
Math 2070 Week 2

Groups

Definition 2.1. Let G be a group, with identity element e.
The order of G is the number of elements in G.
The order ord g of an element g ∈ G is the smallest n ∈ N such that gn = e.

If no such n exists, we say that g has infinite order.

Theorem 2.2. Let G be a group with identity element e. Let g be an element of
G. If gn = e for some n ∈ N, then ord g is finite, and moreover ord g divides n.

Proof of Theorem 2.2. Shown in class.

Exercise 2.3. If G has finite order, then every element of G has finite order.

Definition 2.4. A group G is cyclic if there exists g ∈ G such that every element
of G is equal to gn for some integer n. In which case, we write: G = 〈g〉, and say
that g is a generator of G.

Note: The generator of of a cyclic group might not be unique.

Example 2.5. (Um, ·) is cyclic.

Exercise 2.6. A finite cyclic group G has order (i.e. size) n if and only if each of
its generators has order n.

Exercise 2.7. (Q,+) is not cyclic.
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2.1 Permutations
Definition 2.8. Let X be a set. A permutation of X is a bijective map σ : X −→
X .

Claim 2.9. The set SX of permutations of a set X is a group with respect to ◦, the
composition of maps.

Proof of Claim 2.9. • Let σ, γ be permutations of X . By definition, they are
bijective maps from X to itself. It is clear that σ ◦ γ is a bijective map from
X to itself, hence σ ◦ γ is a permutation of X . So ◦ is a well-defined binary
operation on SX .

• For α, β, γ ∈ SX , it is clear that α ◦ (β ◦ γ) = (α ◦ β) ◦ γ.

• Define a map e : X −→ X as follows:

e(x) = x, for all x ∈ X.

It is clear that e ∈ SX , and that e ◦ σ = σ ◦ e = σ for all σ ∈ SX . Hence, e
is an identity element in SX .

• Let σ be any element of SX . Since σ : X −→ X is by assumption bijective,
there exists a bijective map σ−1 : X −→ X such that σ◦σ−1 = σ−1◦σ = e.
So σ−1 is an inverse of σ with respect to the operation ◦.

Terminology: We call SX the Symmetric Group on X .
Notation: If X = {1, 2, . . . , n}, where n ∈ N, we denote SX by Sn.
For n ∈ N, the group Sn has n! elements.
For n ∈ N, by definition an element of Sn is a bijective map σ : X −→ X ,

where X = {1, 2, . . . , n}. We often describe σ using the following notation:

σ =

(
1 2 · · · n

σ(1) σ(2) . . . σ(n)

)
Example 2.10. In S3,

σ =

(
1 2 3
3 2 1

)
is the permutation on {1, 2, 3} which sends 1 to 3, 2 to itself, and 3 to 1, i.e.
σ(1) = 3, σ(2) = 2, σ(3) = 1.

For α, β ∈ S3 given by:

α =

(
1 2 3
2 3 1

)
, β =

(
1 2 3
2 1 3

)
,
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we have:

αβ = α ◦ β =

(
1 2 3
2 3 1

)
◦
(
1 2 3
2 1 3

)
=

(
1 2 3
3 2 1

)
(since, for example, α ◦ β : 1

β7−→ 2
α7−→ 3.).

We also have:

βα = β ◦ α =

(
1 2 3
2 1 3

)
◦
(
1 2 3
2 3 1

)
=

(
1 2 3
1 3 2

)
Since αβ 6= βα, the group S3 is non-abelian.

In general, for n > 2, the group Sn is non-abelian ( Exercise: Why?).
For the same α ∈ S3 defined above, we have:

α2 = α ◦ α =

(
1 2 3
2 3 1

)
◦
(
1 2 3
2 3 1

)
=

(
1 2 3
3 1 2

)
and:

α3 = α · α2 =

(
1 2 3
2 3 1

)
◦
(
1 2 3
3 1 2

)
=

(
1 2 3
1 2 3

)
= e

Hence, the order of α is 3.

2.2 Dihedral Group
Consider the subset T of transformations of R2, consisting of all rotations by fixed
angles about the origin, and all reflections over lines through the origin.

Consider a regular polygon P with n sides in R2, centered at the origin. Iden-
tify the polygon with its n vertices, which form a subset P = {x1, x2, . . . , xn} of
R2. If τ(P ) = P for some τ ∈ T , we say that P is symmetric with respect to τ .

Intuitively, it is clear that P is symmetric with respect to n rotations {r0, r1, . . . , rn−1},
and n reflections {s1, s2, . . . , sn} in T .

IMAGE (Public Domain, Link)

Theorem 2.11. The set Dn := {r0, r1, . . . , rn−1, s1, s2, . . . , sn} is a group, with
respect to the group operation defined by τ ∗ γ = τ ◦ γ (composition of transfor-
mations).

Terminology: Dn is called a dihedral group .
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2.3 More on Sn
Consider the following element in S6:

σ =

(
1 2 3 4 5 6
5 4 3 6 1 2

)
We may describe the action of σ : {1, 2, . . . , 6} −→ {1, 2, . . . , 6} using the nota-
tion:

σ = (15)(246),

where (n1n2 · · ·nk) represents the permutation:

n1 7→ n2 . . . ni 7→ ni+1 · · · 7→ nk 7→ n1

Viewing permutations as bijective maps, the "multiplication" (15)(246) is by def-
inition the composition (15) ◦ (246).

We call (n1n2 · · ·nk) a k-cycle . Note that 3 is missing from (15)(246). This
corresponds to the fact that 3 is fixed by σ.

Exercise 2.12. In Sn, for any positive integer k ≤ n, every k-cycle has order k.

Claim 2.13. Every non-identity permutation in Sn is either a cycle or a product
of disjoint cycles.

Proof of Claim 2.13. Discussed in class.

Exercise 2.14. Disjoint cycles commute with each other.

A 2-cycle is often called a transposition, for it switches two elements with
each other.

Claim 2.15. Each element of Sn is a product of (not necessarily disjoint) trans-
positions.

Sketch of proof:
Show that each permutation not equal to the identity is a product of cycles,

and that each cycle is a product of transpositions:

(a1a2 . . . ak) = (a1ak)(a1ak−1) · · · (a1a3)(a1a2)
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Example 2.16. (
1 2 3 4 5 6
5 4 3 6 1 2

)
= (15)(246)

= (15)(26)(24)

= (15)(46)(26)

Note that a given element σ of Sn may be expressed as a product of transposi-
tions in different ways, but:

Claim 2.17. In every factorization of σ as a product of transpositions, the number
of factors is either always even or always odd.

Proof of Claim 2.17. Exercise. One approach: Show that there is a unique n× n
matrix, with either 0 or 1 as its coefficients, which sends each standard basis
vector ~ei in Rn to ~eσ(i). Then, use the fact that the determinant of the matrix cor-
responding to a transposition is −1, and that the determinant function of matrices
is multiplicative.

2.4 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK
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