
Math 2070 Week 4

Lagrange’s Theorem, Generators, Group Homomorphisms

4.1 Lagrange’s Theorem
Theorem 4.1 (Lagrange’s Theorem). Let G be a finite group. Let H be subgroup
of G, then |H| divides |G|. More precisely, |G| = [G : H] · |H|.

Proof. We already know that the left cosets of H partition G. That is:

G = a1H t a2H t . . . t a[G:H]H,

where aiH ∩ ajH = ∅ if i 6= j. Hence, |G| =
∑[G:H]

i=1 |aiH|.
The theorem follows if we show that the size of each left coset of H is equal

to |H|.
For each left coset S of H , pick an element a ∈ S, and define a map ψ :

H −→ S as follows:
ψ(h) = ah.

We want to show that ψ is bijective.
For any s ∈ S, by definition of a left coset (as an equivalence class) we have

s = ah for some h ∈ H . Hence, ψ is surjective.
If ψ(h′) = ah′ = ah = ψ(h) for some h′, h ∈ H , then h′ = a−1ah′ =

a−1ah = h. Hence, ψ is one-to-one.
So we have a bijection between two finite sets. Hence, |S| = |H|.

Corollary 4.2. Let G be a finite group. The order of every element of G divides
the order of G.

Since G is finite, any element of g ∈ G has finite order ord g. Since the order
of the subgroup:

H = 〈g〉 = {e, g, g2, . . . , g(ord g)−1}
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is equal to ord g, it follows from Lagrange’s Theorem that ord g = |H| divides
|G|.

Corollary 4.3. If the order of a group G is prime, then G is a cyclic group.
Proof shown in class

Corollary 4.4. If a group G is finite, then for all g ∈ G we have:

g|G| = e.

Proof shown in class

Corollary 4.5. Let G be a finite group. Then a nonempty subset H of G is a
subgroup of G if and only if it is closed under the group operation of G (i.e.
ab ∈ H for all a, b ∈ H).

Proof. It is easy to see that if H is a subgroup, then it is closed under the group
operation. The other direction is left as an Exercise.

Example 4.6. Let n be an integer greater than 1. The group An of even permuta-

tions on a set of n elements (see Example 3.4) has order
n!
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.

Proof. View An as a subgroup of Sn, which has order n!.
Exercise: Show that Sn = An t (12)An.
Hence, we have [Sn : An] = 2.
It now follows from Lagrange’s Theorem that:

|An| =
|Sn|

[Sn : An]
=
n!
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4.1.1 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK
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4.2 Generators
Let G be a group, X a nonempty subset of G. The subset of G consisting of
elements of the form:

gm1
1 gm2

2 · · · gmn
n , where n ∈ N, gi ∈ X,mi ∈ Z,

is a subgroup of G. We say that it is the subgroup of G generated by X . If
X = {x1, x2, . . . , xl}, l ∈ N. We often write:

〈x1, x2, . . . , xl〉

to denote the subgroup generated by X .

Example 4.7. In Dn, {r0, r1, . . . , rn−1} = 〈r1〉.

If there exists a finite number of elements x1, x2, . . . , xl ∈ G such that G =
〈x1, x2, . . . , xl〉, we say that G is finitely generated.

For example, every cyclic group is finitely generated, for it is generated by one
element.

Every finite group is finitely generated, since we may take the finite generating
set X to be G itself.

Example 4.8. Consider G = D3, and its subgroup H = {r0, r1, r2} consisting
of its rotations. (We use the convention that rk is the anticlockwise rotation by an
angle of 2πk/3).

By Lagrange’s Theorem, the index of H in G is [G : H] = |G| / |H| = 2. This
implies that G = H t gH for some g ∈ G. Since gH = H if g ∈ H , we may
conclude that g /∈ H . So, g is a reflection.

Conversely, for any reflection s ∈ D3, the left coset sH is disjoint from H . We
have therefore G = Hts1H = Hts2H = Hts3H , which implies that s1H =
s2H = s3H .

In particular, for a fixed s = si, any element in G is either a rotation or equal
to sri for some rotation ri. Since H is a cyclic group, generated by the rotation
r1, we have D3 = 〈r1, s〉, where s is any reflection in D3.

4.3 Group Homomorphisms
Definition 4.9. Let G = (G, ∗), G′ = (G′, ∗′) be groups. A group homomor-
phism φ from G to G′ is a map φ : G −→ G′ which satisfies:

φ(a ∗ b) = φ(a) ∗′ φ(b),

for all a, b ∈ G.
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Claim 4.10. If φ : G −→ G′ is a group homomorphism, then:

1. φ(eG) = eG′ .

2. φ(g−1) = φ(g)−1, for all g ∈ G.

3. φ(gn) = φ(g)n, for all g ∈ G, n ∈ Z.

Proof. We prove the first claim, and leave the rest as an exercise. Since eG is the
identity element of G, we have eG ∗ eG = eG. On the other hand, since φ is a
group homomorphism, we have:

φ(eG) = φ(eG ∗ eG) = φ(eG) ∗′ φ(eG).

Since G′ is a group, φ(eG)−1 exists in G′, hence:

φ(eG)
−1 ∗′ φ(eG) = φ(eG)

−1 ∗′ (φ(eG) ∗′ φ(eG))

The left-hand side is equal to eG′ , while by the associativity of ∗′ the right-hand
side is equal to φ(eG).

Let φ : G −→ G′ be a homomorphism of groups. The image of φ is defined
as:

imφ := φ(G) := {φ(g) : g ∈ G} ⊆ G′

The kernel of φ is defined as:

kerφ = {g ∈ G : φ(g) = eG′} ⊆ G.

Claim 4.11. The image of φ is a subgroup of G′. The kernel of φ is a subgroup of
G.

Claim 4.12. A group homomorphism φ : G −→ G′ is one-to-one if and only if
kerφ = {eG}.

Proof shown in class

Example 4.13 (Examples of Group Homomorphisms). • φ : Sn −→ ({±1}, ·),

φ(σ) =

{
1, σ is an even permutation.
−1, σ is an odd permutation.

kerφ = An.

• det : GL(n,R) −→ (R×, ·)
ker det = SL(n,R).
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• Let G be the (additive) group of all real-valued continuous functions on
[0, 1].

φ : G −→ (R,+)

φ(f) =

∫ 1

0

f(x) dx.

• φ : (R,+) −→ (R×, ·).
φ(x) = ex.

Definition 4.14. Let G, G′ be groups. A map φ : G −→ G′ is a group isomor-
phism if it is a bijective group homomorphism.

Note that if a homomorphism φ is bijective, then φ−1 : G′ −→ G is also
a homomorphism, and consequently, φ−1 is an isomorphism. If there exists an
isomorphism between two groups G and G′, we say that the groups G and G′ are
isomorphic.

Example 4.15. Recall Definition 3.1 and Exercise 3.2.
Let n > 2. Let H = {r0, r1, r2, . . . , rn−1} be the subgroup of Dn consisting of

all rotations, where r1 denotes the anticlockwise rotation by the angle 2π/n, and
rk = rk1 . Then, H is isomorphic to Zn = (Zn,+Zn).

Proof. Define φ : H −→ Zn as follows:

φ(rk) = k, k ∈ {0, 1, 2, . . . , n− 1}.

For any k ∈ Z, let k ∈ {0, 1, 2, . . . , n − 1} denote the remainder of the division
of k by n. By the Division Theorem for Integers, we have:

k = nq + k

for some integer q ∈ Z.
It now follows from ord r1 = n that, for all ri, rj ∈ H , we have:

rirj = ri1r
j
1 = ri+j

1

= rnq+i+j
1

= (rn1 )
q ri+j

1

= ri+j.

Hence,

φ(rirj) = φ(ri+j)

= i+ j

= i+Zn j

= φ(ri) +Zn φ(rj).
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This shows that φ is a homomorphism. It is clear that φ is surjective, which
then implies that φ is one-to-one, for the two groups have the same size. Hence,
φ is a bijective homomorphism, i.e. an isomorphism.

6


	Lagrange's Theorem
	WeBWorK

	Generators
	Group Homomorphisms

