Math 2070 Week 3

\mathbb{Z}_{n}, Subgroups, Left Cosets, Index

3.1 The Cyclic Group \mathbb{Z}_{n}

Definition 3.1. Fix an integer $n>0$.
For any $k \in \mathbb{Z}$, let \bar{k} denote the remainder of the division of k by n.
Let $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}$. We define a binary operation $+_{\mathbb{Z}_{n}}$ on \mathbb{Z}_{n} as follows:

$$
k+_{\mathbb{Z}_{n}} l=\overline{k+l} .
$$

Exercise 3.2. $\mathbb{Z}_{n}=\left(\mathbb{Z}_{n},+_{\mathbb{Z}_{n}}\right)$ is a cyclic group, with identity element 0 , and $j^{-1}=n-j$ for any nonzero $j \in \mathbb{Z}_{n}$.

3.1.1 WeBWorK

1. WeBWork
2. WeBWorK
3. WeBWorK
4. WeBWorK
5. WeBWorK
6. WeBWorK
7. WeBWorK
8. WeBWorK
9. WeBWorK

10. WeBWorK

11. WeBWorK

12. WeBWorK

3.2 Subgroups

Definition 3.3. Let G be a group. A subset H of G is a subgroup of G if it satisfies the following properties:

- Closure If $a, b \in H$, then $a b \in H$.
- Identity The identity element of G lies in H.
- Inverses If $a \in H$, then $a^{-1} \in H$.

In particular, a subgroup H is a group with respect to the group operation on G, and the identity element of H is the identity element of G.

Example 3.4. - For any $n \in \mathbb{Z}, n \mathbb{Z}$ is a subgroup of $(\mathbb{Z},+)$.

- $\mathbb{Q} \backslash\{0\}$ is a subgroup of $(\mathbb{R} \backslash\{0\}, \cdot)$.
- $\operatorname{SL}(2, \mathbb{R})$ is a subgroup of $\mathrm{GL}(2, \mathbb{R})$.
- The set of all rotations (including the trivial rotation) in a dihedral group D_{n} is a subgroup of D_{n}.
- Let $n \in \mathbb{N}, n \geq 2$. We say that $\sigma \in S_{n}$ is an even permutation if it is equal to the product of an even number of transpositions. The subset A_{n} of S_{n} consisting of even permutations is a subgroup of $S_{n} . A_{n}$ is called an alternating group.

Claim 3.5. A subset H of a group G is a subgroup of G if and only if H is nonempty and, for all $x, y \in H$, we have $x y^{-1} \in H$.

Proof of Claim 3.5. Suppose $H \subseteq G$ is a subgroup. Then, H is nonempty since $e_{G} \in H$. For all $x, y \in H$, we have $y^{-1} \in H$; hence, $x y^{-1} \in H$.

Conversely, suppose H is a nonempty subset of G, and $x y^{-1} \in H$ for all $x, y \in H$.

- Identity Let e be the identity element of G. Since H is nonempty, it contains at least one element h. Since $e=h \cdot h^{-1}$, and by hypothesis $h \cdot h^{-1} \in H$, the set H contains e.
- Inverses Since $e \in H$, for all $a \in H$ we have $a^{-1}=e \cdot a^{-1} \in H$.
- Closure For all $a, b \in H$, we know that $b^{-1} \in H$. Hence, $a b=a \cdot\left(b^{-1}\right)^{-1} \in$ H.

Hence, H is a subgroup of G.
Claim 3.6. The intersection of two subgroups of a group G is a subgroup of G.
Proof of Claim 3.6. Exercise.
Theorem 3.7. Every subgroup of $(\mathbb{Z},+)$ is cyclic.
Proof of Theorem 3.7. Let H be a subgroup of $G=(\mathbb{Z},+)$. If $H=\{0\}$, then it is clearly cyclic.

Suppose $|H|>1$. Consider the subset:

$$
S=\{h \in H: h>0\} \subseteq H
$$

Since a subgroup is closed under inverse, and the inverse of any $z \in \mathbb{Z}$ with respect to + is $-z$, the subgroup H must contain at least one positive element. Hence, S is a non-empty subset of \mathbb{Z} bounded from below.

It then follows from the Least Integer Axiom that exists a minimum element h_{0} in S. That is $h_{0} \leq h$ for any $h \in S$.

Exercise. Show that $H=\left\langle h_{0}\right\rangle$.
(Hint : The Division Theorem for Integers could be useful here.)
Exercise 3.8. Every subgroup of a cyclic group is cyclic.

3.3 Lagrange's Theorem

Let G be a group, H a subgroup of G. We are interested in knowing how large H is relative to G.

We define a relation \equiv on G as follows:

$$
a \equiv b \text { if } b=a h \text { for some } h \in H,
$$

or equivalently:

$$
a \equiv b \text { if } a^{-1} b \in H .
$$

Exercise: \equiv is an equivalence relation

We may therefore partition G into disjoint equivalence classes with respect to \equiv. We call these equivalence classes the left cosets of H.

Each left coset of H has the form $a H=\{a h \mid h \in H\}$.
We could likewise define right cosets. These sets are of the form $H b, b \in G$. In general, the number of left cosets and right cosets, if finite, are equal to each other

Example 3.9. Let $G=(\mathbb{Z},+)$. Let:

$$
H=3 \mathbb{Z}=\{\ldots,-9,-6,-3,0,3,6,9, \ldots\}
$$

The set H is a subgroup of G. The left cosets of H in G are as follows:

$$
3 \mathbb{Z}, 1+3 \mathbb{Z}, 2+3 \mathbb{Z}
$$

where $i+3 \mathbb{Z}:=\{i+3 k: k \in \mathbb{Z}\}$.
In general, for $n \in \mathbb{Z}$, the left cosets of $n \mathbb{Z}$ in \mathbb{Z} are:

$$
i+n \mathbb{Z}, \quad i=0,1,2, \ldots, n-1
$$

Definition 3.10. The number of left cosets of a subgroup H of G is called the index of H in G. It is denoted by:

$$
[G: H]
$$

Example 3.11. Let $n \in \mathbb{N}, G=(\mathbb{Z},+), H=(n \mathbb{Z},+)$. Then,

$$
[G: H]=n .
$$

Example 3.12. Let $G=\mathrm{GL}(2, \mathbb{R})$. Let:

$$
H=\mathrm{GL}^{+}(2, \mathbb{R}):=\{h \in G: \operatorname{det} h>0\} .
$$

(Exercise: H is a subgroup of G.)
Let:

$$
s=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \in G
$$

Note that $\operatorname{det} s=\operatorname{det} s^{-1}=-1$.
For any $g \in G$, either $\operatorname{det} g>0$ or $\operatorname{det} g<0$. If $\operatorname{det} g>0$, then $g \in H$. If $\operatorname{det} g<0$, we write:

$$
g=\left(s s^{-1}\right) g=s\left(s^{-1} g\right)
$$

Since $\operatorname{det} s^{-1} g=\left(\operatorname{det} s^{-1}\right)(\operatorname{det} g)>0$, we have $s^{-1} g \in H$. So, $G=H \sqcup s H$, and $[G: H]=2$. Notice that both G and H are infinite groups, but the index of H in G is finite.

Example 3.13. Let $G=\mathrm{GL}(2, \mathbb{R}), H=\mathrm{SL}(2, \mathbb{R})$. For each $x \in \mathbb{R}^{\times}$, let:

$$
s_{x}=\left(\begin{array}{ll}
x & 0 \\
0 & 1
\end{array}\right) \in G
$$

Note that det $s_{x}=x$.

For each $g \in G$, we have:

$$
g=s_{\operatorname{det} g}\left(s_{\operatorname{det} g}^{-1} g\right) \in s_{\operatorname{det} g} H
$$

Moreover, for distinct $x, y \in \mathbb{R}^{\times}$, we have:

$$
\operatorname{det}\left(s_{x}^{-1} s_{y}\right)=y / x \neq 1
$$

This implies that $s_{x}^{-1} s_{y} \notin H$, hence $s_{y} H$ and $s_{x} H$ are disjoint cosets. We have therefore:

$$
G=\bigsqcup_{x \in \mathbb{R}^{\times}} s_{x} H .
$$

The index $[G: H]$ in this case is infinite.

