Math 2070 Week 7

Polynomials, Rings

7.1 Polynomials with Rational Coefficients

Notation:

$$
\begin{gathered}
\mathbb{Q}=\text { Set of rational numbers } \\
\mathbb{Q}[x]=\text { Set of polynomials with rational coefficients } \\
=\left\{a_{0}+a_{1} x+\cdots+a_{n} x^{n} \mid n \in \mathbb{Z}_{\geq 0}, a_{i} \in \mathbb{Q}\right\}
\end{gathered}
$$

Theorem 7.1 (Division Theorem for Polynomials with Rational Coefficients). For all $f, g \in \mathbb{Q}[x]$, such that $f \neq 0$, there exist unique $q, r \in \mathbb{Q}[x]$, satisfying $\operatorname{deg} r<$ $\operatorname{deg} f$, such that $g=f q+r$.

Proof. We first prove the existence of q and r, via induction on the degree of g. The base step corresponds to the case $\operatorname{deg} g<\operatorname{deg} f$. In this case, the choice $q=0, r=g$ works, since $g=f \cdot 0+g$, and $\operatorname{deg} r=\operatorname{deg} g<\operatorname{deg} f$.

Now, we establish the inductive step. Let f be fixed. Given g, suppose for all g^{\prime} with $\operatorname{deg} g^{\prime}<\operatorname{deg} g$, there exist $q^{\prime}, r^{\prime} \in \mathbb{Q}[x]$ such that $g^{\prime}=f q^{\prime}+r^{\prime}$, with $\operatorname{deg} r^{\prime}<\operatorname{deg} f$. We want to show that there exist q, r such that $g=f q+r$, with $\operatorname{deg} r<\operatorname{deg} f$.

Suppose $g=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$ and $f=b_{0}+b_{1} x+\cdots+b_{n} x^{n}$, where $a_{m}, b_{n} \neq 0$. We may assume that $m \geq n$, since the case $m<n$ (i.e. $\operatorname{deg} g<$ $\operatorname{deg} f$) has already been proved.

Consider the polynomial:

$$
g^{\prime}=g-\frac{a_{m}}{b_{n}} x^{m-n} f .
$$

Then, $\operatorname{deg} g^{\prime}<\operatorname{deg} g$, and by the induction hypothesis we have:

$$
g^{\prime}=f q^{\prime}+r^{\prime}
$$

for some $q^{\prime}, r^{\prime} \in \mathbb{Q}[x]$ such that $\operatorname{deg} r^{\prime}<\operatorname{deg} f$.
Hence,

$$
g-\frac{a_{m}}{b_{n}} x^{m-n} f=g^{\prime}=f q^{\prime}+r^{\prime},
$$

which implies that:

$$
g=f\left(q^{\prime}+\frac{a_{m}}{b_{n}} x^{m-n}\right)+r^{\prime}
$$

This establishes the existence of the quotient $q=q^{\prime}+\frac{a_{m}}{b_{n}} x^{m-n}$ and the remainder $r=r^{\prime}$.

Now, we prove the uniqueness of q and r. Suppose $g=f q+r=f q^{\prime}+r^{\prime}$, where $q, q^{\prime}, r, r^{\prime} \in \mathbb{Q}[x]$, with $\operatorname{deg} r, \operatorname{deg} r^{\prime}<\operatorname{deg} f$. We have:

$$
f q+r=f q^{\prime}+r^{\prime}
$$

which implies that:

$$
\operatorname{deg} f\left(q-q^{\prime}\right)=\operatorname{deg}\left(r^{\prime}-r\right)<\operatorname{deg} f
$$

The above inequality can hold only if $q=q^{\prime}$, which in turn implies that $r^{\prime}=r$. It follows that the quotient q and the remainder r are unique.

Definition 7.2. Given $f, g \in \mathbb{Q}[x]$, a Greatest Common Divisor d of f and g is a polynomial in $\mathbb{Q}[x]$ which satisfies the following two properties:

1. d divides both f and g.
2. For any $e \in \mathbb{Q}[x]$ which divides both f and g, we have $\operatorname{deg} e \leq \operatorname{deg} d$.

Claim 7.3. If $g=f q+r$, and d is a GCD of g and f, then d is a GCD of f and r.
Proof. See the proof of Lemma 6.2.
Corollary 7.4. The Euclidean Algorithm applies to $\mathbb{Q}[x]$.
Namely: Suppose $\operatorname{deg} g \geq \operatorname{deg} f$. let $g_{0}=g$, $f_{0}=f$, and let r_{0} be the unique polynomial in $\mathbb{Q}[x]$ such that:

$$
g_{0}=f_{0} q_{0}+r_{0}, \quad \operatorname{deg} r_{0}<\operatorname{deg} f_{0},
$$

for some $q_{0} \in \mathbb{Q}[x]$.
For $k>0$, let:

$$
g_{k}=f_{k-1}, \quad f_{k}=r_{k-1} .
$$

Let r_{k} be the remainder such that:

$$
g_{k}=f_{k} q_{k}+r_{k},
$$

for some $q_{k} \in \mathbb{Q}[x]$.
Since $\operatorname{deg} r_{k}<\operatorname{deg} f_{k}=\operatorname{deg} r_{k-1}$, we have:

$$
\operatorname{deg} r_{0}>\operatorname{deg} r_{1}>\operatorname{deg} r_{2}>\cdots \geq 0 \geq-\infty
$$

(where by convention we let $\operatorname{deg} 0=-\infty$).
Eventually, $r_{n}=0$ for some n, and it follows from the previous claim and arguments similar to those used in the case of \mathbb{Z} that r_{n-1} is a GCD of f and g.

Example 7.5. 1. Find a GCD of $x^{5}+1$ and $x^{3}+1$ in $\mathbb{Q}[x]$.

$$
\begin{aligned}
x^{5}+1 & =\left(x^{3}+1\right)\left(x^{2}\right)+\left(-x^{2}+1\right) \\
x^{3}+1 & =\left(-x^{2}+1\right)(-x)+(x+1) \\
-x^{2}+1 & =(x+1)(-x+1)+(0)
\end{aligned}
$$

So, a GCD is $x+1$.
2. Find a GCD of $x^{3}-x^{2}-x+1$ and $x^{3}+4 x^{2}+x-6$ in $\mathbb{Q}[x]$.

$$
\begin{aligned}
x^{3}-x^{2}-x+1 & =\left(x^{3}+4 x^{2}+x-6\right)(1)+\left(-5 x^{2}-2 x+7\right) \\
x^{3}+4 x^{2}+x-6 & =\left(-5 x^{2}-2 x+7\right)\left(-\frac{1}{5} x-\frac{18}{25}\right)+\left(\frac{24}{25} x-\frac{24}{25}\right) \\
-5 x^{2}-2 x+7 & =\left(\frac{24}{25} x-\frac{24}{25}\right)\left(-\frac{125}{24} x-\frac{175}{24}\right)+(0)
\end{aligned}
$$

So, a GCD is $\frac{24}{25} x-\frac{24}{25}$, and so is $x-1$.
Corollary 7.6 (Bézout's Identity for Polynomials). For any $f, g \in \mathbb{Q}[x]$ which are not both zero, and d a GCD of f and g, there exist $u, v \in \mathbb{Q}[x]$ such that:

$$
d=f u+g v .
$$

Example 7.7. In \rrbracket, we have:

$$
\begin{aligned}
(x+1) & =\left(x^{3}+1\right)-\left(-x^{2}+1\right)(-x) \\
& =\left(x^{3}+1\right)-\left(\left(x^{5}+1\right)-\left(x^{3}+1\right)\left(x^{2}\right)\right)(-x) \\
& =(x)\left(x^{5}+1\right)+\left(-x^{3}+1\right)\left(x^{3}+1\right)
\end{aligned}
$$

7.2 Factorization of Polynomials

Definition 7.8. A polynomial p in $\mathbb{Q}[x]$ is irreducible if it satisfies the following conditions:

1. $\operatorname{deg} p>0$,
2. if $p=a b$ for some $a, b \in \mathbb{Q}[x]$, then either a or b is a constant.

Claim 7.9. If $p \in \mathbb{Q}[x]$ is irreducible and $p \mid f_{1} f_{2}$, where $f_{1}, f_{2} \in \mathbb{Q}[x]$, then $p \mid f_{1}$ or $p \mid f_{2}$.

Proof. Suppose p does not divide f_{2}, then the only common divisors of p and f_{2} are constant polynomials. In particular, 1 is a GCD of p and f_{2}. Then, by $]$, there exist $u, v, \mathbb{Q}[x]$ such that $1=p u+f_{2} v$. We have:

$$
f_{1}=p u f_{1}+f_{1} f_{2} v .
$$

Since p divides the right-hand side of the above equation, it must divide f_{1}.
Theorem 7.10. A polynomial in $\mathbb{Q}[x]$ of degree greater than zero is either irreducible or a product of irreducibles.

Proof. Suppose there is a nonempty set of polynomials of degree >0 which are neither irreducible nor products of irreducibles. Let p be an element of this set which has the least degree. Since p is not irreducible, there are $a, b \in \mathbb{Q}[x]$ of degrees >0 such that $p=a b$. But, a, b, having degrees strictly less than $\operatorname{deg} p$, must be either irreducible or products of irreducibles. This implies that p is a product of irreducibles, a contradiction.

Remark: Compare this proof with that of Part 1 of the Fundamental Theorem of Arithmetic (Theorem 6.14 (The Fundamental Theorem of Arithmetic)).

Theorem 7.11 (Unique Factorization for Polynomials). For any $p \in \mathbb{Q}[x]$ of $d e$ gree >0, if:

$$
p=f_{1} f_{2} \cdots f_{n}=g_{1} g_{2} \cdots g_{m}
$$

where f_{i}, g_{j} are irreducible polynomials in $\mathbb{Q}[x]$, then $n=m$, and the g_{j} 's may be reindexed so that $f_{i}=\lambda_{i} g_{i}$ for some $\lambda_{i} \in \mathbb{Q}$, for $i=1,2, \ldots, n$.

Proof. Exercise . See the proof of Part 2 of Theorem 6.14 (The Fundamental Theorem of Arithmetic)).

7.3 Rings

7.3.1 Definition of a Ring

Definition 7.12. A ring $R($ or $(R,+, \times)$) is a set equipped with two operations:

$$
\times,+: R \times R \rightarrow R
$$

which satisfy the following properties:

1. Properties of + :
(a) Commutativity: $a+b=b+a, \forall a, b \in R$.
(b) Associativity: $a+(b+c)=(a+b)+c$.
(c) There is an element $0 \in R$ (called the additive identity element), such that $a+0=a$ for all $a \in R$.
(d) Every element of R has an additive inverse; namely: For all $a \in R$, there exists an element of R, usually denoted $-a$, such that $a+(-a)=$ 0 .
2. Properties of \times :
(a) Associativity: $a(b c)=(a b) c$.
(b) There is an element $1 \in R$ (called the multiplicative identity element), such that $1 \times a=a \times 1=a$ for all $a \in R$.
3. Distributativity:
(a) $a \times(b+c)=a \times b+a \times c$, for all $a, b, c \in R$.
(b) $(a+b) \times c=a \times c+b \times c$, for all $a, b, c \in R$.

Note:

1. For convenience's sake, we often write $a b$ for $a \times b$.
2. In the definition, commutativity is required of addition, but not of multiplication.
3. Every element has an additive inverse, but not necessarily a multiplicative inverse. That is, there may be an element $a \in R$ such that $a b \neq 1$ for all $b \in R$.

Example 7.13. The following sets, equipped with the usual operations of addition and multiplication, are rings:

1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$
2. $\mathbb{Z}[x], \mathbb{Q}[x], \mathbb{R}[x]$ (Polynomials with integer, rational, real coefficients, respectively.)
3.

$$
\begin{aligned}
\mathbb{Q}[\sqrt{2}] & =\left\{\sum_{k=0}^{n} a_{k}(\sqrt{2})^{k} \mid a_{k} \in \mathbb{Q}, n \in \mathbb{Z}_{\geq 0}\right\} \\
& =\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\} .
\end{aligned}
$$

4. $M_{n}(\mathbb{R})$, the set of $n \times n$ real matrices, $n \in \mathbb{N}$.
5. For a fixed n, the set of $n \times n$ matrices with integer coefficients.
6. $C[0,1]=\{f:[0,1] \rightarrow \mathbb{R} \mid f$ is continuous. $\}$

The following sets, under the usual operations of addition and multiplication, are not rings:

1. \mathbb{N}, no additive identity element, i.e. no 0 .
2. $\mathbb{N} \cup\{0\}$, nonzero elements have no additive inverses.
3. GL (n, \mathbb{R}), the set of $n \times n$ invertible real matrices, $n \in \mathbb{N}$.

Claim 7.14. In a ring R, there is a unique additive identity element and a unique multiplicative identity element.

Proof. Suppose there is an element $0^{\prime} \in R$ such that $0^{\prime}+r=r$ for all $r \in R$, then in particular $0^{\prime}+0=0$.

Since 0 is an additive identity, we have $0^{\prime}+0=0^{\prime}$. So, $0^{\prime}=0$.
Suppose there is an element $1^{\prime} \in R$ such that $1^{\prime} r=r$ or all $r \in R$,
then in particular $1^{\prime} \cdot 1=1$.
But $1^{\prime} \cdot 1=1^{\prime}$ since 1 is a multiplicative identity element, so $1^{\prime}=1$.
Exercise 7.15. Prove that: For any r in a ring R, its additive inverse $-r$ is unique. That is, if $r+r^{\prime}=r+r^{\prime \prime}=0$, then $r^{\prime}=r^{\prime \prime}$.

7.3.2 WeBWorK

1. WeBWork

2. WeBWorK

Claim 7.16. For all elements r in a ring R, we have $0 r=r 0=0$.
Proof. By distributativity,

$$
0 r=(0+0) r=0 r+0 r .
$$

Adding $-0 r$ (additive inverse of $0 r$) to both sides, we have:

$$
0=(0 r+0 r)+(-0 r)=0 r+(0 r+(-0 r))=0 r+0=0 r .
$$

The proof of $r 0=0$ is similar and we leave it as an exercise .
Claim 7.17. For all elements r in a ring, we have $(-1)(-r)=(-r)(-1)=r$.
Proof. We have:

$$
0=0(-r)=(1+(-1))(-r)=-r+(-1)(-r)
$$

Adding r to both sides, we obtain

$$
r=r+(-r+(-1)(-r))=(r+-r)+(-1)(-r)=(-1)(-r) .
$$

We leave it as an exercise to show that $(-r)(-1)=r$.
Exercise 7.18. Show that: For all r in a ring R, we have:

$$
(-1) r=r(-1)=-r .
$$

Exercise 7.19. Show that: If R is a ring in which $1=0$, then $R=\{0\}$. That is, it has only one element.
(We call such an R the zero ring .)

