
Math 2070 Week 5

Group Homomorphisms, Rings

Claim 5.1. Any cyclic group of finite order n is isomorphic to Zn.

Proof of Claim 5.1. Sketch of Proof:
By definition, a cyclic group G is equal to 〈g〉 for some g ∈ G. Moreover,

ord g = ordG.
Define a map φ : Zn −→ G as follows:

φ(k) = gk, k ∈ {0, 1, 2, . . . , n− 1}.

Show that φ is a group isomorphism.
(For reference, see the discussion of Example 4.15.)

Corollary 5.2. If G and G′ are two finite cyclic groups of the same order, then G
is isomorphic to G′.

Exercise 5.3. An infinite cyclic group is isomorphic to (Z,+).

Exercise 5.4. Let G be a cyclic group, then any group which is isomorphic to G
is also cyclic.

5.1 Product Group
Let (A, ∗A), (B, ∗B) be groups. The direct product:

A×B := {(a, b) | a ∈ A, b ∈ B}

has a natural group structure where the group operation ∗ is defined as follows:

(a, b) ∗ (a′, b′) = (a ∗A a′, b ∗B b′), (a, b), (a′, b′) ∈ A×B.
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The identity element of A × B is e = (eA, eB), where eA, eB are the identity
elements of A and B, respectively.

For any (a, b) ∈ A×B, we have (a, b)−1 = (a−1, b−1), where a−1, b−1 are the
inverses of a, b in the groups A, B, respectively.

For any collection of groups A1, A2, . . . , An, we may similarly define a group
operation ∗ on:

A1 × A2 × · · · × An := {(a1, a2, . . . , an) | ai ∈ Ai, i = 1, 2, . . . n}.

That is:

(a1, a2, . . . , an) ∗ (a′1, a′2, . . . , a′n) = (a1 ∗A1 a
′
1, a2 ∗A2 a

′
2, . . . , an ∗An a

′
n)

The identity element of A1 × A2 × · · · × An is:

e = (eA1 , eA2 , . . . , eAn).

For any (a1, a2, . . . , an) ∈ A1 × A2 × · · · × An, its inverse is:

(a1, a2, . . . , an)
−1 = (a−11 , a−12 , . . . , a−1n ).

Exercise 5.5. Z6 is isomorphic to Z2 × Z3.

Proof of Exercise 5.5. Hint:
Show that Z2 × Z3 is a cyclic group generated by (1, 1).

Example 5.6. The cyclic group Z4 is not isomorphic to Z2 × Z2.

Proof of Example 5.6. Each element of G = Z2 × Z2 is of order at most 2. Since
|G| = 4, G cannot be generated by a single element. Hence, G is not cyclic, so it
cannot be isomorphic to the cyclic group Z4.

Exercise 5.7. Let G be an abelian group, then any group which is isomorphic to
G is abelian.

Example 5.8. The group D6 has 12 elements. We have seen that D6 = 〈r1, s〉,
where r1 is a rotation of order 6, and s is a reflection, which has order 2. So, it is
reasonable to ask if D6 is isomorphic to Z6 × Z2. The answer is no. For Z6 × Z2

is abelian, but D6 is not.

Claim 5.9. The dihedral group D3 is isomorphic to the symmetric group S3.

Proof of Claim 5.9. We have seen that D3 = 〈r, s〉, where r = r1 and s is any
fixed reflection, with:

ord r = 3, ord s = 2, srs = r−1.
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In particular , any element in D3 may be expressed as risj , with i ∈ {0, 1, 2},
j ∈ {0, 1}.

We have also seen that S3 = 〈a, b〉, where:

a = (123), b = (12), ord a = 3, ord b = 2, bab = a−1.

Hence, any element in S3 may be expressed as aibj , with i ∈ {0, 1, 2}, j ∈ {0, 1}.
Define map φ : D3 −→ S3 as follows:

φ(risj) = aibj, i, j ∈ Z

We first show that φ is well-defined: That is, whenever risj = ri
′
sj

′ , we want
to show that:

φ(risj) = φ(ri
′
sj

′
).

The condition risj = ri
′
sj

′ implies that:

ri−i
′
= sj

′−j

This holds only if ri−i′ = sj
′−j = e, since no rotation is a reflection.

Since ord r = 3 and ord s = 2, we have:

3|(i− i′), 2|(j′ − j),

by Theorem 2.2.
Hence,

φ(risj)φ(ri
′
sj

′
)−1 = (aibj)(ai

′
bj

′
)−1

= aibjb−j
′
a−i

′

= aibj−j
′
a−i

′

= ai−i
′

since ord b = 2.

= e since ord a = 3.

This implies that φ(risj) = φ(ri
′
sj

′
). We conclude that φ is well-defined.

We now show that φ is a group homomorphism:
Given µ, µ′ ∈ {0, 1, 2}, ν, ν ′ ∈ {0, 1}, we have:

φ(rµsν · rµ′sν′) =

{
φ(rµ+µ

′
sν

′
), if ν = 0;

φ(rµ−µ
′
sν+ν

′
), if ν = 1.

=

{
aµ+µ

′
bν

′
, if ν = 0;

aµ−µ
′
bν+ν

′
= aµbνaµ

′
bν

′
, if ν = 1.
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= φ(rµsν)φ(rµ
′
sν

′
).

This shows that φ is a group homomorphism.
To show that φ is a group isomorphism, it remains to show that it is surjective

and one-to-one.
It is clear that φ is surjective. We leave it as an exercise to show that φ is

one-to-one.

Example 5.10. The group:

G =

{
g ∈ GL(2,R)

∣∣∣∣ g = (cos θ − sin θ
sin θ cos θ

)
for some θ ∈ R

}
is isomorphic to

G′ = {z ∈ C : |z| = 1}.

Here, the group operation on G is matrix multiplication, and the group operation
on G′ is the multiplication of complex numbers.

Each element in G′ is equal to eiθ for some θ ∈ R. Define a map φ : G −→ G′

as follows:

φ

((
cos θ − sin θ
sin θ cos θ

))
= eiθ.

Exercise: Show that φ is a well-defined map. Then, show that it is a bijective
group homomorphism.

5.1.1 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK
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5.2 Rings

5.2.1 Basic Results in Elementary Number Theory
Theorem 5.11 (Division Theorem). Let a, b ∈ Z, a 6= 0, then there exist unique
q (called the quotient), and r (remainder) in Z, satisfying 0 ≤ r < |a|, such that
b = aq + r.

Proof of Division Theorem. We will prove the case a > 0, b ≥ 0. The other cases
are left as exercises.

Fix a > 0. First, we prove the existence of the quotient q and remainder r for
any b ≥ 0, using mathematical induction.

The base step corresponds to the case 0 ≤ b < a. In this case, if we let q = 0
and r = b, then indeed b = qa+ r, where 0 ≤ r = b < a. Hence, q and r exist.

The inductive step of the proof of the existence of q and r is as follows:
Suppose the existence of the quotient and remainder holds for all non-negative
b′ < b, we want to show that it must also hold for b.

First, we may assume that b ≥ a, since the case b < a has already been
proved. Let b′ = b− a. Then, 0 ≤ b′ < b, so by the inductive hypothesis we have
b′ = q′a+ r′ for some q′, r′ ∈ Z such that 0 ≤ r′ < a.

This implies that b = b′ + a = (q′ + 1)a+ r′.
So, if we let q = q′ + 1 and r = r′, then b = qa + r, where 0 ≤ r < a.

This establishes the existence of q, r for b. Hence, by mathematical induction, the
existence of q, r holds for all b ≥ 0.

Now we prove the uniqueness of q and r. Suppose b = qa + r = q′a + r′,
where q, q′, r, r′ ∈ Z, with 0 ≤ r, r′ < a.

Then, qa + r = q′a + r′ implies that r − r′ = (q′ − q)a. Since 0 ≤ r, r′ < a,
we have:

a > |r − r′| = |q′ − q| a.

Since q′ − q is an integer, the above inequality implies that q′ − q = 0, i.e.
q′ = q, which then also implies that r′ = r. We have therefore established the
uniqueness of q and r.

The proof of the theorem, for the case a > 0, b ≥ 0, is now complete.

Another Proof of the Theorem 5.11 (Division Theorem).

Proof of Division Theorem. We consider here the special case b ≥ 0. Consider
the set:

S = {s ∈ Z≥0 : s = b− aq for some q ∈ Z.}
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Since b = b− a · 0 ≥ 0, we have b ∈ S. So, S is a nonempty subset of Z bounded
below by 0. By the Least Integer Axiom, there exists a minimum element r ∈ S.
We claim that r < |a|:

Suppose not, that is, r ≥ |a|. By assumption: r = b− aq for some q ∈ Z.
Consider the element r′ = r − |a|. Then, 0 ≤ r′ and moreover:

r′ = (b− aq)− |a| = b− (q ± 1)a,

depending on whether a > 0 or a < 0. So, r′ ∈ S. On the other hand, by
construction we have r′ < r, which contradicts the minimality of r. We conclude
that r < |a|. This establishes the existence of the remainder r.

The existence of q in the theorem is now also clear. We leave the proof of the
uniqueness of r and q as an exercise.

Theorem 5.12. Every subgroup of Z is cyclic.

Proof of Theorem 3.7. First, we note that the group operation ∗ on Z is integer
addition, with eZ = 0, and z∗−1 = −z for any z ∈ Z.

Let H be a nontrivial (i.e. contains more than one element) subgroup of Z.
Since for any h ∈ H we also have −h ∈ H , H contains at least one positive
element.

Let d be the least positive integer in H . It exists because of the Least Integer
Axiom.

We claim that H = 〈d〉:
For any h ∈ H , by the Division Theorem for Integers we have h = dq + r for

some r, q ∈ Z, such that 0 ≤ r < d. Then,

r = h− dq = h− (d+ d+ . . .+ d︸ ︷︷ ︸
q times

)

if q ≥ 0, or
r = h− dq = h− ((−d) + (−d) + . . .+ (−d)︸ ︷︷ ︸

q times

)

if q < 0.
In either case, since H is a subgroup we have r ∈ H . If r > 0, then we

have a positive element in H which is strictly less than d, which contradicts the
minimality of d. Hence, r = 0, from which it follows that any h ∈ H is equal to
dq = d∗q for some q ∈ Z. This shows that H = 〈d〉.

Exercise 5.13. Let n be a positive integer. Every subgroup of Zn is cyclic.

Corollary 5.14. Every subgroup of a cyclic group is cyclic.
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