
Math 2070 Week 13

Field Extensions, Finite Fields

13.1 Field Extensions
Definition 13.1. Let R be a ring. A subset S of R is said to be a subring of R if
it is a ring under the addition +R and multiplication×R associated with R, and its
additive and multiplicative identity elements 0, 1 are those of R.

Remark. To show that a subset S of a ring R is a subring, it suffices to show that:

• S contains the additive and multiplicative identity elements of R.

• S is "closed under addition": a+R b ∈ S for all a, b ∈ S.

• S is "closed under multiplication": a×R b ∈ S for all a, b ∈ S.

• S is closed under additive inverse: For all a ∈ S, the additive inverse −a of
a in R belongs to S.

Definition 13.2. A subfield k of a field K is a subring of K which is a field.

In particular, for each nonzero element r ∈ k ⊆ K. The multiplicative inverse
of r in K lies k.

Definition 13.3. Let K be a field and k a subfield. Let α be an element of K. We
define k(α) to be the smallest subfield of K containing k and α. In other words,
if F is a subfield of K which contains k and α, then F ⊇ k(α). We say that k(α)
is obtained from k by adjoining α.

Theorem 13.4. Let k be a subfield of a field K. Let α be an element of K.
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1. If α is a root of a nonzero polynomial f ∈ k[x] (viewed as a polynomial in
K[x] with coefficients in k), then α is a root of an irreducible polynomial
p ∈ k[x], such that p|f in k[x].

2. Let p be an irreducible polynomial in k[x] of which α is a root. Then, the
map φ : k[x]/(p) −→ K, defined by:

φ

(
n∑

j=0

cjx
j + (p)

)
=

n∑
j=0

cjα
j,

is a well-defined one-to-one ring homomorphism with imφ = k(α). (Here,∑n
j=0 cjx

j + (p) is the congruence class of
∑n

j=0 cjx
j ∈ k[x] modulo (p).)

Hence,
k[x]/(p) ∼= k(α).

3. If α, β ∈ K are both roots of an irreducible polynomial p in k[x], then there
exists a ring isomorphism σ : k(α) −→ k(β), with σ(α) = β and σ(s) = s,
for all s ∈ k.

4. Let p be an irreducible polynomial in k[x] of which α is a root. Then, each
element in k(α) has a unique expression of the form:

c0 + c1α + · · ·+ cn−1α
n−1,

where ci ∈ k, and n = deg p.

Remark. Suppose p is an irreducible polynomial in k[x] of which α ∈ K is a root.
Part 4 of the theorem essentially says that k(α) is a vectors space of dimension
deg p over k, with basis:

{1, α, α2, . . . , αn−1}.

Example 13.5. Consider k = Q as a subfield of K = R. The element α ∈ 3
√
2 ∈

R is a root of the the polynomial p = x3 − 2 ∈ Q[x], which is irreducible in Q[x]
by the Eisenstein’s Criterion for the prime 2.

The theorem applied to this case says that Q(α), i.e. the smallest subfield of
R containing Q and α, is equal to the set:

{c0 + c1α + c2α
2 : ci ∈ Q}

The addition and multiplication operations in Q(α) are those associated with R,
in other words:

(c0 + c1α + c2α
2) + (b0 + b1α + b2α

2)

= (c0 + b0) + (c1 + b1)α + (c2 + b2)α
2,
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(c0 + c1α + c2α
2) · (b0 + b1α + b2α

2)

= c0b0 + c0b1α + c0b2α
2 + c1b0α + c1b1α

2

+ c1b2α
3 + c2b0α

2 + c2b1α
3 + c2b2α

4

= (c0b0 + 2c1b2 + 2c2b1) + (c0b1 + c1b0 + 2c2b2)α

+ (c0b2 + c1b1 + c2b0)α
2

Exercise 13.6. Given a nonzero γ = c0 + c1α + c2α
2 ∈ Q(α), ci ∈ Q, find

b0, b1, b2 ∈ Q such that b0 + b1α+ b2α
2 is the multiplicative inverse of γ in Q(α).

Proof of Exercise 13.6. (of Theorem 13.4 )

1. Define a map ψ : k[x] −→ K as follows:

ψ
(∑

cjx
j
)
=
∑

cjα
j.

Exercise: ψ is a ring homomorphism.

By assumption, f lies in kerψ. Since k is a field, the ring k[x] is a PID. So,
there exists p ∈ k[x] such that kerψ = (p). Hence, p|f in k[x].

By the First Isomorphism Theorem, imψ is a subring ofK which is isomor-
phic to k[x]/(p). In particular, imψ is an integral domain because K has no
zero divisors. Hence, by Theorem 11.20 , the polynomial p is an irreducible
in k[x].

Since p ∈ (p) = kerψ, we have 0 = ψ(p) = p(α). Hence, α is a root of p.

2. If f+(p) = g+(p) in k[x]/(p), then g−f ∈ (p), or equivalently: g = f+pq
for some q ∈ k[x].
Hence, φ(g + (p)) = f(α) + p(α)q(α) = f(α) = φ(f + (p)).

This shows that φ is a well-defined map. We leave it as an exercise to show
that φ is a one-to-one ring homomorphism.

We now show that imφ = k(α). By the First Isomorphism Theorem, imφ
is isomorphic to k[x]/(p), which is a field since p is irreducible. Moreover,
α = φ(x+ (p)) lies in imφ. Hence, imφ is a subfield of K containing α.

Since each element in imφ has the form
∑n

j=0 cjα
j , where cj ∈ k, and

fields are closed under addition and multiplication, any subfield of K which
contains k and α must contain imφ. This shows that imφ is the smallest
subfield of K containing k and α. Hence, k[x]/(p) ∼= imφ = k(α).
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3. Define φ′ : k[x]/(p) −→ k(β) as follows:

φ′
(∑

cjx
j + (p)

)
=
∑

cjβ
j.

By the same reasoning applied to φ before, the map φ′ is a well-defined ring
isomorphism, with:

φ′(x+ (p)) = β, φ′(s+ (p)) = s for all s ∈ k.

It is then easy to see that the map σ := φ′ ◦ φ−1 : k(α) −→ k(β) is the
desired isomorphism between k(α) and k(β).

4. Since φ in Part 2 is an isomorphism onto imφ = k(α), we know that each
element γ ∈ k(α) is equal to φ(f + (p)) = f(α) :=

∑
cjα

j for some
f =

∑
cjx

j ∈ k[x].
By the division theorem for k[x]. There exist m, r ∈ k[x] such that f =
mp + r, with deg r < deg p = n. In particular, f + (p) = r + (p) in
k[x]/(p).

Write r =
∑n−1

j=0 bjx
j , with bj = 0 if j > deg r.

We have:

γ = φ(f + (p)) = φ(r + (p)) =
n−1∑
j=0

bjα
j.

It remains to show that this expression for γ is unique. Suppose γ = g(α) =∑n−1
j=0 b

′
jα

j for some g =
∑n−1

j=0 b
′
jx

j ∈ k[x].
Then, g(α) = r(α) = γ implies that φ(g + (p)) = φ(r + (p)), hence:

(g − r) + (p) ∈ kerφ.

Since φ is one-to-one, we have (g − r) ≡ 0 modulo (p), which implies that
p|(g − r) in k[x].

Since deg g, deg r < deg p, this implies that g − r = 0. So, the expression
γ = b0 + b1α + · · ·+ bn−1α

n−1 is unique.

Terminology:

• If k is a subfield of K, we say that K is a field extension of k.

• Let α be an element in a field extension K of a field k. If there exists a
polynomial p ∈ k[x] of which α is a root, then α is said to be algebraic
over k.
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• If α ∈ K is algebraic over k, then there exists a unique monic irreducible
polynomial p ∈ k[x] of which α is a root (Exercise). This polynomial p is
called the minimal polynomial of α over k.

For example, 3
√
2 ∈ R is algebraic over Q. Its minimal polynomial over Q is

x3 − 2.

Exercise 13.7. Find the minimal polynomial of 2− 3
√
6 ∈ R over Q, if it exists.

Exercise 13.8. Find the minimal polynomial of 3
√
5 over Q.

Exercise 13.9. Express the multiplicative inverse of γ = 2+ 3
√
5 in Q( 3

√
5) in the

form:
γ−1 = c0 + c1

3
√
5 + c2

(
3
√
5
)2
,

where ci ∈ Q, if possible.

13.2 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK
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