
Math 2070 Week 8

Commutative Rings, Integral Domains, Fields

8.1 Commutative Rings
Definition 8.1. A ring R is said to be commutative if ab = ba for all a, b ∈ R.

Example 8.2. For a fixed natural number n > 1, the ring of n × n matrices with
integer coefficients, under the usual operations of addition and multiplication, is
not commutative.

Example 8.3. Let m be a natural number greater than 1. Let Zm = {0, 1, 2, . . . ,m−
1}. Recall that for any integer n ∈ Z, there exists a unique n ∈ Zm, such that
n ≡ n mod m. More precisely, n is the remainder of the division of of n by m:
n = mq + r. We equip Zm with addition +m and multiplication ×m defined as
follows: For a, b ∈ Zm, let:

a +m b = a + b,

a×m b = a · b,

where the addition and multiplication on the right are the usual addition and mul-
tiplication for integers.

Claim 8.4. With addition and multiplication thus defined, Zm is a commutative
ring.

Proof of Claim 8.4. 1. For a, b ∈ Zm, we have a +m b = a + b = b + a =
b+m a, since addition for integers is commutative. So, +m is commutative.

2. For any r1, r2 ∈ Z, by Claim 6.17 and Theorem 6.19 , we have

r1 ≡ r1 mod m, r2 ≡ r2 mod m,
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and:
r1 + r2 ≡ r1 + r2 ≡ r1 + r2 ≡ r1 + r2 mod m.

For a, b, c ∈ Zm, we have:

a +m (b +m c) = a +m b + c

= a + b + c

= a + b + c

= a + (b + c)

But a+(b+c) is equal to (a+b)+c, since addition for integers is associative.
Hence, the above expression is equal to:

(a + b) + c = (a + b) + c

= a + b + c

= (a +m b) + c

= (a +m b) +m c.

We conclude that +m is associative.

3. Exercise: We can take 0 to be the additive identity element.

4. For each nonzero element a ∈ Zm, we can take the additive inverse of a to
be m− a. Indeed, a +m (−a) = a + (m− a) = m = 0.

5. By the same reasoning used in the case of addition, for r1, r2 ∈ Z, we have

r1r2 ≡ r1r2 ≡ r1 · r2 ≡ r1 · r2 mod m.

For a, b, c ∈ Zm, we have:

a×m (b×m c) = a×m bc = a · bc = a(bc),

which by the associativity of multiplication for integers is equal to:

(ab)c = ab · c = ab×m c = (a×m b)×m c.

So, ×m is associative.
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6. Exercise: We can take 1 to be the multiplicative identity.

7. For a, b ∈ Zm, a×m b = a · b = b · a = b×m a. So ×m is commutative.

8. Lastly, we need to prove distributativity. For a, b, c ∈ Zm, we have:

a×m (b +m c) = a · b + c

= a · (b + c)

= ab + ac

= ab + ac

= a×m b +m a×m c.

It now follows from the distributativity from the left, proven above, and the
commutativity of ×m, that distributativity from the right also holds:

(a +m b)×m c = a×m c + b×m c.

8.2 Integral Domains, Units
Definition 8.5. A nonzero commutative ring R is an integral domain if the prod-
uct of two nonzero elements is always nonzero.

Definition 8.6. A nonzero element r in a ring R is called a zero divisor if there
exists nonzero s ∈ R such that rs = 0 or sr = 0.

Note. A nonzero commutative ring R is an integral domain if and only if it
has no zero divisors.

Example 8.7. Since 2, 3 6= 0 in Z6, but 2 ×6 3 = 6̄ = 0, the ring Z6 is not an
integral domain.

Claim 8.8. A commutative ring R is an integral domain if and only if the cancel-
lation law holds for multiplication. That is: Whenever ca = cb and c 6= 0, we
have a = b.

Proof of Claim 8.8. Suppose R is an integral domain.
If ca = cb, then by distributativity c(a− b) = c(a +−b) = 0.
Since R is an integral domain, we have either c = 0 or a− b = 0.
So, if c 6= 0, we must have a = b.
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Conversely, suppose cancellation law holds. It suffices to show that whenever
we have a, b ∈ R such that ab = 0 and a 6= 0, then we must have b = 0.

By a previous result we know that 0 = a0. So, ab = a0, which by the cancel-
lation law implies that b = 0.

Note. If every nonzero element of a commutative ring has a multiplicative
inverse, then that ring is an integral domain:

ca = cb =⇒ c−1ca = c−1cb =⇒ a = b.

However, a nonzero element of an integral domain does not necessarily have a
multiplicative inverse.

Example 8.9. The ring Z is an integral domain, for the product of two nonzero
integers is nonzero. So, the cancellation law holds for Z, but the only nonzero
elements in Z which have multiplicative inverses are ±1.

Example 8.10. The ring Q[x] is an integral domain.

Exercise 8.11. Show that: For m > 1, Zm is an integral domain if and only if m
is a prime.

Example 8.12. Consider R = C[−1, 1], the ring of all continuous functions on
[−1, 1], equipped with the usual operations of addition and multiplication for func-
tions.

Let:

f(x) =

{
−x, −1 ≤ x ≤ 0,

0, 0 < x ≤ 1.
, g(x) =

{
0, −1 ≤ x ≤ 0,

x, 0 < x ≤ 1.

Then f and g are nonzero elements of R, but fg = 0.
So R is not an integral domain.

Definition 8.13. We say that an element r ∈ R is a unit if it has a multiplicative
inverse; i.e. there is an element r−1 ∈ R such that rr−1 = r−1r = 1.

Example 8.14. Consider 4 ∈ Z25. Since 4 · 19 = 76 ≡ 1 mod 25, we have
4−1 = 19 in Z25. So, 4 is a unit in Z25.

On the other hand, consider 10 ∈ Z25. Since 10 · 5 = 50 ≡ 0 mod 25, we
have 10 · 5 = 0 in Z25. If 10−1 exists, then by the associativity of multiplication,
we would have:

5 = (10−1 · 10) · 5 = 10−1 · (10 · 5) = 10−1 · 0 = 0,

a contradiction. So, 10 is not a unit in Z25.
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Claim 8.15. Let m ∈ N be greater than one. Then, r ∈ Zm is a unit if and only if
r and m are relatively prime; i.e. gcd(r,m) = 1.

Proof of Claim 8.15. Suppose r ∈ {0, 1, 2, . . . ,m− 1} is a unit in Zm, then there
exists r−1 ∈ Zm such that r · r−1 ≡ 1 mod m.

In other words, there exists x ∈ Z such that r ·r−1−1 = mx, or r ·r−1−mx =
1. This implies that if there is an integer d such that d|r and d|m, then d must also
divide 1. Hence, the GCD of r and m is 1.

Conversely, if gcd(r,m) = 1, then there exists x, y ∈ Z such that rx+my = 1.
It follows that r−1 = x is a multiplicative inverse of r. Here, x ∈ Zm is the

remainder of the division of x by m.

Corollary 8.16. For p prime, every nonzero element of Zp is a unit.

Example 8.17. The only units of Z are ±1.

Example 8.18. Let R be the ring of all real-valued functions on R. Then, any
function f ∈ R satisfying f(x) 6= 0, ∀x, is a unit.

Claim 8.19. The only units of Q[x] are nonzero constants.

Proof of Claim 8.19. Given any f ∈ Q[x] such that deg f > 0, for all nonzero
g ∈ Q[x] we have

deg fg ≥ deg f > 0 = deg 1;

hence, fg 6= 1. If g = 0, then fg = 0 6= 1. So, f has no multiplicative inverse.
If f is a nonzero constant, then f−1 = 1

f
is a constant polynomial in Q[x], and

f · 1
f

= 1
f
· f = 1. So, f is a unit.

Finally, if f = 0, then fg = 0 6= 1 for all g ∈ Q[x], so the zero polynomial
has no multiplicative inverse.

8.2.1 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK
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8.3 Fields
Definition 8.20. A field is a commutative ring, with 1 6= 0, in which every
nonzero element is a unit.

In other words, a nonzero commutative ring F is a field if and only if every
nonzero element r ∈ F has a multiplicative inverse r−1, i.e. rr−1 = r−1r = 1.

Since every nonzero element of a field is a unit, a field is necessarily an integral
domain, but an integral domain is not necessarily a field. For example Z is an
integral domain which is not a field.

Example 8.21. 1. Q, R are fields.

2. For m ∈ N, it follows from a previous result that Zm is a field if and only if
m is prime.

Notation For p prime, we often denote the field Zp by Fp.

Claim 8.22. Equipped with the usual operations of addition and multiplications
for real numbers, F = Q[

√
2] := {a + b

√
2|a, b ∈ Q} is a field.

Proof of Claim 8.22. Observe that: (a+ b
√

2)+(c+d
√

2) = (a+ c)+(b+d)
√

2
lies in F , and (a + b

√
2)(c + d

√
2) = (ac + 2bd) + (ad + bc)

√
2 ∈ F . Hence,

addition and multiplication for real numbers are well-defined operations on F . As
operations on R, they are commutative, associative, and satisfy distributativity;
therefore, as F is a subset of R, they also satisfy these properties as operations on
F .

It is clear that 0 and 1 are the additive and multiplicative identities of F . Given
a + b

√
2 ∈ F , where a, b ∈ Q, it is clear that its additive inverse −a − b

√
2 also

lies in F . Hence, F is a commutative ring.
To show that F is a field, for every nonzero a + b

√
2 in F , we need to find its

multiplicative inverse. As an element of the field R, the multiplicative inverse of
a + b

√
2 is:

(a + b
√

2)−1 =
1

a + b
√

2
.

It remains to show that this number lies in F . Observe that:

(a + b
√

2)(a− b
√

2) = a2 − 2b2.

We claim that a2 − 2b2 6= 0.
Suppose a2 − 2b2 = 0, then either (i) a = b = 0, or (ii) b 6= 0,

√
2 = |a/b|.

Since we have assumed that a + b
√

2 is nonzero, case (i) cannot hold.
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But case (ii) also cannot hold because
√

2 is known to be irrational. Hence
a2 − 2b2 6= 0, and:

1

a + b
√

2
=

a

a2 − 2b2
− b

a2 − 2b2

√
2,

which lies in F .

Claim 8.23. All finite integral domains are fields.

Proof of Claim 8.23. Let R be an integral domain with n elements, where n is
finite. Write R = {a1, a2, . . . , an}.

We want to show that for any nonzero element a 6= 0 in R, there exists i,
1 ≤ i ≤ n, such that ai is the multiplicative inverse of a.

Consider the set S = {aa1, aa2, . . . , aan}. Since R is an integral domain, the
cancellation law holds. In particular, since a 6= 0, we have aai = aaj if and only
if i = j.

The set S is therefore a subset of R with n distinct elements, which implies
that S = R.

In particular, 1 = aai for some i. This ai is the multiplicative inverse of a.

8.3.1 Field of Fractions
An integral domain fails to be a field precisely when there is a nonzero element
with no multiplicative inverse. The ring Z is such an example, for 2 ∈ Z has no
multiplicative inverse.

But any nonzero n ∈ Z has a multiplicative inverse 1
n

in Q, which is a field.
So, a question one could ask is, can we "enlarge" a given integral domain to a

field, by formally adding multiplicative inverses to the ring?

An Equivalence Relation

Given an integral domain R (commutative, with 1 6= 0). We consider the set:
R × R6=0 := {(a, b) : a, b ∈ R, b 6= 0}. We define a relation ≡ on R × R6=0 as
follows:

(a, b) ≡ (c, d) if ad = bc.

Lemma 8.24. The relation ≡ is an equivalence relation.
In other words, the relation ≡ is:

1. Reflexive: (a, b) ≡ (a, b) for all (a, b) ∈ R×R6=0

2. Symmetric: If (a, b) ≡ (c, d), then (c, d) ≡ (a, b).
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3. Transitive: If (a, b) ≡ (c, d) and (c, d) ≡ (e, f), then (a, b) ≡ (e, f).

Proof of Lemma 8.24. Exercise.

Due to the properties (reflexive, symmetric, transitive), of an equivalence re-
lation, the equivalent classes form a partition of S. Namely, equivalent classes of
non-equivalent elements are disjoint:

[s] ∩ [t] = ∅

if s 6∼ t; and the union of all equivalent classes is equal to S:⋃
s∈S

[s] = S.

Definition 8.25. Given an equivalence relation ∼ on a set S, the quotient set
S/ ∼ is the set of all equivalence classes of S, with respect to ∼.

We now return to our specific situation of R × R6=0, with ≡ defined as above.
We define addition + and multiplication · on R×R6=0 as follows:

(a, b) + (c, d) := (ad + bc, bd)

(a, b) · (c, d) := (ac, bd)

Claim 8.26. Suppose (a, b) ≡ (a′, b′) and (c, d) ≡ (c′, d′), then:

1. (a, b) + (c, d) ≡ (a′, b′) + (c′, d′).

2. (a, b) · (c, d) ≡ (a′, b′) · (c′, d′).

Proof of Claim 8.26. By definition, (a, b) + (c, d) = (ad + bc, bd), and (a′, b′) +
(c′, d′) = (a′d′ + b′c′, b′d′). Since by assumption ab′ = a′b and cd′ = c′d,

we have:

(ad + bc)b′d′ = adb′d′ + bcb′d′ = a′bdd′ + c′dbb′ = (a′d′ + b′c′)bd;

hence, (a, b) + (c, d) ≡ (a′, b′) + (c′, d′).
For multiplication, by definition we have (a, b) · (c, d) = (ac, bd) and (a′, b′) ·

(c′, d′) = (a′c′, b′d′).
Since

acb′d′ = ab′cd′ = a′bc′d = a′c′bd,

we have (a, b) · (c, d) ≡ (a′, b′) · (c′, d′).
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Let:
Frac(R) := (R×R6=0)/ ≡,

and define + and · on Frac(R) as follows:

[(a, b)] + [(c, d)] = [(ad + bc, bd)]

[(a, b)] · [(c, d)] = [(ac, bd)]

Corollary 8.27. + and · thus defined are well-defined binary operations on Frac(R).
In other words, we get the same output in Frac(R) regardless of the choice of

representatives of the equivalence classes.

Claim 8.28. The set Frac(R), equipped with + and · defined as above, forms a
field, with additive identity 0 = [(0, 1)] and multiplicative identity 1 = [(1, 1)].
The multiplicative inverse of a nonzero element [(a, b)] ∈ Frac(R) is [(b, a)].

Proof of Claim 8.28. Exercise.

Definition 8.29. Frac(R) is called the Fraction Field of R.

Note. Frac(Z) = Q, if we identify a/b ∈ Q, a, b ∈ Z, with [(a, b)] ∈ Frac(Z).

8.3.2 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK

7. WeBWorK

8. WeBWorK

9. WeBWorK

10. WeBWorK
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