Math 2070 Week 11

Quotient Rings, Polynomials over a Field

11.1 Quotient Rings - continued

Example 11.1. Let m be a natural number. Consider the map $\phi: \mathbb{Z} \longrightarrow \mathbb{Z}_{m}$ defined by:

$$
\phi(n)=n_{m}, \quad \forall n \in \mathbb{Z},
$$

where n_{m} is the remainder of the division of n by m.
Exercise: ϕ is a homomorphism.
It is clear that ϕ is surjective, and that $\operatorname{ker} \phi=m \mathbb{Z}$. So, it follows from the First Isomorphism Theorem that:

$$
\mathbb{Z}_{m} \cong \mathbb{Z} / m \mathbb{Z}
$$

Definition 11.2 (Gaussian Integers). Let:

$$
\mathbb{Z}[i]=\{z \in \mathbb{C}: z=a+b i \text { for some } a, b \in \mathbb{Z}\}
$$

where $i=\sqrt{-1}$.
Exercise 11.3. Show that the set $\mathbb{Z}[i]$ is a ring under the usual addition + and multiplication \times operations on \mathbb{C}.

Moreover, we have $0_{\mathbb{Z}[i]}=0,1_{\mathbb{Z}[i]}=1$, and:

$$
-(a+b i)=(-a)+(-b) i
$$

for any $a, b \in \mathbb{Z}$.
Example 11.4. The ring $\mathbb{Z}[i] /(1+3 i)$ is isomorphic to $\mathbb{Z} / 10 \mathbb{Z}$.

Proof of Example 11.4. Define a map $\phi: \mathbb{Z} \longrightarrow \mathbb{Z}[i] /(1+3 i)$ as follows:

$$
\phi(n)=\bar{n}, \quad \forall n \in \mathbb{Z},
$$

where \bar{n} is the residue of $n \in \mathbb{Z}[i]$ modulo $(1+3 i)$.
It is clear that ϕ is a homomorphism (Exercise).
Observe that in $\mathbb{Z}[i]$, we have:

$$
1+3 i \equiv 0 \quad \bmod (1+3 i),
$$

which implies that:

$$
\begin{aligned}
1 & \equiv-3 i \quad \bmod (1+3 i) \\
i \cdot 1 & \equiv i \cdot(-3 i) \quad \bmod (1+3 i) \\
i & \equiv 3 \quad \bmod (1+3 i)
\end{aligned}
$$

Hence, for all $a, b \in \mathbb{Z}$,

$$
\overline{a+b i}=\overline{a+3 b}=\phi(a+3 b)
$$

in $\mathbb{Z}[i] /(1+3 i)$. Hence, ϕ is surjective.
Suppose n is an element of \mathbb{Z} such that $\phi(n)=\bar{n}=0$. Then, by the definition of the quotient ring we have:

$$
n \in(1+3 i) .
$$

This means that there exist $a, b \in \mathbb{Z}$ such that:

$$
n=(a+b i)(1+3 i)=(a-3 b)+(3 a+b) i
$$

which implies that $3 a+b=0$, or equivalently, $b=-3 a$. Hence:

$$
n=a-3 b=a-3(-3 a)=10 a
$$

which implies that $\operatorname{ker} \phi \subseteq 10 \mathbb{Z}$. Conversely, for all $m \in \mathbb{Z}$, we have:

$$
\phi(10 m)=\overline{10 m}=\overline{(1+3 i)(1-3 i) m}=0
$$

in $\mathbb{Z}[i] /(1+3 i)$.
This shows that $10 \mathbb{Z} \subseteq \operatorname{ker} \phi$. Hence, $\operatorname{ker} \phi=10 \mathbb{Z}$.
It now follows from the First Isomorphism Theorem that:

$$
\mathbb{Z} / 10 \mathbb{Z} \cong \mathbb{Z}[i] /(1+3 i)
$$

11.2 Polynomials over a Field

Let k be a field. For $f \in k[x]$ and $a \in k$, let:

$$
f(a)=\phi_{a}(f),
$$

where ϕ_{a} is the evaluation homomorphism defined in Example 9.5. That is:

$$
\phi_{a}\left(\sum_{i=0}^{n} c_{i} x^{i}\right)=\sum_{i=0}^{n} c_{i} a^{i} .
$$

Definition 11.5. Let $f=\sum_{i=0}^{n} c_{i} x^{i}$ be a polynomial in $k[x]$. An element $a \in k$ is a root of f if:

$$
f(a)=0
$$

in k.
Lemma 11.6. For all $f \in k[x], a \in k$, there exists $q \in k[x]$ such that:

$$
f=q(x-a)+f(a)
$$

Proof of Lemma 11.6. By the Theorem 10.17 (Division Theorem for Polynomials with Unit Leading Coefficients), there exist $q, r \in k[x]$ such that:

$$
f=q(x-a)+r, \quad \operatorname{deg} r<\operatorname{deg}(x-a)=1 .
$$

This implies that r is a constant polynomial.
Applying the evaluation homomorphism ϕ_{a} to both sides of the above equation, we have:

$$
\begin{aligned}
f(a) & =\phi_{a}(q(x-a)+r) \\
& =\phi_{a}(q) \cdot \phi_{a}(x-a)+\phi_{a}(r) \\
& =q(a)(a-a)+r \\
& =r .
\end{aligned}
$$

Claim 11.7 (Root Theorem). Let k be a field, f a polynomial in $k[x]$. Then, $a \in k$ is a root of f if and only if $(x-a)$ divides f in $k[x]$.
Proof of Root Theorem. If $a \in k$ is a root of f, then by the previous lemma there exists $q \in k[x]$ such that:

$$
f=q(x-a)+\underbrace{f(a)}_{=0}=q(x-a),
$$

so $(x-a)$ divides f in $k[x]$.
Conversely, if $f=q(x-a)$ for some $q \in k[x]$, then $f(a)=q(a)(a-a)=0$. Hence, a is a root of f.

Theorem 11.8. Let k be a field, f a nonzero polynomial in $k[x]$.

1. If f has degree n, then it has at most n roots in k.
2. If f has degree $n>0$ and $a_{1}, a_{2}, \ldots, a_{n} \in k$ are distinct roots of f, then:

$$
f=c \cdot \Pi_{i=1}^{n}\left(x-a_{i}\right):=c\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)
$$

for some $c \in k$.
Proof of Theorem 11.8. 1. We prove Part 1 of the claim by induction. If f has degree 0 , then f is a nonzero constant, which implies that it has no roots. So, in this case the claim holds.
Let f be a polynomial with degree $n>0$. Suppose the claim holds for all nonzero polynomials with degrees strictly less than n. We want to show that the claim also holds for f. If f has no roots in k, then the claim holds for f since $0<n$. If f has a root $a \in k$, then by the previous claim there exists $q \in k[x]$ such that:

$$
f=q(x-a) .
$$

For any other root $b \in k$ of f which is different from a, we have:

$$
0=f(b)=q(b)(b-a) .
$$

Since k is a field, it has no zero divisors; so, it follows from $b-a \neq 0$ that $q(b)=0$. In other words, b is a root of q. Since $\operatorname{deg} q<n$, by the induction hypothesis q has at most $n-1$ roots. So, f has at most $n-1$ roots different from a. This shows that f has at most n roots.
2. Let f be a polynomial in $k[x]$ which has $n=\operatorname{deg} f$ distinct roots $a_{1}, a_{2}, \ldots, a_{n} \in$ k.

If $n=1$, then $f=c_{0}+c_{1} x$ for some $c_{i} \in k$, with $c_{1} \neq 0$. We have:

$$
0=f\left(a_{1}\right)=c_{0}+c_{1} a_{1},
$$

which implies that: $c_{0}=-c_{1} a_{1}$. Hence,

$$
f=-c_{1} a_{1}+c_{1} x=c_{1}\left(x-a_{1}\right) .
$$

Suppose $n>1$. Suppose for all $n^{\prime} \in \mathbb{N}$, such that $1 \leq n^{\prime}<n$, the claim holds for any polynomial of degree n^{\prime} which has n^{\prime} distinct roots in k. By the previous claim, there exists $q \in k[x]$ such that:

$$
f=q\left(x-a_{n}\right) .
$$

Note that $\operatorname{deg} q=n-1$.
For $1 \leq i<n$, we have

$$
0=f\left(a_{i}\right)=q\left(a_{i}\right) \underbrace{\left(a_{i}-a_{n}\right)}_{\neq 0} .
$$

Since k is a field, this implies that $q\left(a_{i}\right)=0$ for $1 \leq i<n$. So, $a_{1}, a_{2}, \ldots, a_{n-1}$ are $n-1$ distinct roots of q. By the induction hypothesis there exists $c \in k$ such that:

$$
q=c\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n-1}\right) .
$$

Hence, $f=q\left(x-a_{n}\right)=c\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n-1}\right)\left(x-a_{n}\right)$.

Corollary 11.9. Let k be a field. Let f, g be nonzero polynomials in $k[x]$. Let $n=\max \{\operatorname{deg} f, \operatorname{deg} g\}$. If $f(a)=g(a)$ for $n+1$ distinct $a \in k$. Then, $f=g$.

Proof of Corollary 11.9. Let $h=f-g$, then $\operatorname{deg} h \leq n$. By hypothesis, there are $n+1$ distinct elements $a \in k$ such that $h(a)=f(a)-g(a)=0$. If $h \neq 0$, then it is a nonzero polynomial with degree $\leq n$ which has $n+1$ distinct roots, which contradicts the previous theorem. Hence, h must necessarily be the zero polynomial, which implies that $f=g$.

Definition 11.10. A polynomial in $k[x]$ is called a monic polynomial if its leading coefficient is 1 .

Corollary 11.11. Let k be a field. Let f, g be nonzero polynomials in $k[x]$. There exists a unique monic polynomial $d \in k[x]$ with the following property:

1. $(f, g)=(d)$

Moreover, this d also satisfies the following properties:
2. d divides both f and g, i.e., there exists $a, b \in k[x]$ such that $f=a d, g=b d$.
3. There are polynomials $p, q \in k[x]$ such that $d=p f+q g$.
4. If $h \in k[x]$ is a divisor of f and g, then h divides d.

Terminology.

- The unique monic $d \in k[x]$ which satisfies property 1 is called the Greatest Common Divisor (abbrev. GCD) of f and g.
- We say that f and g are relatively prime if their GCD is 1 .

Proof of Corollary 11.11. 1. By Theorem 10.18, there exists $d=\sum_{i=0}^{n} a_{i} x^{i} \in$ $k[x]$ such that $(d)=(f, g)$. Replacing d by $a_{n}^{-1} d$ if necessary, we may assume that d is a monic polynomial. It remains to show that d is unique.
Suppose $(d)=\left(d^{\prime}\right)$, where both d and d^{\prime} are monic polynomials. Then, there exist nonzero $p, q \in k[x]$ such that:

$$
d^{\prime}=p d, \quad d=q d^{\prime} .
$$

Examining the degrees of the polynomials, we have:

$$
\operatorname{deg} d^{\prime}=\operatorname{deg} d+\operatorname{deg} p
$$

and:

$$
\operatorname{deg} d=\operatorname{deg} q+\operatorname{deg} d^{\prime}=\operatorname{deg} p+\operatorname{deg} q+\operatorname{deg} d
$$

This implies that $\operatorname{deg} p+\operatorname{deg} q=0$. Hence, p and q must both have degree 0 ; in other words, they are constant polynomials. Moreover, we have $\operatorname{deg} d=$ $\operatorname{deg} d^{\prime}$. Comparing the leading coefficients of d^{\prime} and $p d$, we have $p=1$. Hence, $d=d^{\prime}$.
2. Clear.
3. Clear.
4. By Part 3 of the corollary, there are $p, q \in k[x]$ such that $d=p f+q g$. It is then clear that if h divides both f and g, then h must divide d.

Definition 11.12. Let R be a commutative ring. A nonzero element $p \in R$ which is not a unit is said to be irreducible if $p=a b$ implies that either a or b is a unit.

Example 11.13. The set of irreducible elements in the ring \mathbb{Z} is $\{ \pm p: p$ a prime number $\}$.
Let k be a field.
Lemma 11.14. A polynomial $f \in k[x]$ is a unit if and only if it is a nonzero constant polynomial.

Proof of Lemma 11.14. Exercise.

Claim 11.15. A nonzero nonconstant polynomial $p \in k[x]$ is irreducible if and only if there is no $f, g \in k[x]$, with $\operatorname{deg} f, \operatorname{deg} g<\operatorname{deg} p$, such that $f g=p$.

Proof of Claim 11.15. Suppose p is irreducible, and $p=f g$ for some $f, g \in k[x]$ such that $\operatorname{deg} f, \operatorname{deg} g<\operatorname{deg} p$. Then $p=f g$ implies that $\operatorname{deg} f$ and $\operatorname{deg} g$ are both positive. By the previous lemma, both f and g are non-units, which is a contradiction, since the irreducibility of p implies that either f or g must be a unit.

Conversely, suppose p is a nonzero non-unit in $k[x]$, which is not equal to $f g$ for any $f, g \in k[x]$ with $\operatorname{deg} f, \operatorname{deg} g<\operatorname{deg} p$. Then, $p=a b, a, b \in k[x]$, implies that either a or b must have the same degree as p, and the other factor must be a nonzero constant, in other words a unit in $k[x]$. Hence, p is irreducible.

Lemma 11.16 (Euclid's Lemma). Let k be a field. Let f, g be polynomials in $k[x]$. Let p be an irreducible polynomial in $k[x]$. If $p \mid f g$ in $k[x]$, then $p \mid f$ or $p \mid g$.

Proof of Euclid's Lemma. Suppose $p \nmid f$. Then, any common divisor of p and f must have degree strictly less than $\operatorname{deg} p$. Since p is irreducible, this implies that any common divisor of p and f is a nonzero constant. Hence, the GCD of p and f is 1 . By Corollary 11.11, there exist $a, b \in k[x]$ such that:

$$
a p+b f=1 .
$$

Multiplying both sides of the above equation by g, we have:

$$
a p g+b f g=g .
$$

Since p divides the left-hand side of the above equation, it must also divide the right-hand side, which is the polynomial g.

Claim 11.17. If $f, g \in k[x]$ are relatively prime, and both divide $h \in k[x]$, then $f g \mid h$.

Proof of Claim 11.17. Exercise.

Theorem 11.18 (Unique Factorization). Let k be a field. Every nonconstant polynomial $f \in k[x]$ may be written as:

$$
f=c p_{1} \cdots p_{n}
$$

where c is a nonzero constant, and each p_{i} is a monic irreducible polynomial in $k[x]$. The factorization is unique up to the ordering of the factors.

Proof of Unique Factorization. Exercise. One possible approach is very similar to the proof of unique factorization for \mathbb{Z}. See: Theorem 6.14 (The Fundamental Theorem of Arithmetic).

Exercise 11.19. 1. WeBWorK

Theorem 11.20. Let k be a field. Let p be a polynomial in $k[x]$. The following statements are equivalent:

1. $k[x] /(p)$ is a field.
2. $k[x] /(p)$ is an integral domain.
3. p is irreducible in $k[x]$.

Remark. Compare this result with Exercise 8.11 and Corollary 8.16.
Proof of Theorem 11.20. 1. $1 \Rightarrow 2$: Clear, since every field is an integral domain.
2. $2 \Rightarrow 3$: If p is not irreducible, there exist $f, g \in k[x]$, with degrees strictly less than that of p, such that $p=f g$. Since $\operatorname{deg} f, \operatorname{deg} g<\operatorname{deg} p$, the polynomial p does not divide f or g in $k[x]$. Consequently, the congruence classes \bar{f} and \bar{g} of f and g, respectively, modulo (p) is not equal to zero in $k[x] /(p)$. On the other hand, $\bar{f} \cdot \bar{g}=\overline{f g}=\bar{p}=0$ in $k[x] /(p)$. This implies that $k[x] /(p)$ is not an integral domain, a contradiction. Hence, p is irreducible if $k[x] /(p)$ is an integral domain.
3. $3 \Rightarrow 1$: By definition, the multiplicative identity element 1 of a field is different from the additive identity element 0 . So we need to check that the congruence class of $1 \in k[x]$ in $k[x] /(p)$ is not 0 . Since p is irreducible, by definition we have $\operatorname{deg} p>0$. Hence, $1 \notin(p)$, for a polynomial of degree >0 cannot divide a polynomial of degree 0 in $k[x]$. We conclude that $1+(p) \neq 0+(p)$ in $k[x] /(p)$.
Next, we need to prove the existence of the multiplicative inverse of any nonzero element in $k[x] /(p)$. Given any $f \in k[x]$ whose congruence class \bar{f} modulo (p) is nonzero in $k[x] /(p)$, we want to find its multiplicative inverse \bar{f}^{-1}. If $\bar{f} \neq 0$ in $k[x] /(p)$, then by definition $f-0 \notin(p)$, which means that p does not divide f. Since p is irreducible, this implies that $G C D(p, f)=1$. By Corollary 11.11 there exist $g, h \in k[x]$ such that $f g+h p=1$. It is then clear that $\bar{g}=\bar{f}^{-1}$, since $f g-1=-h p$ implies that $f g-1 \in(p)$, which by definition means that $\bar{f} \cdot \bar{g}=\overline{f g}=1$ in $k[x] /(p)$.

Example 11.21. The rings $\mathbb{R}[x] /\left(x^{2}+1\right)$ and \mathbb{C} are isomorphic.
Proof of Example 11.21. Define a map $\phi: \mathbb{R}[x] \longrightarrow \mathbb{C}$ as follows:

$$
\phi\left(\sum_{k=0}^{n} a_{k} x^{k}\right)=\sum_{k=0}^{n} a_{k} i^{k} .
$$

Exercise: ϕ is a homomorphism.
For all $a+b i(a, b \in \mathbb{R})$ in \mathbb{C}, we have:

$$
\phi(a+b x)=a+b i .
$$

Hence, ϕ is surjective.
We now find ker ϕ. Since $\mathbb{R}[x]$ is a PID (see Definition 10.15). There exists $p \in \mathbb{R}[x]$ such that $\operatorname{ker} \phi=(p)$.

Observe that $\phi\left(x^{2}+1\right)=0$. So, $x^{2}+1 \in \operatorname{ker} \phi$, which implies that there exists $q \in \mathbb{R}[x]$ such that $x^{2}+1=p q$. Since $x^{2}+1$ has no real roots, neither p or q can be of degree 1 .

So, one of p or q must be a nonzero constant polynomial. p cannot be a nonzero constant polynomial, for that would imply that $\operatorname{ker} \phi=\mathbb{R}[x]$. So, q is a constant, which implies that $p=q^{-1}\left(x^{2}+1\right)$. We conclude that $\operatorname{ker} \phi=\left(x^{2}+1\right)$.

It now follows from the First Isomorphism Theorem that $\mathbb{R}[x] /\left(x^{2}+1\right) \cong$ \mathbb{C}.

