## Math 2070 Week 13

## Field Extensions, Finite Fields

### 13.1 Field Extensions

Definition 13.1. Let $R$ be a ring. A subset $S$ of $R$ is said to be a subring of $R$ if it is a ring under the addition $+_{R}$ and multiplication $\times_{R}$ associated with $R$, and its additive and multiplicative identity elements 0,1 are those of $R$.

Remark. To show that a subset $S$ of a ring $R$ is a subring, it suffices to show that:

- $S$ contains the additive and multiplicative identity elements of $R$.
- $S$ is "closed under addition": $a+_{R} b \in S$ for all $a, b \in S$.
- $S$ is "closed under multiplication": $a \times_{R} b \in S$ for all $a, b \in S$.
- $S$ is closed under additive inverse: For all $a \in S$, the additive inverse $-a$ of $a$ in $R$ belongs to $S$.

Definition 13.2. A subfield $k$ of a field $K$ is a subring of $K$ which is a field.
In particular, for each nonzero element $r \in k \subseteq K$. The multiplicative inverse of $r$ in $K$ lies $k$.

Definition 13.3. Let $K$ be a field and $k$ a subfield. Let $\alpha$ be an element of $K$. We define $k(\alpha)$ to be the smallest subfield of $K$ containing $k$ and $\alpha$. In other words, if $F$ is a subfield of $K$ which contains $k$ and $\alpha$, then $F \supseteq k(\alpha)$. We say that $k(\alpha)$ is obtained from $k$ by adjoining $\alpha$.

Theorem 13.4. Let $k$ be a subfield of a field $K$. Let $\alpha$ be an element of $K$.

1. If $\alpha$ is a root of a nonzero polynomial $f \in k[x]$ (viewed as a polynomial in $K[x]$ with coefficients in $k$ ), then $\alpha$ is a root of an irreducible polynomial $p \in k[x]$, such that $p \mid f$ in $k[x]$.
2. Let $p$ be an irreducible polynomial in $k[x]$ of which $\alpha$ is a root. Then, the map $\phi: k[x] /(p) \longrightarrow K$, defined by:

$$
\phi\left(\sum_{j=0}^{n} c_{j} x^{j}+(p)\right)=\sum_{j=0}^{n} c_{j} \alpha^{j},
$$

is a well-defined one-to-one ring homomorphism with $\operatorname{im} \phi=k(\alpha)$. (Here, $\sum_{j=0}^{n} c_{j} x^{j}+(p)$ is the congruence class of $\sum_{j=0}^{n} c_{j} x^{j} \in k[x]$ modulo ( $p$ ).) Hence,

$$
k[x] /(p) \cong k(\alpha) .
$$

3. If $\alpha, \beta \in K$ are both roots of an irreducible polynomial $p$ in $k[x]$, then there exists a ring isomorphism $\sigma: k(\alpha) \longrightarrow k(\beta)$, with $\sigma(\alpha)=\beta$ and $\sigma(s)=s$, for all $s \in k$.
4. Let $p$ be an irreducible polynomial in $k[x]$ of which $\alpha$ is a root. Then, each element in $k(\alpha)$ has a unique expression of the form:

$$
c_{0}+c_{1} \alpha+\cdots+c_{n-1} \alpha^{n-1}
$$

where $c_{i} \in k$, and $n=\operatorname{deg} p$.
Remark. Suppose $p$ is an irreducible polynomial in $k[x]$ of which $\alpha \in K$ is a root. Part 4 of the theorem essentially says that $k(\alpha)$ is a vectors space of dimension $\operatorname{deg} p$ over $k$, with basis:

$$
\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\} .
$$

Example 13.5. Consider $k=\mathbb{Q}$ as a subfield of $K=\mathbb{R}$. The element $\alpha \in \sqrt[3]{2} \in$ $\mathbb{R}$ is a root of the the polynomial $p=x^{3}-2 \in \mathbb{Q}[x]$, which is irreducible in $\mathbb{Q}[x]$ by the Eisenstein's Criterion for the prime 2.

The theorem applied to this case says that $\mathbb{Q}(\alpha)$, i.e. the smallest subfield of $\mathbb{R}$ containing $\mathbb{Q}$ and $\alpha$, is equal to the set:

$$
\left\{c_{0}+c_{1} \alpha+c_{2} \alpha^{2}: c_{i} \in \mathbb{Q}\right\}
$$

The addition and multiplication operations in $\mathbb{Q}(\alpha)$ are those associated with $\mathbb{R}$, in other words:

$$
\begin{aligned}
\left(c_{0}+c_{1} \alpha+c_{2} \alpha^{2}\right)+\left(b_{0}+b_{1} \alpha+b_{2} \alpha^{2}\right) & \\
& =\left(c_{0}+b_{0}\right)+\left(c_{1}+b_{1}\right) \alpha+\left(c_{2}+b_{2}\right) \alpha^{2}
\end{aligned}
$$

$$
\begin{aligned}
\left(c_{0}+c_{1} \alpha+c_{2} \alpha^{2}\right) & \cdot\left(b_{0}+b_{1} \alpha+b_{2} \alpha^{2}\right) \\
= & c_{0} b_{0}+c_{0} b_{1} \alpha+c_{0} b_{2} \alpha^{2}+c_{1} b_{0} \alpha+c_{1} b_{1} \alpha^{2} \\
& \quad+c_{1} b_{2} \alpha^{3}+c_{2} b_{0} \alpha^{2}+c_{2} b_{1} \alpha^{3}+c_{2} b_{2} \alpha^{4} \\
=( & \left.c_{0} b_{0}+2 c_{1} b_{2}+2 c_{2} b_{1}\right)+\left(c_{0} b_{1}+c_{1} b_{0}+2 c_{2} b_{2}\right) \alpha \\
& +\left(c_{0} b_{2}+c_{1} b_{1}+c_{2} b_{0}\right) \alpha^{2}
\end{aligned}
$$

Exercise 13.6. Given a nonzero $\gamma=c_{0}+c_{1} \alpha+c_{2} \alpha^{2} \in \mathbb{Q}(\alpha), c_{i} \in \mathbb{Q}$, find $b_{0}, b_{1}, b_{2} \in \mathbb{Q}$ such that $b_{0}+b_{1} \alpha+b_{2} \alpha^{2}$ is the multiplicative inverse of $\gamma \operatorname{in} \mathbb{Q}(\alpha)$.

Proof of Exercise 13.6. (of Theorem 13.4)

1. Define a map $\psi: k[x] \longrightarrow K$ as follows:

$$
\psi\left(\sum c_{j} x^{j}\right)=\sum c_{j} \alpha^{j} .
$$

Exercise: $\psi$ is a ring homomorphism.
By assumption, $f$ lies in ker $\psi$. Since $k$ is a field, the ring $k[x]$ is a PID. So, there exists $p \in k[x]$ such that ker $\psi=(p)$. Hence, $p \mid f$ in $k[x]$.
By the First Isomorphism Theorem, $\operatorname{im} \psi$ is a subring of $K$ which is isomorphic to $k[x] /(p)$. In particular, $\operatorname{im} \psi$ is an integral domain because $K$ has no zero divisors. Hence, by Theorem 11.20, the polynomial $p$ is an irreducible in $k[x]$.
Since $p \in(p)=\operatorname{ker} \psi$, we have $0=\psi(p)=p(\alpha)$. Hence, $\alpha$ is a root of $p$.
2. If $f+(p)=g+(p)$ in $k[x] /(p)$, then $g-f \in(p)$, or equivalently: $g=f+p q$ for some $q \in k[x]$.
Hence, $\phi(g+(p))=f(\alpha)+p(\alpha) q(\alpha)=f(\alpha)=\phi(f+(p))$.
This shows that $\phi$ is a well-defined map. We leave it as an exercise to show that $\phi$ is a one-to-one ring homomorphism.
We now show that im $\phi=k(\alpha)$. By the First Isomorphism Theorem, $\operatorname{im} \phi$ is isomorphic to $k[x] /(p)$, which is a field since $p$ is irreducible. Moreover, $\alpha=\phi(x+(p))$ lies in im $\phi$. Hence, $\operatorname{im} \phi$ is a subfield of $K$ containing $\alpha$.
Since each element in $\operatorname{im} \phi$ has the form $\sum_{j=0}^{n} c_{j} \alpha^{j}$, where $c_{j} \in k$, and fields are closed under addition and multiplication, any subfield of $K$ which contains $k$ and $\alpha$ must contain $\operatorname{im} \phi$. This shows that $\operatorname{im} \phi$ is the smallest subfield of $K$ containing $k$ and $\alpha$. Hence, $k[x] /(p) \cong \operatorname{im} \phi=k(\alpha)$.
3. Define $\phi^{\prime}: k[x] /(p) \longrightarrow k(\beta)$ as follows:

$$
\phi^{\prime}\left(\sum c_{j} x^{j}+(p)\right)=\sum c_{j} \beta^{j} .
$$

By the same reasoning applied to $\phi$ before, the map $\phi^{\prime}$ is a well-defined ring isomorphism, with:

$$
\phi^{\prime}(x+(p))=\beta, \quad \phi^{\prime}(s+(p))=s \text { for all } s \in k .
$$

It is then easy to see that the map $\sigma:=\phi^{\prime} \circ \phi^{-1}: k(\alpha) \longrightarrow k(\beta)$ is the desired isomorphism between $k(\alpha)$ and $k(\beta)$.
4. Since $\phi$ in Part 2 is an isomorphism onto $\operatorname{im} \phi=k(\alpha)$, we know that each element $\gamma \in k(\alpha)$ is equal to $\phi(f+(p))=f(\alpha):=\sum c_{j} \alpha^{j}$ for some $f=\sum c_{j} x^{j} \in k[x]$.
By the division theorem for $k[x]$. There exist $m, r \in k[x]$ such that $f=$ $m p+r$, with $\operatorname{deg} r<\operatorname{deg} p=n$. In particular, $f+(p)=r+(p)$ in $k[x] /(p)$.
Write $r=\sum_{j=0}^{n-1} b_{j} x^{j}$, with $b_{j}=0$ if $j>\operatorname{deg} r$.
We have:

$$
\gamma=\phi(f+(p))=\phi(r+(p))=\sum_{j=0}^{n-1} b_{j} \alpha^{j} .
$$

It remains to show that this expression for $\gamma$ is unique. Suppose $\gamma=g(\alpha)=$ $\sum_{j=0}^{n-1} b_{j}^{\prime} \alpha^{j}$ for some $g=\sum_{j=0}^{n-1} b_{j}^{\prime} x^{j} \in k[x]$.
Then, $g(\alpha)=r(\alpha)=\gamma$ implies that $\phi(g+(p))=\phi(r+(p))$, hence:

$$
(g-r)+(p) \in \operatorname{ker} \phi
$$

Since $\phi$ is one-to-one, we have $(g-r) \equiv 0$ modulo $(p)$, which implies that $p \mid(g-r)$ in $k[x]$.
Since $\operatorname{deg} g, \operatorname{deg} r<\operatorname{deg} p$, this implies that $g-r=0$. So, the expression $\gamma=b_{0}+b_{1} \alpha+\cdots+b_{n-1} \alpha^{n-1}$ is unique.

## Terminology:

- If $k$ is a subfield of $K$, we say that $K$ is a field extension of $k$.
- Let $\alpha$ be an element in a field extension $K$ of a field $k$. If there exists a polynomial $p \in k[x]$ of which $\alpha$ is a root, then $\alpha$ is said to be algebraic over $k$.
- If $\alpha \in K$ is algebraic over $k$, then there exists a unique monic irreducible polynomial $p \in k[x]$ of which $\alpha$ is a root (Exercise). This polynomial $p$ is called the minimal polynomial of $\alpha$ over $k$.

For example, $\sqrt[3]{2} \in \mathbb{R}$ is algebraic over $\mathbb{Q}$. Its minimal polynomial over $\mathbb{Q}$ is $x^{3}-2$.

Exercise 13.7. Find the minimal polynomial of $2-\sqrt[3]{6} \in \mathbb{R}$ over $\mathbb{Q}$, if it exists.
Exercise 13.8. Find the minimal polynomial of $\sqrt[3]{5}$ over $\mathbb{Q}$.
Exercise 13.9. Express the multiplicative inverse of $\gamma=2+\sqrt[3]{5}$ in $\mathbb{Q}(\sqrt[3]{5})$ in the form:

$$
\gamma^{-1}=c_{0}+c_{1} \sqrt[3]{5}+c_{2}(\sqrt[3]{5})^{2}
$$

where $c_{i} \in \mathbb{Q}$, if possible.

### 13.2 WeBWorK

1. WeBWorK
2. WeBWorK
3. WeBWorK
4. WeBWorK
