–posterior orientation of the major axis yields�p =−1.

Figures 5 and 6 show the Teichmüller maps between successive stages of Manduca sexta
and Junonia coenia wings, respectively. We first analyse the overall change between every two
successive stages quantified by the quasi-conformal dissimilarity �|μ|, the average local area
change mean(�A) and the average local orientation change mean(�p). For Manduca sexta, the
largest �|μ| occurs between prepupa and pupa. By contrast, for Junonia coenia, �|μ| increases
throughout the development. The average local area changes of the two species are also different.
For Manduca sexta, mean(�A) decreases throughout the development, while for Junonia coenia the
greatest mean(�A) occurs between prepupa and pupa. It is also noteworthy that the magnitude
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Figure 5. Analysing the temporal development of Manduca sexta wings via Teichmüller map. The top row shows the wing
images adapted from [33] at different developmental stages (displayed to scale). A Teichmüller map is computed between
every two successive stages. The second row shows the quasi-conformal dissimilarity�|μ|, the average of the local size change
�A and the average of the local orientation change�p between every two successive stages. The last three rows show the
deformation of the circle packing under the Teichmüller map between every two successive stages, visualized on the latter
stage. The left column shows the resulting ellipses colour-coded by the local size change�A. The right column shows the
resulting ellipses colour-coded by the local orientation change�p. For visualization purpose, the shapes in the last three rows
are rescaled to have the same height, with their aspect ratio kept unchanged.

of mean(�A) for Junonia coenia is greater than that for Manduca sexta between every two
successive stages. For the local orientation change, both Manduca sexta and Junonia coenia wings
undergo an overall proximal-distal orientation change at the earlier stages of the development,
as mean(�p)> 0. However, the two species have a notable difference in the overall orientation
change between pupa and adult. For Manduca sexta we have mean(�p)≈ 0, which indicates
that the overall orientation change is small, while for Junonia coenia there is a notable overall
proximal-distal orientation change.
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Figure 6. Analysing the temporal development of Junonia coenia wings via Teichmüller map. We use the same notation as in
figure 5.

We then analyse the variation of the local area and orientation changes across each deformed
circle packing. For both Manduca sexta and Junonia coenia, it can be observed from the heat maps of
�A that the most significant local area change between pupa and adult occurs at the distal half of
the wings. However, it is noteworthy that the regions with the greatest�A at the earlier stages are
different for the two species. From the heat maps of �p, the patterns of the orientation change of
the two species are also different. The Manduca sexta wing primarily undergoes a proximal-distal
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orientation change from larva to pupa, followed by a significant anterior–posterior orientation
change at the central region from pupa to adult. By contrast, the Junonia coenia wing undergoes
a more diversified local orientation change from larva to pupa, followed by a notable anterior–
posterior change at the distal region from pupa to adult.

The local change reflected by Teichmüller maps throughout the development of Manduca
sexta appears to be correlated with the local mitotic density measured in [33]. Specifically, the
Teichmüller map between prepupa and pupa given in figure 5 shows a small �A at the top part
of the wing and a large �A at the distal part. This distribution agrees with the mitotic density
distribution at that period. Also, both �A and the mitotic density for the period from pupa to
adult achieve the greatest value around the tip of the wing and the smallest value at the proximal
part. By contrast, the correlation between the local change under Teichmüller maps and the local
mitotic density for Junonia coenia is less significant.

As illustrated in the above study, the Teichmüller-based method provides a way to assess,
identify and remove allometry. Under Teichmüller maps, all changes are captured by the three
quantities �|μ|, �A and �p, where �|μ| and �p together describe the shape change, and �A

describes the size change. Hence, shape and size can be analysed separately.

5. Discussion
To study the variation of complex data such as that embodied in shape is an old and vexing
problem. Our geometric morphometric approach combines complex analysis, computations and
statistics and provides a framework for the quantification, comparison and classification of
planar biological shape. In particular, it improves on previous methods by allowing for arbitrary
boundary and bulk landmark-matching with provably convergent, fast algorithms. By using
our method for the analysis of wing shape across species, we can begin to link phenotypes to
genotypes, and furthermore, we can describe the process of wing shaping developmentally via
variations in mitotic density variations. More generally, our method for quantifying planar shapes
might be useful beyond morphometrics, in any instance of image recognition and classification in
physical, engineering and biological settings.
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