
Math 2070 Week 7

Polynomials, Rings

7.1 Polynomials with Rational Coefficients
Notation:

Q = Set of rational numbers

Q[x] = Set of polynomials with rational coefficients
= {a0 + a1x+ · · ·+ anx

n|n ∈ Z≥0, ai ∈ Q}

Theorem 7.1 (Division Theorem for Polynomials with Rational Coefficients). For
all f, g ∈ Q[x], such that f 6= 0, there exist unique q, r ∈ Q[x], satisfying deg r <
deg f , such that g = fq + r.

Proof. We first prove the existence of q and r, via induction on the degree of g.
The base step corresponds to the case deg g < deg f . In this case, the choice
q = 0, r = g works, since g = f · 0 + g, and deg r = deg g < deg f .

Now, we establish the inductive step. Let f be fixed. Given g, suppose for
all g′ with deg g′ < deg g, there exist q′, r′ ∈ Q[x] such that g′ = fq′ + r′, with
deg r′ < deg f . We want to show that there exist q, r such that g = fq + r, with
deg r < deg f .

Suppose g = a0 + a1x + · · · + amx
m and f = b0 + b1x + · · · + bnx

n, where
am, bn 6= 0. We may assume that m ≥ n, since the case m < n (i.e. deg g <
deg f ) has already been proved.

Consider the polynomial:

g′ = g − am
bn
xm−nf.

Then, deg g′ < deg g, and by the induction hypothesis we have:

g′ = fq′ + r′
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for some q′, r′ ∈ Q[x] such that deg r′ < deg f .
Hence,

g − am
bn
xm−nf = g′ = fq′ + r′,

which implies that:

g = f

(
q′ +

am
bn
xm−n

)
+ r′

This establishes the existence of the quotient q = q′ + am
bn
xm−n and the remainder

r = r′.
Now, we prove the uniqueness of q and r. Suppose g = fq + r = fq′ + r′,

where q, q′, r, r′ ∈ Q[x], with deg r, deg r′ < deg f . We have:

fq + r = fq′ + r′,

which implies that:

deg f(q − q′) = deg(r′ − r) < deg f.

The above inequality can hold only if q = q′, which in turn implies that r′ = r. It
follows that the quotient q and the remainder r are unique.

Definition 7.2. Given f, g ∈ Q[x], a Greatest Common Divisor d of f and g is
a polynomial in Q[x] which satisfies the following two properties:

1. d divides both f and g.

2. For any e ∈ Q[x] which divides both f and g, we have deg e ≤ deg d.

Claim 7.3. If g = fq+ r, and d is a GCD of g and f , then d is a GCD of f and r.

Proof. See the proof of Lemma 6.2 .

Corollary 7.4. The Euclidean Algorithm applies to Q[x].
Namely: Suppose deg g ≥ deg f . let g0 = g, f0 = f , and let r0 be the unique

polynomial in Q[x] such that:

g0 = f0q0 + r0, deg r0 < deg f0,

for some q0 ∈ Q[x].
For k > 0, let:

gk = fk−1, fk = rk−1.

Let rk be the remainder such that:

gk = fkqk + rk,
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for some qk ∈ Q[x].
Since deg rk < deg fk = deg rk−1, we have:

deg r0 > deg r1 > deg r2 > · · · ≥ 0 ≥ −∞

(where by convention we let deg 0 = −∞).
Eventually, rn = 0 for some n, and it follows from the previous claim and

arguments similar to those used in the case of Z that rn−1 is a GCD of f and g.

Example 7.5. 1. Find a GCD of x5 + 1 and x3 + 1 in Q[x].

x5 + 1=
(
x3 + 1

) (
x2
)
+
(
−x2 + 1

)
x3 + 1=

(
−x2 + 1

)
(−x) + (x+ 1)

−x2 + 1= (x+ 1) (−x+ 1) + (0)

So, a GCD is x+ 1.

2. Find a GCD of x3 − x2 − x+ 1 and x3 + 4x2 + x− 6 in Q[x].

x3 − x2 − x+ 1=
(
x3 + 4x2 + x− 6

)
(1) +

(
−5x2 − 2x+ 7

)
x3 + 4x2 + x− 6=

(
−5x2 − 2x+ 7

)(
−1

5
x− 18

25

)
+

(
24

25
x− 24

25

)
−5x2 − 2x+ 7=

(
24

25
x− 24

25

)(
−125

24
x− 175

24

)
+ (0)

So, a GCD is 24
25
x− 24

25
, and so is x− 1.

Corollary 7.6 (Bézout’s Identity for Polynomials). For any f, g ∈ Q[x] which are
not both zero, and d a GCD of f and g, there exist u, v ∈ Q[x] such that:

d = fu+ gv.

Example 7.7. In , we have:

(x+ 1) =
(
x3 + 1

)
−
(
−x2 + 1

)
(−x)

=
(
x3 + 1

)
−
((
x5 + 1

)
−
(
x3 + 1

) (
x2
))

(−x)

=

(
x

)(
x5 + 1

)
+

(
− x3 + 1

)(
x3 + 1

)
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7.2 Factorization of Polynomials
Definition 7.8. A polynomial p in Q[x] is irreducible if it satisfies the following
conditions:

1. deg p > 0,

2. if p = ab for some a, b ∈ Q[x], then either a or b is a constant.

Claim 7.9. If p ∈ Q[x] is irreducible and p|f1f2, where f1, f2 ∈ Q[x], then p|f1
or p|f2.

Proof. Suppose p does not divide f2, then the only common divisors of p and f2
are constant polynomials. In particular, 1 is a GCD of p and f2. Then, by , there
exist u, v,Q[x] such that 1 = pu+ f2v. We have:

f1 = puf1 + f1f2v.

Since p divides the right-hand side of the above equation, it must divide f1.

Theorem 7.10. A polynomial in Q[x] of degree greater than zero is either irre-
ducible or a product of irreducibles.

Proof. Suppose there is a nonempty set of polynomials of degree > 0 which are
neither irreducible nor products of irreducibles. Let p be an element of this set
which has the least degree. Since p is not irreducible, there are a, b ∈ Q[x] of
degrees > 0 such that p = ab. But, a, b, having degrees strictly less than deg p,
must be either irreducible or products of irreducibles. This implies that p is a
product of irreducibles, a contradiction.

Remark: Compare this proof with that of Part 1 of the Fundamental Theorem
of Arithmetic (Theorem 6.14 (The Fundamental Theorem of Arithmetic)).

Theorem 7.11 (Unique Factorization for Polynomials). For any p ∈ Q[x] of de-
gree > 0, if:

p = f1f2 · · · fn = g1g2 · · · gm,
where fi, gj are irreducible polynomials in Q[x], then n = m, and the gj’s may be
reindexed so that fi = λigi for some λi ∈ Q, for i = 1, 2, . . . , n.

Proof. Exercise . See the proof of Part 2 of Theorem 6.14 (The Fundamental
Theorem of Arithmetic) ).
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7.3 Rings

7.3.1 Definition of a Ring
Definition 7.12. A ring R (or (R,+,×)) is a set equipped with two operations:

×,+ : R×R→ R

which satisfy the following properties:

1. Properties of +:

(a) Commutativity: a+ b = b+ a, ∀a, b ∈ R.

(b) Associativity: a+ (b+ c) = (a+ b) + c.

(c) There is an element 0 ∈ R (called the additive identity element ),
such that a+ 0 = a for all a ∈ R.

(d) Every element of R has an additive inverse; namely: For all a ∈ R,
there exists an element ofR, usually denoted−a, such that a+(−a) =
0.

2. Properties of ×:

(a) Associativity: a(bc) = (ab)c.

(b) There is an element 1 ∈ R (called the multiplicative identity element
), such that 1× a = a× 1 = a for all a ∈ R.

3. Distributativity:

(a) a× (b+ c) = a× b+ a× c, for all a, b, c ∈ R.

(b) (a+ b)× c = a× c+ b× c, for all a, b, c ∈ R.

Note:

1. For convenience’s sake, we often write ab for a× b.

2. In the definition, commutativity is required of addition, but not of multipli-
cation.

3. Every element has an additive inverse, but not necessarily a multiplicative
inverse. That is, there may be an element a ∈ R such that ab 6= 1 for all
b ∈ R.

Example 7.13. The following sets, equipped with the usual operations of addition
and multiplication, are rings:
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1. Z, Q, R

2. Z[x], Q[x], R[x] (Polynomials with integer, rational, real coefficients, re-
spectively.)

3.

Q[
√
2] = {

n∑
k=0

ak(
√
2)k | ak ∈ Q, n ∈ Z≥0}

= {a+ b
√
2 | a, b ∈ Q}.

4. Mn(R), the set of n× n real matrices, n ∈ N.

5. For a fixed n, the set of n× n matrices with integer coefficients.

6. C[0, 1] = {f : [0, 1]→ R | f is continuous.}

The following sets, under the usual operations of addition and multiplication,
are not rings:

1. N, no additive identity element, i.e. no 0.

2. N ∪ {0}, nonzero elements have no additive inverses.

3. GL(n,R), the set of n× n invertible real matrices, n ∈ N.

Claim 7.14. In a ring R, there is a unique additive identity element and a unique
multiplicative identity element.

Proof. Suppose there is an element 0′ ∈ R such that 0′+ r = r for all r ∈ R, then
in particular 0′ + 0 = 0.

Since 0 is an additive identity, we have 0′ + 0 = 0′. So, 0′ = 0.
Suppose there is an element 1′ ∈ R such that 1′r = r or all r ∈ R,
then in particular 1′ · 1 = 1.
But 1′ · 1 = 1′ since 1 is a multiplicative identity element, so 1′ = 1.

Exercise 7.15. Prove that: For any r in a ring R, its additive inverse−r is unique.
That is, if r + r′ = r + r′′ = 0, then r′ = r′′.
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7.3.2 WeBWorK
1. WeBWorK

2. WeBWorK

Claim 7.16. For all elements r in a ring R, we have 0r = r0 = 0.

Proof. By distributativity,

0r = (0 + 0)r = 0r + 0r.

Adding −0r (additive inverse of 0r) to both sides, we have:

0 = (0r + 0r) + (−0r) = 0r + (0r + (−0r)) = 0r + 0 = 0r.

The proof of r0 = 0 is similar and we leave it as an exercise .

Claim 7.17. For all elements r in a ring, we have (−1)(−r) = (−r)(−1) = r.

Proof. We have:

0 = 0(−r) = (1 + (−1))(−r) = −r + (−1)(−r).

Adding r to both sides, we obtain

r = r + (−r + (−1)(−r)) = (r +−r) + (−1)(−r) = (−1)(−r).

We leave it as an exercise to show that (−r)(−1) = r.

Exercise 7.18. Show that: For all r in a ring R, we have:

(−1)r = r(−1) = −r.

Exercise 7.19. Show that: If R is a ring in which 1 = 0, then R = {0}. That is,
it has only one element.

(We call such an R the zero ring .)
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