Math 2070 Week 8

Rings, Integral Domains, Fields

8.1 Integral Domains, Units

Definition 8.1. A ring R is said to be commutative if ab = ba for all $a, b \in R$.

Example 8.2. For a fixed natural number n > 1, the ring of $n \times n$ matrices with integer coefficients, under the usual operations of addition and multiplication, is not commutative.

Example 8.3. Let m be a natural number greater than 1. Let $\mathbb{Z}_m = \{0, 1, 2, ..., m-1\}$. Recall that for any integer $n \in \mathbb{Z}$, there exists a unique $\overline{n} \in \mathbb{Z}_m$, such that $n \equiv \overline{n} \mod m$. More precisely, \overline{n} is the remainder of the division of of n by m: n = mq + r. We equip \mathbb{Z}_m with addition $+_m$ and multiplication \times_m defined as follows: For $a, b \in \mathbb{Z}_m$, let:

$$a +_m b = \overline{a + b},$$
$$a \times_m b = \overline{a \cdot b},$$

where the addition and multiplication on the right are the usual addition and multiplication for integers.

Claim 8.4. With addition and multiplication thus defined, \mathbb{Z}_m is a commutative ring.

- *Proof.* 1. For $a, b \in \mathbb{Z}_m$, we have $a +_m b = a + b = b + a = b +_m a$, since addition for integers is commutative. So, $+_m$ is commutative.
 - 2. For any $r_1, r_2 \in \mathbb{Z}$, by Claim 6.17 and Theorem 6.19, we have

$$r_1 \equiv \overline{r_1} \mod m, \quad r_2 \equiv \overline{r_2} \mod m,$$

and:

$$\overline{r_1+r_2} \equiv r_1+r_2 \equiv \overline{r_1}+\overline{r_2} \equiv \overline{\overline{r_1}+\overline{r_2}} \mod m.$$

For $a, b, c \in \mathbb{Z}_m$, we have:

$$a +_m (b +_m c) = a +_m b + c$$
$$= \overline{a + \overline{b + c}}$$
$$= \overline{\overline{a + \overline{b + c}}}$$
$$= \overline{a + (b + c)}$$

But a+(b+c) is equal to (a+b)+c, since addition for integers is associative. Hence, the above expression is equal to:

$$\overline{(a+b)+c} = \overline{\overline{(a+b)}+\overline{c}}$$
$$= \overline{\overline{a+b}+c}$$
$$= \overline{(a+mb)+c}$$
$$= (a+mb)+mc.$$

We conclude that $+_m$ is associative.

- 3. Exercise: We can take 0 to be the additive identity element.
- 4. For each nonzero element $a \in \mathbb{Z}_m$, we can take the additive inverse of a to be m a. Indeed, $a +_m (-a) = \overline{a + (m a)} = \overline{m} = 0$.
- 5. By the same reasoning used in the case of addition, for $r_1, r_2 \in \mathbb{Z}$, we have

$$\overline{r_1 r_2} \equiv r_1 r_2 \equiv \overline{r_1} \cdot \overline{r_2} \equiv \overline{\overline{r_1} \cdot \overline{r_2}} \mod m.$$

For $a, b, c \in \mathbb{Z}_m$, we have:

$$a \times_m (b \times_m c) = a \times_m \overline{bc} = \overline{a} \cdot \overline{bc} = \overline{a(bc)},$$

which by the associativity of multiplication for integers is equal to:

$$\overline{(ab)c} = \overline{ab} \cdot \overline{c} = \overline{ab} \times_m c = (a \times_m b) \times_m c.$$

So, \times_m is associative.

- 6. **Exercise:** We can take 1 to be the multiplicative identity.
- 7. For $a, b \in \mathbb{Z}_m$, $a \times_m b = \overline{a \cdot b} = \overline{b \cdot a} = b \times_m a$. So \times_m is commutative.
- 8. Lastly, we need to prove distributativity. For $a, b, c \in \mathbb{Z}_m$, we have:

$$a \times_m (b +_m c) = \overline{a} \cdot \overline{b + c}$$

= $\overline{a \cdot (b + c)}$
= $\overline{ab + ac}$
= $\overline{\overline{ab} + \overline{ac}}$
= $a \times_m b +_m a \times_m c.$

It now follows from the distributativity from the left, proven above, and the commutativity of \times_m , that distributativity from the right also holds:

$$(a +_m b) \times_m c = a \times_m c + b \times_m c.$$

Definition 8.5. A nonzero commutative ring R is an **integral domain** if the product of two nonzero elements is always nonzero.

Definition 8.6. A nonzero element r in a ring R is called a **zero divisor** if there exists nonzero $s \in R$ such that rs = 0 or sr = 0.

Note. A nonzero commutative ring R is an integral domain if and only if it has no zero divisors.

Example 8.7. Since $2, 3 \neq 0$ in \mathbb{Z}_6 , but $2 \times_6 3 = \overline{6} = 0$, the ring \mathbb{Z}_6 is not an integral domain.

Claim 8.8. A commutative ring R is an integral domain if and only if the **cancellation law** holds for multiplication. That is: Whenever ca = cb and $c \neq 0$, we have a = b.

Proof. Suppose R is an integral domain.

If ca = cb, then by distributativity c(a - b) = c(a + -b) = 0. Since R is an integral domain, we have either c = 0 or a - b = 0. So, if $c \neq 0$, we must have a = b.

Conversely, suppose cancellation law holds. It suffices to show that whenever we have $a, b \in R$ such that ab = 0 and $a \neq 0$, then we must have b = 0.

By a previous result we know that 0 = a0. So, ab = a0, which by the cancellation law implies that b = 0.

Note.

If every nonzero element of a commutative ring has a multiplicative inverse, then that ring is an integral domain:

$$ca = cb \implies c^{-1}ca = c^{-1}cb \implies a = b.$$

However, a nonzero element of an integral domain does not necessarily have a multiplicative inverse.

Example 8.9. The ring \mathbb{Z} is an integral domain, for the product of two nonzero integers is nonzero. So, the cancellation law holds for \mathbb{Z} , but the only nonzero elements in \mathbb{Z} which have multiplicative inverses are ± 1 .

Example 8.10. The ring $\mathbb{Q}[x]$ is an integral domain.

Exercise 8.11. Show that: For m > 1, \mathbb{Z}_m is an integral domain if and only if m is a prime.

Example 8.12. Consider R = C[-1, 1], the ring of all continuous functions on [-1, 1], equipped with the usual operations of addition and multiplication for functions.

Let:

$$f(x) = \begin{cases} -x, & -1 \le x \le 0, \\ 0, & 0 < x \le 1. \end{cases}, \quad g(x) = \begin{cases} 0, & -1 \le x \le 0, \\ x, & 0 < x \le 1. \end{cases}$$

Then f and g are nonzero elements of R, but fg = 0. So R is not an integral domain.

Definition 8.13. We say that an element $r \in R$ is a **unit** if it has a multiplicative inverse; i.e. there is an element $r^{-1} \in R$ such that $rr^{-1} = r^{-1}r = 1$.

Example 8.14. Consider $4 \in \mathbb{Z}_{25}$. Since $4 \cdot 19 = 76 \equiv 1 \mod 25$, we have $4^{-1} = 19$ in \mathbb{Z}_{25} . So, 4 is a unit in \mathbb{Z}_{25} .

On the other hand, consider $10 \in \mathbb{Z}_{25}$. Since $10 \cdot 5 = 50 \equiv 0 \mod 25$, we have $10 \cdot 5 = 0$ in \mathbb{Z}_{25} . If 10^{-1} exists, then by the associativity of multiplication, we would have:

$$5 = (10^{-1} \cdot 10) \cdot 5 = 10^{-1} \cdot (10 \cdot 5) = 10^{-1} \cdot 0 = 0,$$

a contradiction. So, 10 is not a unit in \mathbb{Z}_{25} .

Claim 8.15. Let $m \in \mathbb{N}$ be greater than one. Then, $r \in \mathbb{Z}_m$ is a unit if and only if r and m are relatively prime; i.e. gcd(r, m) = 1.

Proof. Suppose $r \in \{0, 1, 2, ..., m - 1\}$ is a unit in \mathbb{Z}_m , then there exists $r^{-1} \in \mathbb{Z}_m$ such that $r \cdot r^{-1} \equiv 1 \mod m$.

In other words, there exists $x \in \mathbb{Z}$ such that $r \cdot r^{-1} - 1 = mx$, or $r \cdot r^{-1} - mx = 1$. This implies that if there is an integer d such that d|r and d|m, then d must also divide 1. Hence, the GCD of r and m is 1.

Conversely, if gcd(r, m) = 1, then there exists $x, y \in \mathbb{Z}$ such that rx + my = 1. It follows that $r^{-1} = \overline{x}$ is a multiplicative inverse of r. Here, $\overline{x} \in \mathbb{Z}_m$ is the remainder of the division of x by m.

Corollary 8.16. For p prime, every nonzero element of \mathbb{Z}_p is a unit.

Example 8.17. *The only units of* \mathbb{Z} *are* ± 1 *.*

Example 8.18. Let R be the ring of all real-valued functions on \mathbb{R} . Then, any function $f \in R$ satisfying $f(x) \neq 0$, $\forall x$, is a unit.

Example 8.19. Let R be the ring of all continuous real-valued functions on \mathbb{R} , then $f \in R$ is a unit if and only if it is either strictly positive or strictly negative.

Claim 8.20. The only units of $\mathbb{Q}[x]$ are nonzero constants.

Proof. Given any $f \in \mathbb{Q}[x]$ such that deg f > 0, for all nonzero $g \in \mathbb{Q}[x]$ we have

$$\deg fg \ge \deg f > 0 = \deg 1;$$

hence, $fg \neq 1$. If g = 0, then $fg = 0 \neq 1$. So, f has no multiplicative inverse.

If f is a nonzero constant, then $f^{-1} = \frac{1}{f}$ is a constant polynomial in $\mathbb{Q}[x]$, and $f \cdot \frac{1}{f} = \frac{1}{f} \cdot f = 1$. So, f is a unit.

Finally, if f = 0, then $fg = 0 \neq 1$ for all $g \in \mathbb{Q}[x]$, so the zero polynomial has no multiplicative inverse.

8.1.1 WeBWorK

- 1. WeBWorK
- 2. WeBWorK
- 3. WeBWorK
- 4. WeBWorK
- 5. WeBWorK

8.2 Fields

Definition 8.21. A field is a commutative ring, with $1 \neq 0$, in which every nonzero element is a unit.

In other words, a nonzero commutative ring F is a field if and only if every nonzero element $r \in F$ has a multiplicative inverse r^{-1} , i.e. $rr^{-1} = r^{-1}r = 1$.

Since every nonzero element of a field is a unit, a field is necessarily an integral domain, but an integral domain is not necessarily a field. For example \mathbb{Z} is an integral domain which is not a field.

Example 8.22. *1.* \mathbb{Q} , \mathbb{R} are fields.

2. For $m \in \mathbb{N}$, it follows from a previous result that \mathbb{Z}_m is a field if and only if *m* is prime.

Notation For *p* prime, we often denote the field \mathbb{Z}_p by \mathbb{F}_p .

Claim 8.23. Equipped with the usual operations of addition and multiplications for real numbers, $F = \mathbb{Q}[\sqrt{2}] := \{a + b\sqrt{2}|a, b \in \mathbb{Q}\}$ is a field.

Proof. Observe that: $(a + b\sqrt{2}) + (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2}$ lies in F, and $(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2} \in F$. Hence, addition and multiplication for real numbers are well-defined operations on F. As operations on \mathbb{R} , they are commutative, associative, and satisfy distributativity; therefore, as F is a subset of \mathbb{R} , they also satisfy these properties as operations on F.

It is clear that 0 and 1 are the additive and multiplicative identities of F. Given $a + b\sqrt{2} \in F$, where $a, b \in \mathbb{Q}$, it is clear that its additive inverse $-a - b\sqrt{2}$ also lies in F. Hence, F is a commutative ring.

To show that F is a field, for every nonzero $a + b\sqrt{2}$ in F, we need to find its multiplicative inverse. As an element of the field \mathbb{R} , the multiplicative inverse of $a + b\sqrt{2}$ is:

$$(a+b\sqrt{2})^{-1} = \frac{1}{a+b\sqrt{2}}.$$

It remains to show that this number lies in F. Observe that:

$$(a + b\sqrt{2})(a - b\sqrt{2}) = a^2 - 2b^2.$$

We claim that $a^2 - 2b^2 \neq 0$.

Suppose $a^2 - 2b^2 = 0$, then either (i) a = b = 0, or (ii) $b \neq 0$, $\sqrt{2} = |a/b|$. Since we have assumed that $a + b\sqrt{2}$ is nonzero, case (i) cannot hold.

But case (ii) also cannot hold because $\sqrt{2}$ is known to be irrational. Hence $a^2 - 2b^2 \neq 0$, and:

$$\frac{1}{a+b\sqrt{2}} = \frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2}\sqrt{2},$$

which lies in F.

Claim 8.24. All finite integral domains are fields.

Proof. Let R be an integral domain with n elements, where n is finite. Write $R = \{a_1, a_2, \ldots, a_n\}.$

We want to show that for any nonzero element $a \neq 0$ in R, there exists i, $1 \leq i \leq n$, such that a_i is the multiplicative inverse of a.

Consider the set $S = \{aa_1, aa_2, \dots, aa_n\}$. Since R is an integral domain, the cancellation law holds. In particular, since $a \neq 0$, we have $aa_i = aa_j$ if and only if i = j.

The set S is therefore a subset of R with n distinct elements, which implies that S = R.

In particular, $1 = aa_i$ for some *i*. This a_i is the multiplicative inverse of *a*. \Box

8.2.1 Field of Fractions

An integral domain fails to be a field precisely when there is a nonzero element with no multiplicative inverse. The ring \mathbb{Z} is such an example, for $2 \in \mathbb{Z}$ has no multiplicative inverse.

But any nonzero $n \in \mathbb{Z}$ has a multiplicative inverse $\frac{1}{n}$ in \mathbb{Q} , which is a field.

So, a question one could ask is, can we "enlarge" a given integral domain to a field, by formally adding multiplicative inverses to the ring?

An Equivalence Relation

Given an integral domain R (commutative, with $1 \neq 0$). We consider the set: $R \times R_{\neq 0} := \{(a, b) : a, b \in R, b \neq 0\}$. We define a relation \equiv on $R \times R_{\neq 0}$ as follows:

$$(a,b) \equiv (c,d)$$
 if $ad = bc$.

Lemma 8.25. The relation \equiv is an equivalence relation. In other words, the relation \equiv is:

- *1.* **Reflexive:** $(a, b) \equiv (a, b)$ for all $(a, b) \in R \times R_{\neq 0}$
- 2. Symmetric: If $(a, b) \equiv (c, d)$, then $(c, d) \equiv (a, b)$.

3. Transitive: If $(a, b) \equiv (c, d)$ and $(c, d) \equiv (e, f)$, then $(a, b) \equiv (e, f)$.

7

Proof. Exercise.

Due to the properties (reflexive, symmetric, transitive), of an equivalence relation, the equivalent classes form a **partition** of S. Namely, equivalent classes of non-equivalent elements are disjoint:

$$[s] \cap [t] = \emptyset$$

if $s \not\sim t$; and the union of all equivalent classes is equal to S:

$$\bigcup_{s \in S} [s] = S.$$

Definition 8.26. Given an equivalence relation \sim on a set S, the **quotient set** S/\sim is the set of all equivalence classes of S, with respect to \sim .

We now return to our specific situation of $R \times R_{\neq 0}$, with \equiv defined as above. We define addition + and multiplication \cdot on $R \times R_{\neq 0}$ as follows:

$$(a, b) + (c, d) := (ad + bc, bd)$$

 $(a, b) \cdot (c, d) := (ac, bd)$

Claim 8.27. Suppose $(a, b) \equiv (a', b')$ and $(c, d) \equiv (c', d')$, then:

- 1. $(a,b) + (c,d) \equiv (a',b') + (c',d').$
- 2. $(a,b) \cdot (c,d) \equiv (a',b') \cdot (c',d')$.

Proof. By definition, (a, b) + (c, d) = (ad + bc, bd), and (a', b') + (c', d') = (a'd' + b'c', b'd'). Since by assumption ab' = a'b and cd' = c'd,

we have:

$$(ad + bc)b'd' = adb'd' + bcb'd' = a'bdd' + c'dbb' = (a'd' + b'c')bd;$$

hence, $(a, b) + (c, d) \equiv (a', b') + (c', d')$.

For multiplication, by definition we have $(a, b) \cdot (c, d) = (ac, bd)$ and $(a', b') \cdot (c', d') = (a'c', b'd')$.

Since

$$acb'd' = ab'cd' = a'bc'd = a'c'bd,$$

we have $(a, b) \cdot (c, d) \equiv (a', b') \cdot (c', d')$.

Let:

 $\operatorname{Frac}(R) := (R \times R_{\neq 0}) / \equiv,$

and define + and \cdot on Frac(R) as follows:

$$[(a,b)] + [(c,d)] = [(ad + bc, bd)]$$
$$[(a,b)] \cdot [(c,d)] = [(ac,bd)]$$

Corollary 8.28. + and \cdot thus defined are well-defined binary operations on Frac(R). In other words, we get the same output in Frac(R) regardless of the choice of representatives of the equivalence classes.

Claim 8.29. The set Frac(R), equipped with + and \cdot defined as above, forms a field, with additive identity 0 = [(0,1)] and multiplicative identity 1 = [(1,1)]. The multiplicative inverse of a nonzero element $[(a,b)] \in Frac(R)$ is [(b,a)].

Proof. Exercise.

Definition 8.30. Frac(R) is called the **Fraction Field** of R.

Note.

 $\operatorname{Frac}(\mathbb{Z}) = \mathbb{Q}$, if we identify $a/b \in \mathbb{Q}$, $a, b \in \mathbb{Z}$, with $[(a, b)] \in \operatorname{Frac}(\mathbb{Z})$.

8.2.2 WeBWorK

- 1. WeBWorK
- 2. WeBWorK
- 3. WeBWorK
- 4. WeBWorK
- 5. WeBWorK
- 6. WeBWorK
- 7. WeBWorK
- 8. WeBWorK
- 9. WeBWorK
- 10. **WeBWorK**