Math 2070 Week 8

Commutative Rings, Integral Domains, Fields

8.1 Commutative Rings

Definition 8.1. A ring R is said to be commutative if $a b=b a$ for all $a, b \in R$.
Example 8.2. For a fixed natural number $n>1$, the ring of $n \times n$ matrices with integer coefficients, under the usual operations of addition and multiplication, is not commutative.

Example 8.3. Let m be a natural number greater than 1. Let $\mathbb{Z}_{m}=\{0,1,2, \ldots, m-$ $1\}$. Recall that for any integer $n \in \mathbb{Z}$, there exists a unique $\bar{n} \in \mathbb{Z}_{m}$, such that $n \equiv \bar{n} \bmod m$. More precisely, \bar{n} is the remainder of the division of of n by m : $n=m q+r$. We equip \mathbb{Z}_{m} with addition $+_{m}$ and multiplication \times_{m} defined as follows: For $a, b \in \mathbb{Z}_{m}$, let:

$$
\begin{aligned}
& a+_{m} b=\overline{a+b}, \\
& a \times_{m} b=\overline{a \cdot b},
\end{aligned}
$$

where the addition and multiplication on the right are the usual addition and multiplication for integers.

Claim 8.4. With addition and multiplication thus defined, \mathbb{Z}_{m} is a commutative ring.

Proof of Claim 8.4. 1. For $a, b \in \mathbb{Z}_{m}$, we have $a+_{m} b=\overline{a+b}=\overline{b+a}=$ $b+_{m} a$, since addition for integers is commutative. So, $+_{m}$ is commutative.
2. For any $r_{1}, r_{2} \in \mathbb{Z}$, by Claim 6.17 and Theorem 6.19, we have

$$
r_{1} \equiv \overline{r_{1}} \quad \bmod m, \quad r_{2} \equiv \overline{r_{2}} \quad \bmod m,
$$

and:

$$
\overline{r_{1}+r_{2}} \equiv r_{1}+r_{2} \equiv \overline{r_{1}}+\overline{r_{2}} \equiv \overline{\overline{r_{1}}+\overline{r_{2}}} \bmod m .
$$

For $a, b, c \in \mathbb{Z}_{m}$, we have:

$$
\begin{aligned}
a+_{m}\left(b+_{m} c\right) & =a+_{m} \overline{b+c} \\
& =\overline{a+\overline{b+c}} \\
& =\overline{\bar{a}+\overline{b+c}} \\
& =\overline{a+(b+c)}
\end{aligned}
$$

But $a+(b+c)$ is equal to $(a+b)+c$, since addition for integers is associative. Hence, the above expression is equal to:

$$
\begin{aligned}
\overline{(a+b)+c} & =\overline{\overline{(a+b)}+\bar{c}} \\
& =\overline{\overline{a+b}+c} \\
& =\overline{\left(a+{ }_{m} b\right)+c} \\
& =\left(a+{ }_{m} b\right)+{ }_{m} c .
\end{aligned}
$$

We conclude that $+_{m}$ is associative.
3. Exercise: We can take 0 to be the additive identity element.
4. For each nonzero element $a \in \mathbb{Z}_{\underline{m}}$, we can take the additive inverse of a to be $m-a$. Indeed, $a+_{m}(-a)=\overline{a+(m-a)}=\bar{m}=0$.
5. By the same reasoning used in the case of addition, for $r_{1}, r_{2} \in \mathbb{Z}$, we have

$$
\overline{r_{1} r_{2}} \equiv r_{1} r_{2} \equiv \overline{r_{1}} \cdot \overline{r_{2}} \equiv \overline{\overline{r_{1}}} \cdot \overline{r_{2}} \quad \bmod m .
$$

For $a, b, c \in \mathbb{Z}_{m}$, we have:

$$
a \times_{m}\left(b \times_{m} c\right)=a \times_{m} \overline{b c}=\overline{\bar{a} \cdot \overline{b c}}=\overline{a(b c)},
$$

which by the associativity of multiplication for integers is equal to:

$$
\overline{(a b) c}=\overline{\overline{a b} \cdot \bar{c}}=\overline{a b} \times_{m} c=\left(a \times_{m} b\right) \times_{m} c .
$$

So, \times_{m} is associative.
6. Exercise: We can take 1 to be the multiplicative identity.
7. For $a, b \in \mathbb{Z}_{m}, a \times_{m} b=\overline{a \cdot b}=\overline{b \cdot a}=b \times_{m} a$. So \times_{m} is commutative.
8. Lastly, we need to prove distributativity. For $a, b, c \in \mathbb{Z}_{m}$, we have:

$$
\begin{aligned}
a \times_{m}\left(b+_{m} c\right) & =\overline{\bar{a} \cdot \overline{b+c}} \\
& =\overline{a \cdot(b+c)} \\
& =\overline{a b+a c} \\
& =\overline{\overline{a b}+\overline{a c}} \\
& =a \times_{m} b+_{m} a \times_{m} c .
\end{aligned}
$$

It now follows from the distributativity from the left, proven above, and the commutativity of \times_{m}, that distributativity from the right also holds:

$$
\left(a+_{m} b\right) \times_{m} c=a \times_{m} c+b \times_{m} c .
$$

8.2 Integral Domains, Units

Definition 8.5. A nonzero commutative ring R is an integral domain if the product of two nonzero elements is always nonzero.

Definition 8.6. A nonzero element r in a ring R is called a zero divisor if there exists nonzero $s \in R$ such that $r s=0$ or $s r=0$.

Note. A nonzero commutative ring R is an integral domain if and only if it has no zero divisors.

Example 8.7. Since $2,3 \neq 0$ in \mathbb{Z}_{6}, but $2 \times_{6} 3=\overline{6}=0$, the ring \mathbb{Z}_{6} is not an integral domain.

Claim 8.8. A commutative ring R is an integral domain if and only if the cancellation law holds for multiplication. That is: Whenever $c a=c b$ and $c \neq 0$, we have $a=b$.

Proof of Claim 8.8. Suppose R is an integral domain.
If $c a=c b$, then by distributativity $c(a-b)=c(a+-b)=0$.
Since R is an integral domain, we have either $c=0$ or $a-b=0$.
So, if $c \neq 0$, we must have $a=b$.

Conversely, suppose cancellation law holds. It suffices to show that whenever we have $a, b \in R$ such that $a b=0$ and $a \neq 0$, then we must have $b=0$.

By a previous result we know that $0=a 0$. So, $a b=a 0$, which by the cancellation law implies that $b=0$.

Note. If every nonzero element of a commutative ring has a multiplicative inverse, then that ring is an integral domain:

$$
c a=c b \Longrightarrow c^{-1} c a=c^{-1} c b \Longrightarrow a=b .
$$

However, a nonzero element of an integral domain does not necessarily have a multiplicative inverse.

Example 8.9. The ring \mathbb{Z} is an integral domain, for the product of two nonzero integers is nonzero. So, the cancellation law holds for \mathbb{Z}, but the only nonzero elements in \mathbb{Z} which have multiplicative inverses are ± 1.

Example 8.10. The ring $\mathbb{Q}[x]$ is an integral domain.
Exercise 8.11. Show that: For $m>1, \mathbb{Z}_{m}$ is an integral domain if and only if m is a prime.

Example 8.12. Consider $R=C[-1,1]$, the ring of all continuous functions on $[-1,1]$, equipped with the usual operations of addition and multiplication for functions.

Let:

$$
f(x)=\left\{\begin{array}{ll}
-x, & -1 \leq x \leq 0, \\
0, & 0<x \leq 1
\end{array} \quad, \quad g(x)= \begin{cases}0, & -1 \leq x \leq 0 \\
x, & 0<x \leq 1\end{cases}\right.
$$

Then f and g are nonzero elements of R, but $f g=0$.
So R is not an integral domain.
Definition 8.13. We say that an element $r \in R$ is a unit if it has a multiplicative inverse; i.e. there is an element $r^{-1} \in R$ such that $r r^{-1}=r^{-1} r=1$.

Example 8.14. Consider $4 \in \mathbb{Z}_{25}$. Since $4 \cdot 19=76 \equiv 1 \bmod 25$, we have $4^{-1}=19$ in \mathbb{Z}_{25}. So, 4 is a unit in \mathbb{Z}_{25}.

On the other hand, consider $10 \in \mathbb{Z}_{25}$. Since $10 \cdot 5=50 \equiv 0 \bmod 25$, we have $10 \cdot 5=0$ in \mathbb{Z}_{25}. If 10^{-1} exists, then by the associativity of multiplication, we would have:

$$
5=\left(10^{-1} \cdot 10\right) \cdot 5=10^{-1} \cdot(10 \cdot 5)=10^{-1} \cdot 0=0
$$

a contradiction. So, 10 is not a unit in \mathbb{Z}_{25}.

Claim 8.15. Let $m \in \mathbb{N}$ be greater than one. Then, $r \in \mathbb{Z}_{m}$ is a unit if and only if r and m are relatively prime; i.e. $\operatorname{gcd}(r, m)=1$.

Proof of Claim 8.15. Suppose $r \in\{0,1,2, \ldots, m-1\}$ is a unit in \mathbb{Z}_{m}, then there exists $r^{-1} \in \mathbb{Z}_{m}$ such that $r \cdot r^{-1} \equiv 1 \bmod m$.

In other words, there exists $x \in \mathbb{Z}$ such that $r \cdot r^{-1}-1=m x$, or $r \cdot r^{-1}-m x=$ 1. This implies that if there is an integer d such that $d \mid r$ and $d \mid m$, then d must also divide 1 . Hence, the GCD of r and m is 1 .

Conversely, if $\operatorname{gcd}(r, m)=1$, then there exists $x, y \in \mathbb{Z}$ such that $r x+m y=1$.
It follows that $r^{-1}=\bar{x}$ is a multiplicative inverse of r. Here, $\bar{x} \in \mathbb{Z}_{m}$ is the remainder of the division of x by m.

Corollary 8.16. For p prime, every nonzero element of \mathbb{Z}_{p} is a unit.
Example 8.17. The only units of \mathbb{Z} are ± 1.
Example 8.18. Let R be the ring of all real-valued functions on \mathbb{R}. Then, any function $f \in R$ satisfying $f(x) \neq 0, \forall x$, is a unit.

Claim 8.19. The only units of $\mathbb{Q}[x]$ are nonzero constants.
Proof of Claim 8.19. Given any $f \in \mathbb{Q}[x]$ such that $\operatorname{deg} f>0$, for all nonzero $g \in \mathbb{Q}[x]$ we have

$$
\operatorname{deg} f g \geq \operatorname{deg} f>0=\operatorname{deg} 1 ;
$$

hence, $f g \neq 1$. If $g=0$, then $f g=0 \neq 1$. So, f has no multiplicative inverse.
If f is a nonzero constant, then $f^{-1}=\frac{1}{f}$ is a constant polynomial in $\mathbb{Q}[x]$, and $f \cdot \frac{1}{f}=\frac{1}{f} \cdot f=1$. So, f is a unit.

Finally, if $f=0$, then $f g=0 \neq 1$ for all $g \in \mathbb{Q}[x]$, so the zero polynomial has no multiplicative inverse.

8.2.1 WeBWorK

1. WeBWork

2. WeBWorK
3. WeBWorK
4. WeBWorK
5. WeBWorK

8.3 Fields

Definition 8.20. A field is a commutative ring, with $1 \neq 0$, in which every nonzero element is a unit.

In other words, a nonzero commutative ring F is a field if and only if every nonzero element $r \in F$ has a multiplicative inverse r^{-1}, i.e. $r r^{-1}=r^{-1} r=1$.

Since every nonzero element of a field is a unit, a field is necessarily an integral domain, but an integral domain is not necessarily a field. For example \mathbb{Z} is an integral domain which is not a field.

Example 8.21. 1. \mathbb{Q}, \mathbb{R} are fields.
2. For $m \in \mathbb{N}$, it follows from a previous result that \mathbb{Z}_{m} is a field if and only if m is prime.

Notation For p prime, we often denote the field \mathbb{Z}_{p} by \mathbb{F}_{p}.
Claim 8.22. Equipped with the usual operations of addition and multiplications for real numbers, $F=\mathbb{Q}[\sqrt{2}]:=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a field.

Proof of Claim 8.22. Observe that: $(a+b \sqrt{2})+(c+d \sqrt{2})=(a+c)+(b+d) \sqrt{2}$ lies in F, and $(a+b \sqrt{2})(c+d \sqrt{2})=(a c+2 b d)+(a d+b c) \sqrt{2} \in F$. Hence, addition and multiplication for real numbers are well-defined operations on F. As operations on \mathbb{R}, they are commutative, associative, and satisfy distributativity; therefore, as F is a subset of \mathbb{R}, they also satisfy these properties as operations on F.

It is clear that 0 and 1 are the additive and multiplicative identities of F. Given $a+b \sqrt{2} \in F$, where $a, b \in \mathbb{Q}$, it is clear that its additive inverse $-a-b \sqrt{2}$ also lies in F. Hence, F is a commutative ring.

To show that F is a field, for every nonzero $a+b \sqrt{2}$ in F, we need to find its multiplicative inverse. As an element of the field \mathbb{R}, the multiplicative inverse of $a+b \sqrt{2}$ is:

$$
(a+b \sqrt{2})^{-1}=\frac{1}{a+b \sqrt{2}} .
$$

It remains to show that this number lies in F. Observe that:

$$
(a+b \sqrt{2})(a-b \sqrt{2})=a^{2}-2 b^{2} .
$$

We claim that $a^{2}-2 b^{2} \neq 0$.
Suppose $a^{2}-2 b^{2}=0$, then either (i) $a=b=0$, or (ii) $b \neq 0, \sqrt{2}=|a / b|$.
Since we have assumed that $a+b \sqrt{2}$ is nonzero, case (i) cannot hold.

But case (ii) also cannot hold because $\sqrt{2}$ is known to be irrational. Hence $a^{2}-2 b^{2} \neq 0$, and:

$$
\frac{1}{a+b \sqrt{2}}=\frac{a}{a^{2}-2 b^{2}}-\frac{b}{a^{2}-2 b^{2}} \sqrt{2},
$$

which lies in F.
Claim 8.23. All finite integral domains are fields.
Proof of Claim 8.23. Let R be an integral domain with n elements, where n is finite. Write $R=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.

We want to show that for any nonzero element $a \neq 0$ in R, there exists i, $1 \leq i \leq n$, such that a_{i} is the multiplicative inverse of a.

Consider the set $S=\left\{a a_{1}, a a_{2}, \ldots, a a_{n}\right\}$. Since R is an integral domain, the cancellation law holds. In particular, since $a \neq 0$, we have $a a_{i}=a a_{j}$ if and only if $i=j$.

The set S is therefore a subset of R with n distinct elements, which implies that $S=R$.

In particular, $1=a a_{i}$ for some i. This a_{i} is the multiplicative inverse of a.

8.3.1 Field of Fractions

An integral domain fails to be a field precisely when there is a nonzero element with no multiplicative inverse. The ring \mathbb{Z} is such an example, for $2 \in \mathbb{Z}$ has no multiplicative inverse.

But any nonzero $n \in \mathbb{Z}$ has a multiplicative inverse $\frac{1}{n}$ in \mathbb{Q}, which is a field.
So, a question one could ask is, can we "enlarge" a given integral domain to a field, by formally adding multiplicative inverses to the ring?

An Equivalence Relation

Given an integral domain R (commutative, with $1 \neq 0$). We consider the set: $R \times R_{\neq 0}:=\{(a, b): a, b \in R, b \neq 0\}$. We define a relation \equiv on $R \times R_{\neq 0}$ as follows:

$$
(a, b) \equiv(c, d) \text { if } a d=b c
$$

Lemma 8.24. The relation \equiv is an equivalence relation.
In other words, the relation \equiv is:

1. Reflexive: $(a, b) \equiv(a, b)$ for all $(a, b) \in R \times R_{\neq 0}$
2. Symmetric: If $(a, b) \equiv(c, d)$, then $(c, d) \equiv(a, b)$.
3. Transitive: If $(a, b) \equiv(c, d)$ and $(c, d) \equiv(e, f)$, then $(a, b) \equiv(e, f)$.

Proof of Lemma 8.24. Exercise.

Due to the properties (reflexive, symmetric, transitive), of an equivalence relation, the equivalent classes form a partition of S. Namely, equivalent classes of non-equivalent elements are disjoint:

$$
[s] \cap[t]=\varnothing
$$

if $s \nsim t$; and the union of all equivalent classes is equal to S :

$$
\bigcup_{s \in S}[s]=S .
$$

Definition 8.25. Given an equivalence relation \sim on a set S, the quotient set S / \sim is the set of all equivalence classes of S, with respect to \sim.

We now return to our specific situation of $R \times R_{\neq 0}$, with \equiv defined as above. We define addition + and multiplication \cdot on $R \times R_{\neq 0}$ as follows:

$$
\begin{aligned}
(a, b)+(c, d) & :=(a d+b c, b d) \\
(a, b) \cdot(c, d) & :=(a c, b d)
\end{aligned}
$$

Claim 8.26. Suppose $(a, b) \equiv\left(a^{\prime}, b^{\prime}\right)$ and $(c, d) \equiv\left(c^{\prime}, d^{\prime}\right)$, then:

1. $(a, b)+(c, d) \equiv\left(a^{\prime}, b^{\prime}\right)+\left(c^{\prime}, d^{\prime}\right)$.
2. $(a, b) \cdot(c, d) \equiv\left(a^{\prime}, b^{\prime}\right) \cdot\left(c^{\prime}, d^{\prime}\right)$.

Proof of Claim 8.26. By definition, $(a, b)+(c, d)=(a d+b c, b d)$, and $\left(a^{\prime}, b^{\prime}\right)+$ $\left(c^{\prime}, d^{\prime}\right)=\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)$. Since by assumption $a b^{\prime}=a^{\prime} b$ and $c d^{\prime}=c^{\prime} d$, we have:

$$
(a d+b c) b^{\prime} d^{\prime}=a d b^{\prime} d^{\prime}+b c b^{\prime} d^{\prime}=a^{\prime} b d d^{\prime}+c^{\prime} d b b^{\prime}=\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right) b d ;
$$

hence, $(a, b)+(c, d) \equiv\left(a^{\prime}, b^{\prime}\right)+\left(c^{\prime}, d^{\prime}\right)$.
For multiplication, by definition we have $(a, b) \cdot(c, d)=(a c, b d)$ and $\left(a^{\prime}, b^{\prime}\right)$. $\left(c^{\prime}, d^{\prime}\right)=\left(a^{\prime} c^{\prime}, b^{\prime} d^{\prime}\right)$.

Since

$$
a c b^{\prime} d^{\prime}=a b^{\prime} c d^{\prime}=a^{\prime} b c^{\prime} d=a^{\prime} c^{\prime} b d
$$

we have $(a, b) \cdot(c, d) \equiv\left(a^{\prime}, b^{\prime}\right) \cdot\left(c^{\prime}, d^{\prime}\right)$.

Let:

$$
\operatorname{Frac}(R):=\left(R \times R_{\neq 0}\right) / \equiv,
$$

and define + and \cdot on $\operatorname{Frac}(R)$ as follows:

$$
\begin{aligned}
{[(a, b)]+[(c, d)] } & =[(a d+b c, b d)] \\
{[(a, b)] \cdot[(c, d)] } & =[(a c, b d)]
\end{aligned}
$$

Corollary 8.27. + and \cdot thus defined are well-defined binary operations on $\operatorname{Frac}(R)$.
In other words, we get the same output in $\operatorname{Frac}(R)$ regardless of the choice of representatives of the equivalence classes.

Claim 8.28. The set $\operatorname{Frac}(R)$, equipped with + and \cdot defined as above, forms a field, with additive identity $0=[(0,1)]$ and multiplicative identity $1=[(1,1)]$. The multiplicative inverse of a nonzero element $[(a, b)] \in \operatorname{Frac}(R)$ is $[(b, a)]$.

Proof of Claim 8.28. Exercise.
Definition 8.29. $\operatorname{Frac}(R)$ is called the Fraction Field of R.
Note. $\operatorname{Frac}(\mathbb{Z})=\mathbb{Q}$, if we identify $a / b \in \mathbb{Q}, a, b \in \mathbb{Z}$, with $[(a, b)] \in \operatorname{Frac}(\mathbb{Z})$.

8.3.2 WeBWorK

1. WeBWorK

2. WeBWorK
3. WeBWork
4. WeBWorK
5. WeBWorK
6. WeBWorK

7. WeBWorK

8. WeBWorK
9. WeBWorK
10. WeBWorK
