Math 2070 Week 4

Lagrange's Theorem, Generators, Group Homomorphisms

4.1 Lagrange's Theorem

Theorem 4.1 (Lagrange's Theorem). Let G be a finite group. Let H be subgroup of G, then $|H|$ divides $|G|$. More precisely, $|G|=[G: H] \cdot|H|$.

Proof. We already know that the left cosets of H partition G. That is:

$$
G=a_{1} H \sqcup a_{2} H \sqcup \ldots \sqcup a_{[G: H]} H,
$$

where $a_{i} H \cap a_{j} H=\emptyset$ if $i \neq j$. Hence, $|G|=\sum_{i=1}^{[G: H]}\left|a_{i} H\right|$.
The theorem follows if we show that the size of each left coset of H is equal to $|H|$.

For each left coset S of H, pick an element $a \in S$, and define a map ψ : $H \longrightarrow S$ as follows:

$$
\psi(h)=a h .
$$

We want to show that ψ is bijective.
For any $s \in S$, by definition of a left coset (as an equivalence class) we have $s=a h$ for some $h \in H$. Hence, ψ is surjective.

If $\psi\left(h^{\prime}\right)=a h^{\prime}=a h=\psi(h)$ for some $h^{\prime}, h \in H$, then $h^{\prime}=a^{-1} a h^{\prime}=$ $a^{-1} a h=h$. Hence, ψ is one-to-one.

So we have a bijection between two finite sets. Hence, $|S|=|H|$.
Corollary 4.2. Let G be a finite group. The order of every element of G divides the order of G.

Since G is finite, any element of $g \in G$ has finite order ord g. Since the order of the subgroup:

$$
H=\langle g\rangle=\left\{e, g, g^{2}, \ldots, g^{(\operatorname{ord} g)-1}\right\}
$$

is equal to ord g, it follows from Lagrange's Theorem that ord $g=|H|$ divides $|G|$.

Corollary 4.3. If the order of a group G is prime, then G is a cyclic group.
Proof shown in class
Corollary 4.4. If a group G is finite, then for all $g \in G$ we have:

$$
g^{|G|}=e .
$$

Proof shown in class

Corollary 4.5. Let G be a finite group. Then a nonempty subset H of G is a subgroup of G if and only if it is closed under the group operation of G (i.e. $a b \in H$ for all $a, b \in H$).

Proof. It is easy to see that if H is a subgroup, then it is closed under the group operation. The other direction is left as an Exercise.

Example 4.6. Let n be an integer greater than 1 . The group A_{n} of even permutations on a set of n elements (see Example 3.4) has order $\frac{n!}{2}$.
Proof. View A_{n} as a subgroup of S_{n}, which has order $n!$.
Exercise: Show that $S_{n}=A_{n} \sqcup(12) A_{n}$.
Hence, we have $\left[S_{n}: A_{n}\right]=2$.
It now follows from Lagrange's Theorem that:

$$
\left|A_{n}\right|=\frac{\left|S_{n}\right|}{\left[S_{n}: A_{n}\right]}=\frac{n!}{2} .
$$

4.1.1 WeBWorK

1. WeBWorK
2. WeBWorK
3. WeBWorK
4. WeBWorK

4.2 Generators

Let G be a group, X a nonempty subset of G. The subset of G consisting of elements of the form:

$$
g_{1}^{m_{1}} g_{2}^{m_{2}} \cdots g_{n}^{m_{n}}, \quad \text { where } \quad n \in \mathbb{N}, g_{i} \in X, m_{i} \in \mathbb{Z}
$$

is a subgroup of G. We say that it is the subgroup of G generated by X. If $X=\left\{x_{1}, x_{2}, \ldots, x_{l}\right\}, l \in \mathbb{N}$. We often write:

$$
\left\langle x_{1}, x_{2}, \ldots, x_{l}\right\rangle
$$

to denote the subgroup generated by X.
Example 4.7. In $D_{n},\left\{r_{0}, r_{1}, \ldots, r_{n-1}\right\}=\left\langle r_{1}\right\rangle$.
If there exists a finite number of elements $x_{1}, x_{2}, \ldots, x_{l} \in G$ such that $G=$ $\left\langle x_{1}, x_{2}, \ldots, x_{l}\right\rangle$, we say that G is finitely generated.

For example, every cyclic group is finitely generated, for it is generated by one element.

Every finite group is finitely generated, since we may take the finite generating set X to be G itself.

Example 4.8. Consider $G=D_{3}$, and its subgroup $H=\left\{r_{0}, r_{1}, r_{2}\right\}$ consisting of its rotations. (We use the convention that r_{k} is the anticlockwise rotation by an angle of $2 \pi k / 3$).

By Lagrange's Theorem, the index of H in G is $[G: H]=|G| /|H|=2$. This implies that $G=H \sqcup g H$ for some $g \in G$. Since $g H=H$ if $g \in H$, we may conclude that $g \notin H$. So, g is a reflection.

Conversely, for any reflection $s \in D_{3}$, the left coset $s H$ is disjoint from H. We have therefore $G=H \sqcup s_{1} H=H \sqcup s_{2} H=H \sqcup s_{3} H$, which implies that $s_{1} H=$ $s_{2} H=s_{3} H$.

In particular, for a fixed $s=s_{i}$, any element in G is either a rotation or equal to $s r_{i}$ for some rotation r_{i}. Since H is a cyclic group, generated by the rotation r_{1}, we have $D_{3}=\left\langle r_{1}, s\right\rangle$, where s is any reflection in D_{3}.

4.3 Group Homomorphisms

Definition 4.9. Let $G=(G, *), G^{\prime}=\left(G^{\prime}, *^{\prime}\right)$ be groups. A group homomorphism ϕ from G to G^{\prime} is a map $\phi: G \longrightarrow G^{\prime}$ which satisfies:

$$
\phi(a * b)=\phi(a) *^{\prime} \phi(b),
$$

for all $a, b \in G$.

Claim 4.10. If $\phi: G \longrightarrow G^{\prime}$ is a group homomorphism, then:

1. $\phi\left(e_{G}\right)=e_{G^{\prime}}$.
2. $\phi\left(g^{-1}\right)=\phi(g)^{-1}$, for all $g \in G$.
3. $\phi\left(g^{n}\right)=\phi(g)^{n}$, for all $g \in G, n \in \mathbb{Z}$.

Proof. We prove the first claim, and leave the rest as an exercise. Since e_{G} is the identity element of G, we have $e_{G} * e_{G}=e_{G}$. On the other hand, since ϕ is a group homomorphism, we have:

$$
\phi\left(e_{G}\right)=\phi\left(e_{G} * e_{G}\right)=\phi\left(e_{G}\right) *^{\prime} \phi\left(e_{G}\right) .
$$

Since G^{\prime} is a group, $\phi\left(e_{G}\right)^{-1}$ exists in G^{\prime}, hence:

$$
\phi\left(e_{G}\right)^{-1} *^{\prime} \phi\left(e_{G}\right)=\phi\left(e_{G}\right)^{-1} *^{\prime}\left(\phi\left(e_{G}\right) *^{\prime} \phi\left(e_{G}\right)\right)
$$

The left-hand side is equal to $e_{G^{\prime}}$, while by the associativity of $*^{\prime}$ the right-hand side is equal to $\phi\left(e_{G}\right)$.

Let $\phi: G \longrightarrow G^{\prime}$ be a homomorphism of groups. The image of ϕ is defined as:

$$
\operatorname{im} \phi:=\phi(G):=\{\phi(g): g \in G\} \subseteq G^{\prime}
$$

The kernel of ϕ is defined as:

$$
\operatorname{ker} \phi=\left\{g \in G: \phi(g)=e_{G^{\prime}}\right\} \subseteq G .
$$

Claim 4.11. The image of ϕ is a subgroup of G^{\prime}. The kernel of ϕ is a subgroup of G.

Claim 4.12. A group homomorphism $\phi: G \longrightarrow G^{\prime}$ is one-to-one if and only if $\operatorname{ker} \phi=\left\{e_{G}\right\}$.

Proof shown in class

Example 4.13 (Examples of Group Homomorphisms). - $\phi: S_{n} \longrightarrow(\{ \pm 1\}, \cdot)$,

$$
\phi(\sigma)= \begin{cases}1, & \sigma \text { is an even permutation } . \\ -1, & \sigma \text { is an odd permutation } .\end{cases}
$$

$\operatorname{ker} \phi=A_{n}$.

- det $: \operatorname{GL}(n, \mathbb{R}) \longrightarrow\left(\mathbb{R}^{\times}, \cdot\right)$
ker det $=\operatorname{SL}(n, \mathbb{R})$.
- Let G be the (additive) group of all real-valued continuous functions on $[0,1]$.

$$
\begin{aligned}
& \phi: G \longrightarrow(\mathbb{R},+) \\
& \phi(f)=\int_{0}^{1} f(x) d x
\end{aligned}
$$

- $\phi:(\mathbb{R},+) \longrightarrow\left(\mathbb{R}^{\times}, \cdot\right)$.

$$
\phi(x)=e^{x} .
$$

Definition 4.14. Let G, G^{\prime} be groups. A map $\phi: G \longrightarrow G^{\prime}$ is a group isomorphism if it is a bijective group homomorphism.

Note that if a homomorphism ϕ is bijective, then $\phi^{-1}: G^{\prime} \longrightarrow G$ is also a homomorphism, and consequently, ϕ^{-1} is an isomorphism. If there exists an isomorphism between two groups G and G^{\prime}, we say that the groups G and G^{\prime} are isomorphic.
Example 4.15. Recall Definition 3.1 and Exercise 3.2.
Let $n>2$. Let $H=\left\{r_{0}, r_{1}, r_{2}, \ldots, r_{n-1}\right\}$ be the subgroup of D_{n} consisting of all rotations, where r_{1} denotes the anticlockwise rotation by the angle $2 \pi / n$, and $r_{k}=r_{1}^{k}$. Then, H is isomorphic to $\mathbb{Z}_{n}=\left(\mathbb{Z}_{n},+_{\mathbb{Z}_{n}}\right)$.

Proof. Define $\phi: H \longrightarrow \mathbb{Z}_{n}$ as follows:

$$
\phi\left(r_{k}\right)=k, \quad k \in\{0,1,2, \ldots, n-1\} .
$$

For any $k \in \mathbb{Z}$, let $\bar{k} \in\{0,1,2, \ldots, n-1\}$ denote the remainder of the division of k by n. By the Division Theorem for Integers, we have:

$$
k=n q+\bar{k}
$$

for some integer $q \in \mathbb{Z}$.
It now follows from ord $r_{1}=n$ that, for all $r_{i}, r_{j} \in H$, we have:

$$
\begin{aligned}
r_{i} r_{j} & =r_{1}^{i} r_{1}^{j}=r_{1}^{i+j} \\
& =r_{1}^{n+\overline{i+j}} \\
& =\left(r_{1}^{n}\right)^{q} r_{1}^{\overline{i+j}} \\
& =r_{\overline{i+j}} .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\phi\left(r_{i} r_{j}\right) & =\phi\left(r_{\overline{i+j}}\right) \\
& =\overline{i+j} \\
& =i+\mathbb{Z}_{n} j \\
& =\phi\left(r_{i}\right)+\mathbb{Z}_{n} \phi\left(r_{j}\right) .
\end{aligned}
$$

This shows that ϕ is a homomorphism. It is clear that ϕ is surjective, which then implies that ϕ is one-to-one, for the two groups have the same size. Hence, ϕ is a bijective homomorphism, i.e. an isomorphism.

