
Math 2070 Week 11

Quotient Rings, Polynomials over a Field

11.1 Quotient Rings - continued
Example 11.1. Let m be a natural number. Consider the map φ : Z −→ Zm

defined by:
φ(n) = nm, ∀n ∈ Z,

where nm is the remainder of the division of n by m.
Exercise: φ is a homomorphism.
It is clear that φ is surjective, and that kerφ = mZ. So, it follows from the

First Isomorphism Theorem that:

Zm
∼= Z/mZ.

Definition 11.2 (Gaussian Integers). Let:

Z[i] = {z ∈ C : z = a+ bi for some a, b ∈ Z},

where i =
√
−1.

Exercise 11.3. Show that the set Z[i] is a ring under the usual addition + and
multiplication × operations on C.

Moreover, we have 0Z[i] = 0, 1Z[i] = 1, and:

−(a+ bi) = (−a) + (−b)i

for any a, b ∈ Z.

Example 11.4. The ring Z[i]/(1 + 3i) is isomorphic to Z/10Z.
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Proof of Example 11.4. Define a map φ : Z −→ Z[i]/(1 + 3i) as follows:

φ(n) = n, ∀n ∈ Z,

where n is the residue of n ∈ Z[i] modulo (1 + 3i).
It is clear that φ is a homomorphism ( Exercise ).
Observe that in Z[i], we have:

1 + 3i ≡ 0 mod (1 + 3i),

which implies that:

1≡ −3i mod (1 + 3i)

i · 1≡ i · (−3i) mod (1 + 3i)

i≡ 3 mod (1 + 3i).

Hence, for all a, b ∈ Z,

a+ bi = a+ 3b = φ(a+ 3b)

in Z[i]/(1 + 3i). Hence, φ is surjective.
Suppose n is an element of Z such that φ(n) = n = 0. Then, by the definition

of the quotient ring we have:
n ∈ (1 + 3i).

This means that there exist a, b ∈ Z such that:

n = (a+ bi)(1 + 3i) = (a− 3b) + (3a+ b)i,

which implies that 3a+ b = 0, or equivalently, b = −3a. Hence:

n = a− 3b = a− 3(−3a) = 10a,

which implies that kerφ ⊆ 10Z. Conversely, for all m ∈ Z, we have:

φ(10m) = 10m = (1 + 3i)(1− 3i)m = 0

in Z[i]/(1 + 3i).
This shows that 10Z ⊆ kerφ. Hence, kerφ = 10Z.
It now follows from the First Isomorphism Theorem that:

Z/10Z ∼= Z[i]/(1 + 3i).
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11.2 Polynomials over a Field
Let k be a field. For f ∈ k[x] and a ∈ k, let:

f(a) = φa(f),

where φa is the evaluation homomorphism defined in Example 9.5. That is:

φa

(
n∑

i=0

cix
i

)
=

n∑
i=0

cia
i.

Definition 11.5. Let f =
∑n

i=0 cix
i be a polynomial in k[x]. An element a ∈ k is

a root of f if:
f(a) = 0

in k.

Lemma 11.6. For all f ∈ k[x], a ∈ k, there exists q ∈ k[x] such that:

f = q(x− a) + f(a)

Proof of Lemma 11.6. By the Theorem 10.17 (Division Theorem for Polynomials
with Unit Leading Coefficients), there exist q, r ∈ k[x] such that:

f = q(x− a) + r, deg r < deg(x− a) = 1.

This implies that r is a constant polynomial.
Applying the evaluation homomorphism φa to both sides of the above equa-

tion, we have:

f(a) = φa(q(x− a) + r)

= φa(q) · φa(x− a) + φa(r)

= q(a)(a− a) + r

= r.

Claim 11.7 (Root Theorem). Let k be a field, f a polynomial in k[x]. Then, a ∈ k
is a root of f if and only if (x− a) divides f in k[x].

Proof of Root Theorem. If a ∈ k is a root of f , then by the previous lemma there
exists q ∈ k[x] such that:

f = q(x− a) + f(a)︸︷︷︸
=0

= q(x− a),

so (x− a) divides f in k[x].
Conversely, if f = q(x− a) for some q ∈ k[x], then f(a) = q(a)(a− a) = 0.

Hence, a is a root of f .
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Theorem 11.8. Let k be a field, f a nonzero polynomial in k[x].

1. If f has degree n, then it has at most n roots in k.

2. If f has degree n > 0 and a1, a2, . . . , an ∈ k are distinct roots of f , then:

f = c · Πn
i=1(x− ai) := c(x− a1)(x− a2) · · · (x− an)

for some c ∈ k.

Proof of Theorem 11.8. 1. We prove Part 1 of the claim by induction. If f has
degree 0, then f is a nonzero constant, which implies that it has no roots.
So, in this case the claim holds.

Let f be a polynomial with degree n > 0. Suppose the claim holds for all
nonzero polynomials with degrees strictly less than n. We want to show that
the claim also holds for f . If f has no roots in k, then the claim holds for f
since 0 < n. If f has a root a ∈ k, then by the previous claim there exists
q ∈ k[x] such that:

f = q(x− a).

For any other root b ∈ k of f which is different from a, we have:

0 = f(b) = q(b)(b− a).

Since k is a field, it has no zero divisors; so, it follows from b− a 6= 0 that
q(b) = 0. In other words, b is a root of q. Since deg q < n, by the induction
hypothesis q has at most n− 1 roots. So, f has at most n− 1 roots different
from a. This shows that f has at most n roots.

2. Let f be a polynomial in k[x] which has n = deg f distinct roots a1, a2, . . . , an ∈
k.

If n = 1, then f = c0 + c1x for some ci ∈ k, with c1 6= 0. We have:

0 = f(a1) = c0 + c1a1,

which implies that: c0 = −c1a1. Hence,

f = −c1a1 + c1x = c1(x− a1).

Suppose n > 1. Suppose for all n′ ∈ N, such that 1 ≤ n′ < n, the claim
holds for any polynomial of degree n′ which has n′ distinct roots in k. By
the previous claim, there exists q ∈ k[x] such that:

f = q(x− an).
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Note that deg q = n− 1.

For 1 ≤ i < n, we have

0 = f(ai) = q(ai) (ai − an)︸ ︷︷ ︸
6=0

.

Since k is a field, this implies that q(ai) = 0 for 1 ≤ i < n. So, a1, a2, . . . , an−1
are n− 1 distinct roots of q. By the induction hypothesis there exists c ∈ k
such that:

q = c(x− a1)(x− a2) · · · (x− an−1).

Hence, f = q(x− an) = c(x− a1)(x− a2) · · · (x− an−1)(x− an).

Corollary 11.9. Let k be a field. Let f, g be nonzero polynomials in k[x]. Let
n = max{deg f, deg g}. If f(a) = g(a) for n+ 1 distinct a ∈ k. Then, f = g.

Proof of Corollary 11.9. Let h = f − g, then deg h ≤ n. By hypothesis, there
are n + 1 distinct elements a ∈ k such that h(a) = f(a) − g(a) = 0. If h 6= 0,
then it is a nonzero polynomial with degree ≤ n which has n + 1 distinct roots,
which contradicts the previous theorem. Hence, h must necessarily be the zero
polynomial, which implies that f = g.

Definition 11.10. A polynomial in k[x] is called a monic polynomial if its leading
coefficient is 1.

Corollary 11.11. Let k be a field. Let f, g be nonzero polynomials in k[x]. There
exists a unique monic polynomial d ∈ k[x] with the following property:

1. (f, g) = (d)

Moreover, this d also satisfies the following properties:

2. d divides both f and g, i.e., there exists a, b ∈ k[x] such that f = ad, g = bd.

3. There are polynomials p, q ∈ k[x] such that d = pf + qg.

4. If h ∈ k[x] is a divisor of f and g, then h divides d.

Terminology.

• The unique monic d ∈ k[x] which satisfies property 1 is called the Greatest
Common Divisor (abbrev. GCD) of f and g.

• We say that f and g are relatively prime if their GCD is 1.
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Proof of Corollary 11.11. 1. By Theorem 10.18 , there exists d =
∑n

i=0 aix
i ∈

k[x] such that (d) = (f, g). Replacing d by a−1n d if necessary, we may as-
sume that d is a monic polynomial. It remains to show that d is unique.

Suppose (d) = (d′), where both d and d′ are monic polynomials. Then,
there exist nonzero p, q ∈ k[x] such that:

d′ = pd, d = qd′.

Examining the degrees of the polynomials, we have:

deg d′ = deg d+ deg p,

and:
deg d = deg q + deg d′ = deg p+ deg q + deg d.

This implies that deg p+deg q = 0. Hence, p and q must both have degree 0;
in other words, they are constant polynomials. Moreover, we have deg d =
deg d′. Comparing the leading coefficients of d′ and pd, we have p = 1.
Hence, d = d′.

2. Clear.

3. Clear.

4. By Part 3 of the corollary, there are p, q ∈ k[x] such that d = pf + qg. It is
then clear that if h divides both f and g, then h must divide d.

Definition 11.12. Let R be a commutative ring. A nonzero element p ∈ R which
is not a unit is said to be irreducible if p = ab implies that either a or b is a unit.

Example 11.13. The set of irreducible elements in the ring Z is {±p : p a prime number}.

Let k be a field.

Lemma 11.14. A polynomial f ∈ k[x] is a unit if and only if it is a nonzero
constant polynomial.

Proof of Lemma 11.14. Exercise.

Claim 11.15. A nonzero nonconstant polynomial p ∈ k[x] is irreducible if and
only if there is no f, g ∈ k[x], with deg f, deg g < deg p, such that fg = p.
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Proof of Claim 11.15. Suppose p is irreducible, and p = fg for some f, g ∈ k[x]
such that deg f, deg g < deg p. Then p = fg implies that deg f and deg g are
both positive. By the previous lemma, both f and g are non-units, which is a
contradiction, since the irreducibility of p implies that either f or g must be a unit.

Conversely, suppose p is a nonzero non-unit in k[x], which is not equal to fg
for any f, g ∈ k[x] with deg f, deg g < deg p. Then, p = ab, a, b ∈ k[x], implies
that either a or b must have the same degree as p, and the other factor must be a
nonzero constant, in other words a unit in k[x]. Hence, p is irreducible.

Lemma 11.16 (Euclid’s Lemma). Let k be a field. Let f, g be polynomials in k[x].
Let p be an irreducible polynomial in k[x]. If p|fg in k[x], then p|f or p|g.

Proof of Euclid’s Lemma. Suppose p - f . Then, any common divisor of p and f
must have degree strictly less than deg p. Since p is irreducible, this implies that
any common divisor of p and f is a nonzero constant. Hence, the GCD of p and
f is 1. By Corollary 11.11 , there exist a, b ∈ k[x] such that:

ap+ bf = 1.

Multiplying both sides of the above equation by g, we have:

apg + bfg = g.

Since p divides the left-hand side of the above equation, it must also divide the
right-hand side, which is the polynomial g.

Claim 11.17. If f, g ∈ k[x] are relatively prime, and both divide h ∈ k[x], then
fg|h.

Proof of Claim 11.17. Exercise.

Theorem 11.18 (Unique Factorization). Let k be a field. Every nonconstant poly-
nomial f ∈ k[x] may be written as:

f = cp1 · · · pn,

where c is a nonzero constant, and each pi is a monic irreducible polynomial in
k[x]. The factorization is unique up to the ordering of the factors.

Proof of Unique Factorization. Exercise. One possible approach is very similar
to the proof of unique factorization for Z. See: Theorem 6.14 (The Fundamental
Theorem of Arithmetic) .

Exercise 11.19. 1. WeBWorK
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Theorem 11.20. Let k be a field. Let p be a polynomial in k[x]. The following
statements are equivalent:

1. k[x]/(p) is a field.

2. k[x]/(p) is an integral domain.

3. p is irreducible in k[x].

Remark. Compare this result with Exercise 8.11 and Corollary 8.16 .

Proof of Theorem 11.20. 1. 1 ⇒ 2: Clear, since every field is an integral do-
main.

2. 2 ⇒ 3: If p is not irreducible, there exist f, g ∈ k[x], with degrees strictly
less than that of p, such that p = fg. Since deg f, deg g < deg p, the
polynomial p does not divide f or g in k[x]. Consequently, the congruence
classes f and g of f and g, respectively, modulo (p) is not equal to zero
in k[x]/(p). On the other hand, f · g = fg = p = 0 in k[x]/(p). This
implies that k[x]/(p) is not an integral domain, a contradiction. Hence, p is
irreducible if k[x]/(p) is an integral domain.

3. 3 ⇒ 1: By definition, the multiplicative identity element 1 of a field is
different from the additive identity element 0. So we need to check that the
congruence class of 1 ∈ k[x] in k[x]/(p) is not 0. Since p is irreducible,
by definition we have deg p > 0. Hence, 1 /∈ (p), for a polynomial of
degree > 0 cannot divide a polynomial of degree 0 in k[x]. We conclude
that 1 + (p) 6= 0 + (p) in k[x]/(p).

Next, we need to prove the existence of the multiplicative inverse of any
nonzero element in k[x]/(p). Given any f ∈ k[x] whose congruence class f
modulo (p) is nonzero in k[x]/(p), we want to find its multiplicative inverse
f
−1

. If f 6= 0 in k[x]/(p), then by definition f − 0 /∈ (p), which means that
p does not divide f . Since p is irreducible, this implies thatGCD(p, f) = 1.
By Corollary 11.11 there exist g, h ∈ k[x] such that fg + hp = 1. It is then
clear that g = f

−1
, since fg − 1 = −hp implies that fg − 1 ∈ (p), which

by definition means that f · g = fg = 1 in k[x]/(p).

Example 11.21. The rings R[x]/(x2 + 1) and C are isomorphic.

Proof of Example 11.21. Define a map φ : R[x] −→ C as follows:

φ(
n∑

k=0

akx
k) =

n∑
k=0

aki
k.
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Exercise: φ is a homomorphism.
For all a+ bi (a, b ∈ R) in C, we have:

φ(a+ bx) = a+ bi.

Hence, φ is surjective.
We now find kerφ. Since R[x] is a PID (see Definition 10.15). There exists

p ∈ R[x] such that kerφ = (p).
Observe that φ(x2 + 1) = 0. So, x2 + 1 ∈ kerφ, which implies that there

exists q ∈ R[x] such that x2 + 1 = pq. Since x2 + 1 has no real roots, neither p or
q can be of degree 1.

So, one of p or q must be a nonzero constant polynomial. p cannot be a nonzero
constant polynomial, for that would imply that kerφ = R[x]. So, q is a constant,
which implies that p = q−1(x2 + 1). We conclude that kerφ = (x2 + 1).

It now follows from the First Isomorphism Theorem that R[x]/(x2 + 1) ∼=
C.
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