Math 2070 Week 2

Groups

Definition 2.1. Let G be a group, with identity element e.
The order of G is the number of elements in G.
The order ord g of an element $g \in G$ is the smallest $n \in \mathbb{N}$ such that $g^{n}=e$. If no such n exists, we say that g has infinite order.

Theorem 2.2. Let G be a group with identity element e. Let g be an element of G. If $g^{n}=e$ for some $n \in \mathbb{N}$, then ord g is finite, and moreover ord g divides n.

Proof of Theorem 2.2. Shown in class.

Exercise 2.3. If G has finite order, then every element of G has finite order.
Definition 2.4. A group G is cyclic if there exists $g \in G$ such that every element of G is equal to g^{n} for some integer n. In which case, we write: $G=\langle g\rangle$, and say that g is a generator of G.

Note: The generator of of a cyclic group might not be unique.
Example 2.5. $\left(U_{m}, \cdot\right)$ is cyclic.
Exercise 2.6. A finite cyclic group G has order (i.e. size) n if and only if each of its generators has order n.

Exercise 2.7. $(\mathbb{Q},+)$ is not cyclic.

2.1 Permutations

Definition 2.8. Let X be a set. A permutation of X is a bijective map $\sigma: X \longrightarrow$ X.

Claim 2.9. The set S_{X} of permutations of a set X is a group with respect to \circ, the composition of maps.

Proof of Claim 2.9. - Let σ, γ be permutations of X. By definition, they are bijective maps from X to itself. It is clear that $\sigma \circ \gamma$ is a bijective map from X to itself, hence $\sigma \circ \gamma$ is a permutation of X. So \circ is a well-defined binary operation on S_{X}.

- For $\alpha, \beta, \gamma \in S_{X}$, it is clear that $\alpha \circ(\beta \circ \gamma)=(\alpha \circ \beta) \circ \gamma$.
- Define a map $e: X \longrightarrow X$ as follows:

$$
e(x)=x, \quad \text { for all } x \in X
$$

It is clear that $e \in S_{X}$, and that $e \circ \sigma=\sigma \circ e=\sigma$ for all $\sigma \in S_{X}$. Hence, e is an identity element in S_{X}.

- Let σ be any element of S_{X}. Since $\sigma: X \longrightarrow X$ is by assumption bijective, there exists a bijective map $\sigma^{-1}: X \longrightarrow X$ such that $\sigma \circ \sigma^{-1}=\sigma^{-1} \circ \sigma=e$. So σ^{-1} is an inverse of σ with respect to the operation \circ.

Terminology: We call S_{X} the Symmetric Group on X.

Notation: If $X=\{1,2, \ldots, n\}$, where $n \in \mathbb{N}$, we denote S_{X} by S_{n}.
For $n \in \mathbb{N}$, the group S_{n} has n ! elements.
For $n \in \mathbb{N}$, by definition an element of S_{n} is a bijective map $\sigma: X \longrightarrow X$, where $X=\{1,2, \ldots, n\}$. We often describe σ using the following notation:

$$
\sigma=\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
\sigma(1) & \sigma(2) & \ldots & \sigma(n)
\end{array}\right)
$$

Example 2.10. In S_{3},

$$
\sigma=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)
$$

is the permutation on $\{1,2,3\}$ which sends 1 to 3,2 to itself, and 3 to 1, i.e. $\sigma(1)=3, \sigma(2)=2, \sigma(3)=1$.

For $\alpha, \beta \in S_{3}$ given by:

$$
\alpha=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), \quad \beta=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right),
$$

we have:

$$
\alpha \beta=\alpha \circ \beta=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \circ\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)
$$

(since, for example, $\alpha \circ \beta: 1 \stackrel{\beta}{\mapsto} 2 \stackrel{\alpha}{\mapsto} 3$.).
We also have:

$$
\beta \alpha=\beta \circ \alpha=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) \circ\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)
$$

Since $\alpha \beta \neq \beta \alpha$, the group S_{3} is non-abelian.
In general, for $n>2$, the group S_{n} is non-abelian (Exercise: Why?).
For the same $\alpha \in S_{3}$ defined above, we have:

$$
\alpha^{2}=\alpha \circ \alpha=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \circ\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)
$$

and:

$$
\alpha^{3}=\alpha \cdot \alpha^{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right) \circ\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right)=e
$$

Hence, the order of α is 3 .

2.2 Dihedral Group

Consider the subset \mathcal{T} of transformations of \mathbb{R}^{2}, consisting of all rotations by fixed angles about the origin, and all reflections over lines through the origin.

Consider a regular polygon P with n sides in \mathbb{R}^{2}, centered at the origin. Identify the polygon with its n vertices, which form a subset $P=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of \mathbb{R}^{2}. If $\tau(P)=P$ for some $\tau \in \mathcal{T}$, we say that P is symmetric with respect to τ.

Intuitively, it is clear that P is symmetric with respect to n rotations $\left\{r_{0}, r_{1}, \ldots, r_{n-1}\right\}$, and n reflections $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ in \mathcal{T}.

IMAGE (Public Domain, Link)

Theorem 2.11. The set $D_{n}:=\left\{r_{0}, r_{1}, \ldots, r_{n-1}, s_{1}, s_{2}, \ldots, s_{n}\right\}$ is a group, with respect to the group operation defined by $\tau * \gamma=\tau \circ \gamma$ (composition of transformations).

Terminology: D_{n} is called a dihedral group .

2.3 More on S_{n}

Consider the following element in S_{6} :

$$
\sigma=\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 3 & 6 & 1 & 2
\end{array}\right)
$$

We may describe the action of $\sigma:\{1,2, \ldots, 6\} \longrightarrow\{1,2, \ldots, 6\}$ using the notation:

$$
\sigma=(15)(246),
$$

where $\left(n_{1} n_{2} \cdots n_{k}\right)$ represents the permutation:

$$
n_{1} \mapsto n_{2} \ldots n_{i} \mapsto n_{i+1} \cdots \mapsto n_{k} \mapsto n_{1}
$$

Viewing permutations as bijective maps, the "multiplication" (15)(246) is by definition the composition (15) $\circ(246)$.

We call $\left(n_{1} n_{2} \cdots n_{k}\right)$ a k-cycle . Note that 3 is missing from (15)(246). This corresponds to the fact that 3 is fixed by σ.

Exercise 2.12. In S_{n}, for any positive integer $k \leq n$, every k-cycle has order k.
Claim 2.13. Every non-identity permutation in S_{n} is either a cycle or a product of disjoint cycles.

Proof of Claim 2.13. Discussed in class.

Exercise 2.14. Disjoint cycles commute with each other.
A 2-cycle is often called a transposition, for it switches two elements with each other.

Claim 2.15. Each element of S_{n} is a product of (not necessarily disjoint) transpositions.

Sketch of proof:
Show that each permutation not equal to the identity is a product of cycles, and that each cycle is a product of transpositions:

$$
\left(a_{1} a_{2} \ldots a_{k}\right)=\left(a_{1} a_{k}\right)\left(a_{1} a_{k-1}\right) \cdots\left(a_{1} a_{3}\right)\left(a_{1} a_{2}\right)
$$

Example 2.16.

$$
\begin{aligned}
\left(\begin{array}{llllll}
1 & 2 & 3 & 4 & 5 & 6 \\
5 & 4 & 3 & 6 & 1 & 2
\end{array}\right) & =(15)(246) \\
& =(15)(26)(24) \\
& =(15)(46)(26)
\end{aligned}
$$

Note that a given element σ of S_{n} may be expressed as a product of transpositions in different ways, but:

Claim 2.17. In every factorization of σ as a product of transpositions, the number of factors is either always even or always odd.

Proof of Claim 2.17. Exercise. One approach: Show that there is a unique $n \times n$ matrix, with either 0 or 1 as its coefficients, which sends each standard basis vector \vec{e}_{i} in \mathbb{R}^{n} to $\vec{e}_{\sigma(i)}$. Then, use the fact that the determinant of the matrix corresponding to a transposition is -1 , and that the determinant function of matrices is multiplicative.

2.4 WeBWorK

1. WeBWorK
2. WeBWorK
3. WeBWorK
4. WeBWorK
5. WeBWorK
6. WeBWork
