Math 2070 Week 3

 \mathbb{Z}_n , Subgroups, Left Cosets, Index

3.1 The Cyclic Group \mathbb{Z}_n

Definition 3.1. Fix an integer n > 0.

For any $k \in \mathbb{Z}$, let \overline{k} denote the remainder of the division of k by n.

Let $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$. We define a binary operation $+_{\mathbb{Z}_n}$ on \mathbb{Z}_n as follows:

$$k +_{\mathbb{Z}_n} l = \overline{k + l}$$
.

Exercise 3.2. $\mathbb{Z}_n = (\mathbb{Z}_n, +_{\mathbb{Z}_n})$ is a **cyclic** group, with identity element 0, and $j^{-1} = n - j$ for any nonzero $j \in \mathbb{Z}_n$.

3.1.1 WeBWorK

- 1. WeBWorK
- 2. WeBWorK
- 3. WeBWorK
- 4. WeBWorK
- 5. WeBWorK
- 6. WeBWorK
- 7. WeBWorK
- 8. WeBWorK
- 9. WeBWorK

- 10. WeBWorK
- 11. WeBWorK
- 12. WeBWorK

3.2 Subgroups

Definition 3.3. Let G be a group. A subset H of G is a **subgroup** of G if it satisfies the following properties:

- Closure If $a, b \in H$, then $ab \in H$.
- **Identity** The identity element of G lies in H.
- Inverses If $a \in H$, then $a^{-1} \in H$.

In particular, a subgroup H is a group with respect to the group operation on G, and the identity element of H is the identity element of G.

Example 3.4. • For any $n \in \mathbb{Z}$, $n\mathbb{Z}$ is a subgroup of $(\mathbb{Z}, +)$.

- $\mathbb{Q}\setminus\{0\}$ is a subgroup of $(\mathbb{R}\setminus\{0\},\cdot)$.
- $SL(2,\mathbb{R})$ is a subgroup of $GL(2,\mathbb{R})$.
- The set of all rotations (including the trivial rotation) in a dihedral group D_n is a subgroup of D_n .
- Let $n \in \mathbb{N}$, $n \geq 2$. We say that $\sigma \in S_n$ is an **even permutation** if it is equal to the product of an even number of transpositions. The subset A_n of S_n consisting of even permutations is a subgroup of S_n . A_n is called an **alternating group**.

Claim 3.5. A subset H of a group G is a subgroup of G if and only if H is nonempty and, for all $x, y \in H$, we have $xy^{-1} \in H$.

Proof of Claim 3.5. Suppose $H \subseteq G$ is a subgroup. Then, H is nonempty since $e_G \in H$. For all $x, y \in H$, we have $y^{-1} \in H$; hence, $xy^{-1} \in H$.

Conversely, suppose H is a nonempty subset of G, and $xy^{-1} \in H$ for all $x,y \in H$.

• **Identity** Let e be the identity element of G. Since H is nonempty, it contains at least one element h. Since $e = h \cdot h^{-1}$, and by hypothesis $h \cdot h^{-1} \in H$, the set H contains e.

- Inverses Since $e \in H$, for all $a \in H$ we have $a^{-1} = e \cdot a^{-1} \in H$.
- Closure For all $a, b \in H$, we know that $b^{-1} \in H$. Hence, $ab = a \cdot (b^{-1})^{-1} \in H$.

Hence, H is a subgroup of G.

Claim 3.6. The intersection of two subgroups of a group G is a subgroup of G.

Proof of Claim 3.6. Exercise.

Theorem 3.7. Every subgroup of $(\mathbb{Z}, +)$ is cyclic.

Proof of Theorem 3.7. Let H be a subgroup of $G = (\mathbb{Z}, +)$. If $H = \{0\}$, then it is clearly cyclic.

Suppose |H| > 1. Consider the subset:

$$S = \{h \in H : h > 0\} \subseteq H$$

Since a subgroup is closed under inverse, and the inverse of any $z \in \mathbb{Z}$ with respect to + is -z, the subgroup H must contain at least one positive element. Hence, S is a non-empty subset of \mathbb{Z} bounded from below.

It then follows from the Least Integer Axiom that exists a minimum element h_0 in S. That is $h_0 \le h$ for any $h \in S$.

Exercise. Show that $H = \langle h_0 \rangle$.

(*Hint*: The Division Theorem for Integers could be useful here.)

Exercise 3.8. Every subgroup of a cyclic group is cyclic.

3.3 Lagrange's Theorem

Let G be a group, H a subgroup of G. We are interested in knowing how large H is relative to G.

We define a relation \equiv on G as follows:

$$a \equiv b$$
 if $b = ah$ for some $h \in H$,

or equivalently:

$$a \equiv b \text{ if } a^{-1}b \in H.$$

Exercise: \equiv is an equivalence relation.

We may therefore partition G into disjoint equivalence classes with respect to \equiv . We call these equivalence classes the **left cosets** of H.

Each left coset of H has the form $aH = \{ah \mid h \in H\}$.

We could likewise define right cosets. These sets are of the form Hb, $b \in G$. In general, the number of left cosets and right cosets, if finite, are equal to each other

Example 3.9. Let $G = (\mathbb{Z}, +)$. Let:

$$H = 3\mathbb{Z} = \{\dots, -9, -6, -3, 0, 3, 6, 9, \dots\}$$

The set H is a subgroup of G. The left cosets of H in G are as follows:

$$3\mathbb{Z}, 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z},$$

where $i + 3\mathbb{Z} := \{i + 3k : k \in \mathbb{Z}\}.$

In general, for $n \in \mathbb{Z}$, the left cosets of $n\mathbb{Z}$ in \mathbb{Z} are:

$$i + n\mathbb{Z}, \quad i = 0, 1, 2, \dots, n - 1.$$

Definition 3.10. The number of left cosets of a subgroup H of G is called the **index** of H in G. It is denoted by:

Example 3.11. Let $n \in \mathbb{N}$, $G = (\mathbb{Z}, +)$, $H = (n\mathbb{Z}, +)$. Then,

$$[G:H]=n.$$

Example 3.12. Let $G = GL(2, \mathbb{R})$. Let:

$$H = \mathrm{GL}^+(2, \mathbb{R}) := \{ h \in G : \det h > 0 \}.$$

(Exercise: H is a subgroup of G.)

Let:

$$s = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \in G$$

Note that $\det s = \det s^{-1} = -1$.

For any $g \in G$, either $\det g > 0$ or $\det g < 0$. If $\det g > 0$, then $g \in H$. If $\det g < 0$, we write:

$$g = (ss^{-1})g = s(s^{-1}g).$$

Since $\det s^{-1}g = (\det s^{-1})(\det g) > 0$, we have $s^{-1}g \in H$. So, $G = H \sqcup sH$, and [G:H] = 2. Notice that both G and H are infinite groups, but the index of H in G is finite.

Example 3.13. Let $G = GL(2, \mathbb{R})$, $H = SL(2, \mathbb{R})$. For each $x \in \mathbb{R}^{\times}$, let:

$$s_x = \begin{pmatrix} x & 0 \\ 0 & 1 \end{pmatrix} \in G$$

Note that $\det s_x = x$.

For each $g \in G$, we have:

$$g = s_{\det g}(s_{\det g}^{-1}g) \in s_{\det g}H$$

Moreover, for distinct $x, y \in \mathbb{R}^{\times}$, we have:

$$\det(s_x^{-1}s_y) = y/x \neq 1.$$

This implies that $s_x^{-1}s_y\notin H$, hence s_yH and s_xH are disjoint cosets. We have therefore:

$$G = \bigsqcup_{x \in \mathbb{R}^{\times}} s_x H.$$

The index $\left[G:H\right]$ in this case is infinite.