Math 2070 Week 12

Rational Root Theorem, Gauss's Theorem, Eisenstein's Criterion

12.1 Polynomials over \mathbb{Z} and \mathbb{Q}

Theorem 12.1 (Rational Root Theorem). Let $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, be a polynomial in $\mathbb{Q}[x]$, with $a_{i} \in \mathbb{Z}, a_{n} \neq 0$. Every rational rootr of f in \mathbb{Q} has the form $r=b / c(b, c \in \mathbb{Z})$ where $b \mid a_{0}$ and $c \mid a_{n}$.

Proof of Rational Root Theorem. Let $r=b / c$ be a rational root of f, where b, c are relatively prime integers. We have:

$$
0=\sum_{i=0}^{n} a_{i}(b / c)^{i}
$$

Multiplying both sides of the above equation by c^{n}, we have:

$$
0=a_{0} c^{n}+a_{1} c^{n-1} b+a_{2} c^{n-2} b^{2}+\cdots+a_{n} b^{n},
$$

or equivalently:

$$
a_{0} c^{n}=-\left(a_{1} c^{n-1} b+a_{2} c^{n-2} b^{2}+\cdots+a_{n} b^{n}\right)
$$

Since b divides the right-hand side, and b and c are relatively prime, b must divide a_{0}.

Similarly, we have:

$$
a_{n} b^{n}=-\left(a_{0} c^{n}+a_{1} c^{n-1} b+a_{2} c^{n-2} b^{2}+\cdots+a_{n-1} c b^{n-1}\right) .
$$

Since c divides the right-hand side, and b and c are relatively prime, c must divide a_{n}.

Definition 12.2. A polynomial $f \in \mathbb{Z}[x]$ is said to be primitive if the gcd of its coefficients is 1 .

Remark. Note that if f is monic, i.e. its leading coefficient is 1 , then it is primitive.

If d is the gcd of the coefficients of f, then $\frac{1}{d} f$ is a primitive polynomial in $\mathbb{Z}[x]$.

Lemma 12.3 (Gauss's Lemma). If $f, g \in \mathbb{Z}[x]$ are both primitive, then $f g$ is primitive.

Proof of Gauss's Lemma. Write $f=\sum_{k=0}^{m} a_{k} x^{k}, g=\sum_{k=0}^{n} b_{k} x^{k}$. Then, $f g=$ $\sum_{k=0}^{m+n} c_{k} x^{k}$, where:

$$
c_{k}=\sum_{i+j=k} a_{i} b_{j} .
$$

Suppose $f g$ is not primitive. Then, there exists a prime p such that p divides c_{k} for $k=0,1,2, \ldots, m+n$.

Since f is primitive, there exists a least $u \in\{0,1,2, \ldots, m\}$ such that a_{u} is not divisible by p.

Similarly, since g is primitive, there is a least $v \in\{0,1,2, \ldots, n\}$ such that b_{v} is not divisible by p. We have:

$$
c_{u+v}=\sum_{\substack{i+j=u+v \\(i, j) \neq(u, v)}} a_{i} b_{j}+a_{u} b_{v},
$$

hence:

$$
a_{u} b_{v}=c_{u+v}-\sum_{\substack{i+j=u+v \\ i<u}} a_{i} b_{j}-\sum_{\substack{i+j=u+v \\ j<v}} a_{i} b_{j} .
$$

By the minimality conditions on u and v, each term on the right-hand side of the above equation is divisible by p.

Hence, p divides $a_{u} b_{v}$, which by Euclid's Lemma implies that p divides either a_{u} or b_{v}, a contradiction.

Lemma 12.4. Every nonzero $f \in \mathbb{Q}[x]$ has a unique factorization:

$$
f=c(f) f_{0}
$$

where $c(f)$ is a positive rational number, and f_{0} is a primitive polynomial in $\mathbb{Z}[x]$.
Definition 12.5. The rational number $c(f)$ is called the content of f.

Proof of Definition 12.5. Existence:

Write $f=\sum_{k=0}^{n}\left(a_{k} / b_{k}\right) x^{k}$, where $a_{k}, b_{k} \in \mathbb{Z}$. Let $B=b_{0} b_{1} \cdots b_{n}$. Then, $g:=B f$ is a polynomial in $\mathbb{Z}[x]$. Let d be the gcd of the coefficients of g. Let $D= \pm d$, with the sign chosen such that $D / B>0$. Observe that $f=c(f) f_{0}$, where

$$
c(f)=D / B,
$$

and

$$
f_{0}:=\frac{B}{D} f=\frac{1}{D} g
$$

is a primitive polynomial in $\mathbb{Z}[x]$.

Uniqueness:

Suppose $f=e f_{1}$ for some positive $e \in \mathbb{Q}$ and primitive $f_{1} \in \mathbb{Z}[x]$. We have:

$$
e f_{1}=c(f) f_{0} .
$$

Writing $e / c(f)=u / v$ where u, v are relatively prime positive integers, we have:

$$
u f_{1}=v f_{0} .
$$

Since $g c d(u, v)=1$, by Euclid's Lemma the above equation implies that v divides each coefficient of f_{1}, and u divides each coefficient of f_{0}. Since f_{0} and f_{1} are primitive, we conclude that $u=v=1$. Hence, $e=c(f)$, and $f_{1}=f_{0}$.

Corollary 12.6. For $f \in \mathbb{Z}[x] \subseteq \mathbb{Q}[x]$, we have $c(f) \in \mathbb{Z}$.
Proof of Corollary 12.6. Let d be the gcd of the coefficients of f. Then, $(1 / d) f$ is a primitive polynomial, and

$$
f=d\left(\frac{1}{d} f\right)
$$

is a factorization of f into a product of a positive rational number and a primitive polynomial in $\mathbb{Z}[x]$. Hence, by uniqueness of $c(f)$ and f_{0}, we have $c(f)=d \in$ \mathbb{Z}.

Corollary 12.7. Let f, g, h be nonzero polynomials in $\mathbb{Q}[x]$ such that $f=g h$. Then, $f_{0}=g_{0} h_{0}$ and $c(f)=c(g) c(h)$.

Proof of Corollary 12.7. The condition $f=g h$ implies that:

$$
c(f) f_{0}=c(g) c(h) g_{0} h_{0}
$$

where f_{0}, g_{0}, h_{0} are primitive polynomials and $c(f), c(g), c(h)$ are positive rational numbers. By a previous result $g_{0} h_{0}$ is primitive. It now follows from the uniqueness of $c(f)$ and f_{0} that $f_{0}=g_{0} h_{0}$ and $c(f)=c(g) c(h)$.

Theorem 12.8 (Gauss's Theorem). Let f be a nonzero polynomial in $\mathbb{Z}[x]$. If $f=G H$ for some $G, H \in \mathbb{Q}[x]$, then $f=g h$ for some $g, h \in \mathbb{Z}[x]$, where $\operatorname{deg} g=\operatorname{deg} G, \operatorname{deg} h=\operatorname{deg} H$.

Consequently, if f cannot be factored into a product of polynomials of smaller degrees in $\mathbb{Z}[x]$, then it is irreducible as a polynomial in $\mathbb{Q}[x]$.

Proof of Gauss's Theorem. Suppose $f=G H$ for some G, H in $\mathbb{Q}[x]$. Then $f=$ $c(f) f_{0}=c(G) c(H) G_{0} H_{0}$, where G_{0}, H_{0} are primitive polynomials in $\mathbb{Z}[x]$, and $c(G) c(H)=c(f)$ by the uniqueness of the content of a polynomial.

Moreover, since $f \in \mathbb{Z}[x]$, its content $c(f)$ lies in \mathbb{Z}. Hence, $g=c(f) G_{0}$ and $h=H_{0}$ are polynomials in $\mathbb{Z}[x]$, with $\operatorname{deg} g=\operatorname{deg} G$, $\operatorname{deg} h=\operatorname{deg} H$, such that $f=g h$.

Let p be a prime. Let $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z} \cong \mathbb{Z}_{p}$. It is a field, since p is prime. For $a \in \mathbb{Z}$, let \bar{a} denote the residue of a in \mathbb{F}_{p}.

Exercise: We have $\bar{a}=\overline{a_{p}}$, where a_{p} is the remainder of the division of a by p.

Theorem 12.9. Let $f=\sum_{k=0}^{n} a_{k} x^{k}$ be a polynomial in $\mathbb{Z}[x]$ such that $p \nmid a_{n}$ (in particular, $a_{n} \neq 0$). If $\bar{f}:=\sum_{k=0}^{n} \overline{a_{k}} x^{k}$ is irreducible in $\mathbb{F}_{p}[x]$, then f is irreducible in $\mathbb{Q}[x]$.

Proof of Theorem 12.9. Suppose \bar{f} is irreducible in $\mathbb{F}_{p}[x]$, but f is not irreducible in $\mathbb{Q}[x]$. By Gauss's theorem, there exist $g, h \in \mathbb{Z}[x]$ such that $\operatorname{deg} g, \operatorname{deg} h<$ $\operatorname{deg} f$ and $f=g h$.

Since by assumption $p \nmid a_{n}$, we have $\operatorname{deg} \bar{f}=\operatorname{deg} f$.
Moreover, $\overline{g h}=\bar{g} \cdot \bar{h}$ (Exercise).
Hence, $\bar{f}=\overline{g h}=\bar{g} \cdot \bar{h}$, where $\operatorname{deg} \bar{g}, \operatorname{deg} \bar{h}<\operatorname{deg} \bar{f}$. This contradicts the irreducibility of \bar{f} in $\mathbb{F}_{p}[x]$.

Hence, f is irreducible in $\mathbb{Q}[x]$ if \bar{f} is irreducible in $\mathbb{F}_{p}[x]$.
Example 12.10. The polynomial $f(x)=x^{4}-5 x^{3}+2 x+3 \in \mathbb{Q}[x]$ is irreducible.
Proof of Example 12.10. Consider $\bar{f}=x^{4}-\overline{5} x^{3}+\overline{2} x+\overline{3}=x^{4}+x^{3}+1$ in $\mathbb{F}_{2}[x]$. If we can show that \bar{f} is irreducible, then by the previous theorem we can conclude that f is irreducible.

Since $\mathbb{F}_{2}=\{0,1\}$ and $\bar{f}(0)=\bar{f}(1)=1 \neq 0$, we know right away that \bar{f} has no linear factors. So, if \bar{f} is not irreducible, it must be a product of two quadratic factors:

$$
\bar{f}=\left(a x^{2}+b x+c\right)\left(d x^{2}+e x+g\right), \quad a, b, c, d, e, g \in \mathbb{F}_{2} .
$$

Note that by assumption a, d are nonzero elements of \mathbb{F}_{2}, so $a=d=1$. This implies that, in particular:

$$
\begin{aligned}
& 1=\bar{f}(0)=c g \\
& 1=\bar{f}(1)=(1+b+c)(1+e+g)
\end{aligned}
$$

The first equation implies that $c=g=1$. The second equation then implies that $1=(2+b)(2+e)=b e$. Hence, $b=e=1$.

We have:

$$
\begin{aligned}
x^{4}+x^{3}+1=\left(x^{2}+x+1\right)\left(x^{2}+x+1\right) & \\
& =x^{4}+2 x^{3}+3 x^{2}+2 x+1=x^{4}+x^{2}+1
\end{aligned}
$$

a contradiction.
Hence, \bar{f} is irreducible in $\mathbb{F}_{2}[x]$, which implies that f is irreducible in $\mathbb{Q}[x]$.

Theorem 12.11 (Eisenstein's Criterion). Let $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ be a polynomial in $\mathbb{Z}[x]$. If there exists a prime p such that $p \mid a_{i}$ for $0 \leq i<n$, but $p \nmid a_{n}$ and $p^{2} \nmid a_{0}$, then f is irreducible in $\mathbb{Q}[x]$.

Proof of Eisenstein's Criterion. We prove by contradiction. Suppose f is not irreducible in $\mathbb{Q}[x]$. Then, by Gauss's Theorem, there exists $g=\sum_{k=0}^{l} b_{k} x^{k}$, $h=\sum_{k=0}^{n-l} c_{k} x^{k} \in \mathbb{Z}[x]$, with $\operatorname{deg} g, \operatorname{deg} h<\operatorname{deg} f$, such that $f=g h$.

Consider the image of these polynomials in $\mathbb{F}_{p}[x]$. By assumption, we have:

$$
\overline{a_{n}} x^{n}=\bar{f}=\bar{g} \bar{h} .
$$

This implies that \bar{g} and \bar{h} are divisors of $\overline{a_{n}} x^{n}$. Since \mathbb{F}_{p} is a field, unique factorization holds for $\mathbb{F}_{p}[x]$. Hence, we must have:

$$
\bar{g}=\overline{b_{u}} x^{u}, \quad \bar{h}=\overline{c_{n-u}} x^{n-u},
$$

for some $u \in\{0,1,2, \ldots, l\}$.
If $u<l$, then $n-u>n-l \geq \operatorname{deg} \bar{h}$, which cannot hold.
So, we conclude that $\bar{g}=\overline{b_{l}} x^{l}, \bar{h}=\overline{c_{n-l}} x^{n-l}$.
In particular, $\overline{b_{0}}=\overline{c_{0}}=0$ in \mathbb{F}_{p}, which implies that p divides both b_{0} and c_{0}. Since $a_{0}=b_{0} c_{0}$, we have $p^{2} \mid a_{0}$, a contradiction.

Example 12.12. The polynomial $x^{5}+3 x^{4}-6 x^{3}+12 x+3$ is irreducible in $\mathbb{Q}[x]$.

