## Math 2070 Week 5

## Group Homomorphisms, Rings

Claim 5.1. Any cyclic group of finite order $n$ is isomorphic to $\mathbb{Z}_{n}$.

## Proof of Claim 5.1. Sketch of Proof:

By definition, a cyclic group $G$ is equal to $\langle g\rangle$ for some $g \in G$. Moreover, ord $g=\operatorname{ord} G$.

Define a map $\phi: \mathbb{Z}_{n} \longrightarrow G$ as follows:

$$
\phi(k)=g^{k}, \quad k \in\{0,1,2, \ldots, n-1\} .
$$

Show that $\phi$ is a group isomorphism.
(For reference, see the discussion of Example 4.15.)
Corollary 5.2. If $G$ and $G^{\prime}$ are two finite cyclic groups of the same order, then $G$ is isomorphic to $G^{\prime}$.

Exercise 5.3. An infinite cyclic group is isomorphic to $(\mathbb{Z},+)$.
Exercise 5.4. Let $G$ be a cyclic group, then any group which is isomorphic to $G$ is also cyclic.

### 5.1 Product Group

Let $\left(A, *_{A}\right),\left(B, *_{B}\right)$ be groups. The direct product:

$$
A \times B:=\{(a, b) \mid a \in A, b \in B\}
$$

has a natural group structure where the group operation $*$ is defined as follows:

$$
(a, b) *\left(a^{\prime}, b^{\prime}\right)=\left(a *_{A} a^{\prime}, b *_{B} b^{\prime}\right), \quad(a, b),\left(a^{\prime}, b^{\prime}\right) \in A \times B
$$

The identity element of $A \times B$ is $e=\left(e_{A}, e_{B}\right)$, where $e_{A}, e_{B}$ are the identity elements of $A$ and $B$, respectively.

For any $(a, b) \in A \times B$, we have $(a, b)^{-1}=\left(a^{-1}, b^{-1}\right)$, where $a^{-1}, b^{-1}$ are the inverses of $a, b$ in the groups $A, B$, respectively.

For any collection of groups $A_{1}, A_{2}, \ldots, A_{n}$, we may similarly define a group operation $*$ on:

$$
A_{1} \times A_{2} \times \cdots \times A_{n}:=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{i} \in A_{i}, i=1,2, \ldots n\right\} .
$$

That is:

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right) *\left(a_{1}^{\prime}, a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right)=\left(a_{1} *_{A_{1}} a_{1}^{\prime}, a_{2} *_{A_{2}} a_{2}^{\prime}, \ldots, a_{n} *_{A_{n}} a_{n}^{\prime}\right)
$$

The identity element of $A_{1} \times A_{2} \times \cdots \times A_{n}$ is:

$$
e=\left(e_{A_{1}}, e_{A_{2}}, \ldots, e_{A_{n}}\right)
$$

For any $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in A_{1} \times A_{2} \times \cdots \times A_{n}$, its inverse is:

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)^{-1}=\left(a_{1}^{-1}, a_{2}^{-1}, \ldots, a_{n}^{-1}\right) .
$$

Exercise 5.5. $\mathbb{Z}_{6}$ is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$.

## Proof of Exercise 5.5. Hint:

Show that $\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ is a cyclic group generated by $(1,1)$.
Example 5.6. The cyclic group $\mathbb{Z}_{4}$ is not isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
Proof of Example 5.6. Each element of $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is of order at most 2. Since $|G|=4, G$ cannot be generated by a single element. Hence, $G$ is not cyclic, so it cannot be isomorphic to the cyclic group $\mathbb{Z}_{4}$.

Exercise 5.7. Let $G$ be an abelian group, then any group which is isomorphic to $G$ is abelian.

Example 5.8. The group $D_{6}$ has 12 elements. We have seen that $D_{6}=\left\langle r_{1}, s\right\rangle$, where $r_{1}$ is a rotation of order 6 , and $s$ is a reflection, which has order 2 . So, it is reasonable to ask if $D_{6}$ is isomorphic to $\mathbb{Z}_{6} \times \mathbb{Z}_{2}$. The answer is no. For $\mathbb{Z}_{6} \times \mathbb{Z}_{2}$ is abelian, but $D_{6}$ is not.

Claim 5.9. The dihedral group $D_{3}$ is isomorphic to the symmetric group $S_{3}$.
Proof of Claim 5.9. We have seen that $D_{3}=\langle r, s\rangle$, where $r=r_{1}$ and $s$ is any fixed reflection, with:

$$
\operatorname{ord} r=3, \quad \text { ord } s=2, \quad \text { srs }=r^{-1}
$$

In particular, any element in $D_{3}$ may be expressed as $r^{i} s^{j}$, with $i \in\{0,1,2\}$, $j \in\{0,1\}$.

We have also seen that $S_{3}=\langle a, b\rangle$, where:

$$
a=(123), \quad b=(12), \quad \text { ord } a=3, \quad \text { ord } b=2, \quad b a b=a^{-1} .
$$

Hence, any element in $S_{3}$ may be expressed as $a^{i} b^{j}$, with $i \in\{0,1,2\}, j \in\{0,1\}$.
Define map $\phi: D_{3} \longrightarrow S_{3}$ as follows:

$$
\phi\left(r^{i} s^{j}\right)=a^{i} b^{j}, \quad i, j \in \mathbb{Z}
$$

We first show that $\phi$ is well-defined: That is, whenever $r^{i} s^{j}=r^{i^{\prime}} s^{j^{\prime}}$, we want to show that:

$$
\phi\left(r^{i} s^{j}\right)=\phi\left(r^{i^{\prime}} s^{j^{\prime}}\right) .
$$

The condition $r^{i} s^{j}=r^{i^{\prime}} s^{j^{\prime}}$ implies that:

$$
r^{i-i^{\prime}}=s^{j^{\prime}-j}
$$

This holds only if $r^{i-i^{\prime}}=s^{j^{\prime}-j}=e$, since no rotation is a reflection.
Since ord $r=3$ and ord $s=2$, we have:

$$
3\left|\left(i-i^{\prime}\right), \quad 2\right|\left(j^{\prime}-j\right),
$$

by Theorem 2.2.
Hence,

$$
\begin{array}{rlrl}
\phi\left(r^{i} s^{j}\right) \phi\left(r^{i^{\prime}} s^{j^{\prime}}\right)^{-1} & =\left(a^{i} b^{j}\right)\left(a^{i^{\prime}} b^{j^{\prime}}\right)^{-1} & & \\
& =a^{i} b^{j} b^{-j^{\prime}} a^{-i^{\prime}} & \\
& =a^{i} b^{j-j^{\prime}} a^{-i^{\prime}} & & \\
& =a^{i-i^{\prime}} & & \text { since ord } b=2 . \\
& =e & \text { since ord } a=3 .
\end{array}
$$

This implies that $\phi\left(r^{i} s^{j}\right)=\phi\left(r^{i^{\prime}} s^{j^{\prime}}\right)$. We conclude that $\phi$ is well-defined.
We now show that $\phi$ is a group homomorphism:
Given $\mu, \mu^{\prime} \in\{0,1,2\}, \nu, \nu^{\prime} \in\{0,1\}$, we have:

$$
\begin{gathered}
\phi\left(r^{\mu} s^{\nu} \cdot r^{\mu^{\prime}} s^{\nu^{\prime}}\right)= \begin{cases}\phi\left(r^{\mu+\mu^{\prime}} s^{\nu^{\prime}}\right), & \text { if } \nu=0 ; \\
\phi\left(r^{\mu-\mu^{\prime}} s^{\nu+\nu^{\prime}}\right), & \text { if } \nu=1 .\end{cases} \\
= \begin{cases}a^{\mu+\mu^{\prime}} b^{\nu^{\prime}}, & \text { if } \nu=0 ; \\
a^{\mu-\mu^{\prime}} b^{\nu+\nu^{\prime}}=a^{\mu} b^{\nu} a^{\mu^{\prime}} b^{\nu^{\prime}}, & \text { if } \nu=1 .\end{cases}
\end{gathered}
$$

$$
=\phi\left(r^{\mu} s^{\nu}\right) \phi\left(r^{\mu^{\prime}} s^{\nu^{\prime}}\right) .
$$

This shows that $\phi$ is a group homomorphism.
To show that $\phi$ is a group isomorphism, it remains to show that it is surjective and one-to-one.

It is clear that $\phi$ is surjective. We leave it as an exercise to show that $\phi$ is one-to-one.

Example 5.10. The group:

$$
G=\left\{g \in \mathrm{GL}(2, \mathbb{R}) \left\lvert\, g=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\right. \text { for some } \theta \in \mathbb{R}\right\}
$$

is isomorphic to

$$
G^{\prime}=\{z \in \mathbb{C}:|z|=1\} .
$$

Here, the group operation on $G$ is matrix multiplication, and the group operation on $G^{\prime}$ is the multiplication of complex numbers.

Each element in $G^{\prime}$ is equal to $e^{i \theta}$ for some $\theta \in \mathbb{R}$. Define a map $\phi: G \longrightarrow G^{\prime}$ as follows:

$$
\phi\left(\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\right)=e^{i \theta}
$$

Exercise: Show that $\phi$ is a well-defined map. Then, show that it is a bijective group homomorphism.

### 5.1.1 WeBWorK

1. WeBWorK
2. WeBWorK
3. WeBWorK
4. WeBWorK
5. WeBWorK
6. WeBWorK

### 5.2 Rings

### 5.2.1 Basic Results in Elementary Number Theory

Theorem 5.11 (Division Theorem). Let $a, b \in \mathbb{Z}, a \neq 0$, then there exist unique $q$ (called the quotient), and $r$ (remainder) in $\mathbb{Z}$, satisfying $0 \leq r<|a|$, such that $b=a q+r$.

Proof of Division Theorem. We will prove the case $a>0, b \geq 0$. The other cases are left as exercises.

Fix $a>0$. First, we prove the existence of the quotient $q$ and remainder $r$ for any $b \geq 0$, using mathematical induction.

The base step corresponds to the case $0 \leq b<a$. In this case, if we let $q=0$ and $r=b$, then indeed $b=q a+r$, where $0 \leq r=b<a$. Hence, $q$ and $r$ exist.

The inductive step of the proof of the existence of $q$ and $r$ is as follows: Suppose the existence of the quotient and remainder holds for all non-negative $b^{\prime}<b$, we want to show that it must also hold for $b$.

First, we may assume that $b \geq a$, since the case $b<a$ has already been proved. Let $b^{\prime}=b-a$. Then, $0 \leq b^{\prime}<b$, so by the inductive hypothesis we have $b^{\prime}=q^{\prime} a+r^{\prime}$ for some $q^{\prime}, r^{\prime} \in \mathbb{Z}$ such that $0 \leq r^{\prime}<a$.

This implies that $b=b^{\prime}+a=\left(q^{\prime}+1\right) a+r^{\prime}$.
So, if we let $q=q^{\prime}+1$ and $r=r^{\prime}$, then $b=q a+r$, where $0 \leq r<a$. This establishes the existence of $q, r$ for $b$. Hence, by mathematical induction, the existence of $q, r$ holds for all $b \geq 0$.

Now we prove the uniqueness of $q$ and $r$. Suppose $b=q a+r=q^{\prime} a+r^{\prime}$, where $q, q^{\prime}, r, r^{\prime} \in \mathbb{Z}$, with $0 \leq r, r^{\prime}<a$.

Then, $q a+r=q^{\prime} a+r^{\prime}$ implies that $r-r^{\prime}=\left(q^{\prime}-q\right) a$. Since $0 \leq r, r^{\prime}<a$, we have:

$$
a>\left|r-r^{\prime}\right|=\left|q^{\prime}-q\right| a .
$$

Since $q^{\prime}-q$ is an integer, the above inequality implies that $q^{\prime}-q=0$, i.e. $q^{\prime}=q$, which then also implies that $r^{\prime}=r$. We have therefore established the uniqueness of $q$ and $r$.

The proof of the theorem, for the case $a>0, b \geq 0$, is now complete.

## Another Proof of the Theorem 5.11 (Division Theorem),

Proof of Division Theorem. We consider here the special case $b \geq 0$. Consider the set:

$$
S=\left\{s \in \mathbb{Z}_{\geq 0}: s=b-a q \text { for some } q \in \mathbb{Z} .\right\}
$$

Since $b=b-a \cdot 0 \geq 0$, we have $b \in S$. So, $S$ is a nonempty subset of $\mathbb{Z}$ bounded below by 0 . By the Least Integer Axiom, there exists a minimum element $r \in S$. We claim that $r<|a|$ :

Suppose not, that is, $r \geq|a|$. By assumption: $r=b-a q$ for some $q \in \mathbb{Z}$.
Consider the element $r^{\prime}=r-|a|$. Then, $0 \leq r^{\prime}$ and moreover:

$$
r^{\prime}=(b-a q)-|a|=b-(q \pm 1) a,
$$

depending on whether $a>0$ or $a<0$. So, $r^{\prime} \in S$. On the other hand, by construction we have $r^{\prime}<r$, which contradicts the minimality of $r$. We conclude that $r<|a|$. This establishes the existence of the remainder $r$.

The existence of $q$ in the theorem is now also clear. We leave the proof of the uniqueness of $r$ and $q$ as an exercise.

Theorem 5.12. Every subgroup of $\mathbb{Z}$ is cyclic.
Proof of Theorem 3.7. First, we note that the group operation $*$ on $\mathbb{Z}$ is integer addition, with $e_{\mathbb{Z}}=0$, and $z^{*-1}=-z$ for any $z \in \mathbb{Z}$.

Let $H$ be a nontrivial (i.e. contains more than one element) subgroup of $\mathbb{Z}$. Since for any $h \in H$ we also have $-h \in H, H$ contains at least one positive element.

Let $d$ be the least positive integer in $H$. It exists because of the Least Integer Axiom.

We claim that $H=\langle d\rangle$ :
For any $h \in H$, by the Division Theorem for Integers we have $h=d q+r$ for some $r, q \in \mathbb{Z}$, such that $0 \leq r<d$. Then,

$$
r=h-d q=h-(\underbrace{d+d+\ldots+d}_{q \text { times }})
$$

if $q \geq 0$, or

$$
r=h-d q=h-(\underbrace{(-d)+(-d)+\ldots+(-d)}_{q \text { times }})
$$

if $q<0$.
In either case, since $H$ is a subgroup we have $r \in H$. If $r>0$, then we have a positive element in $H$ which is strictly less than $d$, which contradicts the minimality of $d$. Hence, $r=0$, from which it follows that any $h \in H$ is equal to $d q=d^{*} q$ for some $q \in \mathbb{Z}$. This shows that $H=\langle d\rangle$.

Exercise 5.13. Let $n$ be a positive integer. Every subgroup of $\mathbb{Z}_{n}$ is cyclic.
Corollary 5.14. Every subgroup of a cyclic group is cyclic.

