Math 2070 Week 13

Field Extensions, Finite Fields

13.1 Field Extensions

Definition 13.1. Let R be a ring. A subset S of R is said to be a **subring** of R if it is a ring under the addition $+_R$ and multiplication \times_R associated with R, and its additive and multiplicative identity elements 0, 1 are those of R.

Remark. To show that a subset S of a ring R is a subring, it suffices to show that:

- *S* contains the additive and multiplicative identity elements of *R*.
- *S* is "closed under addition": $a +_R b \in S$ for all $a, b \in S$.
- *S* is "closed under multiplication": $a \times_R b \in S$ for all $a, b \in S$.
- S is closed under additive inverse: For all a ∈ S, the additive inverse −a of a in R belongs to S.

Definition 13.2. A subfield k of a field K is a subring of K which is a field.

In particular, for each nonzero element $r \in k \subseteq K$. The multiplicative inverse of r in K lies k.

Definition 13.3. Let K be a field and k a subfield. Let α be an element of K. We define $k(\alpha)$ to be the smallest subfield of K containing k and α . In other words, if F is a subfield of K which contains k and α , then $F \supseteq k(\alpha)$. We say that $k(\alpha)$ is obtained from k by adjoining α .

Theorem 13.4. Let k be a subfield of a field K. Let α be an element of K.

- 1. If α is a root of a nonzero polynomial $f \in k[x]$ (viewed as a polynomial in K[x] with coefficients in k), then α is a root of an irreducible polynomial $p \in k[x]$, such that p|f in k[x].
- 2. Let p be an irreducible polynomial in k[x] of which α is a root. Then, the map $\phi : k[x]/(p) \longrightarrow K$, defined by:

$$\phi\left(\sum_{j=0}^{n} c_j x^j + (p)\right) = \sum_{j=0}^{n} c_j \alpha^j,$$

is a well-defined one-to-one ring homomorphism with $\operatorname{im} \phi = k(\alpha)$. (Here, $\sum_{j=0}^{n} c_j x^j + (p)$ is the congruence class of $\sum_{j=0}^{n} c_j x^j \in k[x]$ modulo (p).) Hence,

$$k[x]/(p) \cong k(\alpha).$$

- 3. If $\alpha, \beta \in K$ are both roots of an irreducible polynomial p in k[x], then there exists a ring isomorphism $\sigma : k(\alpha) \longrightarrow k(\beta)$, with $\sigma(\alpha) = \beta$ and $\sigma(s) = s$, for all $s \in k$.
- 4. Let p be an irreducible polynomial in k[x] of which α is a root. Then, each element in $k(\alpha)$ has a unique expression of the form:

$$c_0 + c_1\alpha + \dots + c_{n-1}\alpha^{n-1},$$

where $c_i \in k$, and $n = \deg p$.

Remark. Suppose p is an irreducible polynomial in k[x] of which $\alpha \in K$ is a root. Part 4 of the theorem essentially says that $k(\alpha)$ is a vectors space of dimension deg p over k, with basis:

$$\{1, \alpha, \alpha^2, \ldots, \alpha^{n-1}\}.$$

Example 13.5. Consider $k = \mathbb{Q}$ as a subfield of $K = \mathbb{R}$. The element $\alpha \in \sqrt[3]{2} \in \mathbb{R}$ is a root of the polynomial $p = x^3 - 2 \in \mathbb{Q}[x]$, which is irreducible in $\mathbb{Q}[x]$ by the Eisenstein's Criterion for the prime 2.

The theorem applied to this case says that $\mathbb{Q}(\alpha)$, i.e. the smallest subfield of \mathbb{R} containing \mathbb{Q} and α , is equal to the set:

$$\{c_0 + c_1\alpha + c_2\alpha^2 : c_i \in \mathbb{Q}\}\$$

The addition and multiplication operations in $\mathbb{Q}(\alpha)$ are those associated with \mathbb{R} , in other words:

$$(c_0 + c_1\alpha + c_2\alpha^2) + (b_0 + b_1\alpha + b_2\alpha^2) = (c_0 + b_0) + (c_1 + b_1)\alpha + (c_2 + b_2)\alpha^2,$$

$$(c_0 + c_1\alpha + c_2\alpha^2) \cdot (b_0 + b_1\alpha + b_2\alpha^2)$$

= $c_0b_0 + c_0b_1\alpha + c_0b_2\alpha^2 + c_1b_0\alpha + c_1b_1\alpha^2$
+ $c_1b_2\alpha^3 + c_2b_0\alpha^2 + c_2b_1\alpha^3 + c_2b_2\alpha^4$
= $(c_0b_0 + 2c_1b_2 + 2c_2b_1) + (c_0b_1 + c_1b_0 + 2c_2b_2)\alpha$
+ $(c_0b_2 + c_1b_1 + c_2b_0)\alpha^2$

Exercise 13.6. Given a nonzero $\gamma = c_0 + c_1\alpha + c_2\alpha^2 \in \mathbb{Q}(\alpha)$, $c_i \in \mathbb{Q}$, find $b_0, b_1, b_2 \in \mathbb{Q}$ such that $b_0 + b_1\alpha + b_2\alpha^2$ is the multiplicative inverse of γ in $\mathbb{Q}(\alpha)$.

Proof. (of Theorem 13.4)

1. Define a map $\psi: k[x] \longrightarrow K$ as follows:

$$\psi\left(\sum c_j x^j\right) = \sum c_j \alpha^j.$$

Exercise: ψ is a ring homomorphism.

By assumption, f lies in ker ψ . Since k is a field, the ring k[x] is a PID. So, there exists $p \in k[x]$ such that ker $\psi = (p)$. Hence, p|f in k[x].

By the First Isomorphism Theorem, im ψ is a subring of K which is isomorphic to k[x]/(p). In particular, im ψ is an integral domain because K has no zero divisors. Hence, by Theorem 11.20, the polynomial p is an irreducible in k[x].

Since $p \in (p) = \ker \psi$, we have $0 = \psi(p) = p(\alpha)$. Hence, α is a root of p.

2. If f+(p) = g+(p) in k[x]/(p), then $g-f \in (p)$, or equivalently: g = f+pq for some $q \in k[x]$.

Hence, $\phi(g + (p)) = f(\alpha) + p(\alpha)q(\alpha) = f(\alpha) = \phi(f + (p)).$

This shows that ϕ is a well-defined map. We leave it as an exercise to show that ϕ is a one-to-one ring homomorphism.

We now show that im $\phi = k(\alpha)$. By the First Isomorphism Theorem, im ϕ is isomorphic to k[x]/(p), which is a field since p is irreducible. Moreover, $\alpha = \phi(x + (p))$ lies in im ϕ . Hence, im ϕ is a subfield of K containing α .

Since each element in $\operatorname{im} \phi$ has the form $\sum_{j=0}^{n} c_j \alpha^j$, where $c_j \in k$, and fields are closed under addition and multiplication, any subfield of K which contains k and α must contain $\operatorname{im} \phi$. This shows that $\operatorname{im} \phi$ is the smallest subfield of K containing k and α . Hence, $k[x]/(p) \cong \operatorname{im} \phi = k(\alpha)$.

3. Define $\phi': k[x]/(p) \longrightarrow k(\beta)$ as follows:

$$\phi'\left(\sum c_j x^j + (p)\right) = \sum c_j \beta^j.$$

By the same reasoning applied to ϕ before, the map ϕ' is a well-defined ring isomorphism, with:

$$\phi'(x+(p)) = \beta, \quad \phi'(s+(p)) = s \text{ for all } s \in k.$$

It is then easy to see that the map $\sigma := \phi' \circ \phi^{-1} : k(\alpha) \longrightarrow k(\beta)$ is the desired isomorphism between $k(\alpha)$ and $k(\beta)$.

4. Since ϕ in Part 2 is an isomorphism onto $\operatorname{im} \phi = k(\alpha)$, we know that each element $\gamma \in k(\alpha)$ is equal to $\phi(f + (p)) = f(\alpha) := \sum c_j \alpha^j$ for some $f = \sum c_j x^j \in k[x]$.

By the division theorem for k[x]. There exist $m, r \in k[x]$ such that f = mp + r, with deg r < deg p = n. In particular, f + (p) = r + (p) in k[x]/(p).

Write $r = \sum_{j=0}^{n-1} b_j x^j$, with $b_j = 0$ if $j > \deg r$. We have:

$$\gamma = \phi(f + (p)) = \phi(r + (p)) = \sum_{j=0}^{n-1} b_j \alpha^j.$$

It remains to show that this expression for γ is unique. Suppose $\gamma = g(\alpha) = \sum_{j=0}^{n-1} b'_j \alpha^j$ for some $g = \sum_{j=0}^{n-1} b'_j x^j \in k[x]$.

Then, $g(\alpha) = r(\alpha) = \gamma$ implies that $\phi(g + (p)) = \phi(r + (p))$, hence:

 $(g-r) + (p) \in \ker \phi.$

Since ϕ is one-to-one, we have $(g - r) \equiv 0 \mod (p)$, which implies that $p|(g - r) \inf k[x]$.

Since deg g, deg r < deg p, this implies that g - r = 0. So, the expression $\gamma = b_0 + b_1 \alpha + \cdots + b_{n-1} \alpha^{n-1}$ is unique.

Terminology:

- If k is a subfield of K, we say that K is a **field extension** of k.
- Let α be an element in a field extension K of a field k. If there exists a polynomial p ∈ k[x] of which α is a root, then α is said to be algebraic over k.

If α ∈ K is algebraic over k, then there exists a unique monic irreducible polynomial p ∈ k[x] of which α is a root (Exercise). This polynomial p is called the minimal polynomial of α over k.

For example, $\sqrt[3]{2} \in \mathbb{R}$ is algebraic over \mathbb{Q} . Its minimal polynomial over \mathbb{Q} is $x^3 - 2$.

Exercise 13.7. *Find the minimal polynomial of* $2 - \sqrt[3]{6} \in \mathbb{R}$ *over* \mathbb{Q} *, if it exists.*

Exercise 13.8. Find the minimal polynomial of $\sqrt[3]{5}$ over \mathbb{Q} .

Exercise 13.9. *Express the multiplicative inverse of* $\gamma = 2 + \sqrt[3]{5}$ *in* $\mathbb{Q}(\sqrt[3]{5})$ *in the form:*

$$\gamma^{-1} = c_0 + c_1 \sqrt[3]{5} + c_2 \left(\sqrt[3]{5}\right)^2,$$

where $c_i \in \mathbb{Q}$, if possible.

13.2 Splitting Field

Example 13.10. Since $\sqrt[3]{2} \in \mathbb{Q}(\sqrt[3]{2})$ is a root of $x^3 - 2$, the polynomial $p = x^3 - 2$ has a linear factor in $\mathbb{Q}(\sqrt[3]{2})[x]$. More precisely,

$$x^{3} - 2 = (x - \sqrt[3]{2})(x^{2} + \sqrt[3]{2}x + (\sqrt[3]{2})^{2})$$

in $\mathbb{Q}(\sqrt[3]{2})[x]$. Exercise: Is $x^2 + \sqrt[3]{2}x + (\sqrt[3]{2})^2$ irreducible in $\mathbb{Q}(\sqrt[3]{2})[x]$?

We could repeat this process and adjoin roots of $x^2 + \sqrt[3]{2}x + (\sqrt[3]{2})^2$ to $\mathbb{Q}(\sqrt[3]{2})$ to further "split" the polynomial $x^3 - 2$ into a product of linear factors. That is the main idea behind the following theorem:

Theorem 13.11. If k is a field, and f is a nonconstant polynomial in k[x], then there exists a field extension K of k, such that $f \in k[x] \subseteq K[x]$ is a product of linear factors in K[x].

In other words, there exists a field extension K of k, such that:

$$f = c(x - \alpha_1) \cdots (x - \alpha_n),$$

for some $c, \alpha_i \in K$.

Proof. We prove by induction on $\deg f$.

If deg f = 1, we are done.

Inductive Step: Suppose deg f > 1. Suppose, for any field extension k' of k, and any polynomial $g \in k'[x]$ with deg $g < \deg f$, there exists a field extension K of k' such that g splits into a product of linear factors in K[x].

Suppose f is irreducible. Let f(t) be the polynomial in k[t] obtained from f by replacing the variable x with the variable t. Consider k' := k[t]/(f(t)). Then, k' is a field extension of k if we identify k with the subset $\{c + (f(t)) : c \in k\} \subseteq k'$, where c is considered as a constant polynomial in k[t].

Observe that k' contains a root α of f, namely $\alpha = t + (f(t)) \in k[t]/(f(t))$. Hence, $f = (x - \alpha)q$ in k'[x] for some polynomial $q \in k'[x]$ with deg $q < \deg f$.

Now, by the induction hypothesis, there is an extension field K of k' such that q splits into a product of linear factors in K[x]. Consequently, f splits into a product of linear factors in K[x].

If f is not irreducible, then f = gh for some $g, h \in k[x]$, with deg g, deg $h < \deg f$. So, by the induction hypothesis, there is a field extension k' of k such that g is a product of linear factors in k'[x].

Hence, $f = (x - \alpha_1) \cdots (x - \alpha_n)h$ in k'[x]. Since deg h < deg f, by the inductive hypothesis there exists a field extension K of k' such that h splits into linear factors in K[x].

Hence, f is a product of linear factors in K[x].

13.3 WeBWorK

- 1. WeBWorK
- 2. WeBWorK
- 3. WeBWorK
- 4. WeBWorK

@thm If k is a field, and f is a nonconstant polynomial in k[x], then there exists a field extension K of k, such that $f \in k[x] \subseteq K[x]$ is a product of linear factors in K[x]. @newcol In other words, there exists a field extension K of k, such that:

$$f = c(x - \alpha_1) \cdots (x - \alpha_n),$$

for some $c, \alpha_i \in K$. @endcol@end@proof@newcol We prove by induction on deg f. @col If deg f = 1, we are done. @col<b class="notkw">Inductive Step: Suppose deg f > 1. Suppose, for any field extension k' of k, and any polynomial $g \in k'[x]$ with deg $g < \deg f$, there exists a field extension K of k' such that g splits into a product of linear factors in K[x]. @col Suppose f is irreducible. Let f(t) be the polynomial in k[t] obtained from f by replacing the variable x with the variable t. Consider k' := k[t]/(f(t)). Then, k' is a field extension of k if we identify k with the subset $\{c + (f(t)) : c \in k\} \subseteq k'$, where c is considered as a constant polynomial in k[t]. @col Observe that k' contains a root α of f, namely $\alpha = t + (f(t)) \in k[t]/(f(t))$. Hence, $f = (x - \alpha)q$ in k'[x] for some polynomial $q \in k'[x]$ with deg $q < \deg f$. @col Now, by the induction hypothesis, there is an extension field K of k' such that q splits into a product of linear factors in K[x]. Consequently, f splits into a product of linear factors in K[x]. @col If fis not irreducible, then f = gh for some $g, h \in k[x]$, with deg g, deg $h < \deg f$. So, by the induction hypothesis, there is a field extension k' of k such that g is a product of linear factors in k'[x]. @col Hence, $f = (x - \alpha_1) \cdots (x - \alpha_n)h$ in k'[x]. Since deg $h < \deg f$, by the inductive hypothesis there exists a field extension Kof k' such that h splits into linear factors in K[x]. @col Hence, f is a product of linear factors in K[x]. @qed@endcol@end

13.4 Finite Fields

Recall:

Definition 13.12. Let R be a ring with additive and multiplicative identity elements 0, 1, respectively. The **characteristic** char R of R is the smallest positive integer n such that:

$$\underbrace{1+1+\dots+1}_{n \text{ times}} = 0.$$

If such an integer does not exist, we say that the ring has characteristic zero.

Example 13.13. • *The ring* \mathbb{Q} *has characteristic zero.*

• char $\mathbb{Z}_6 = 6$.

Exercise 13.14. If a ring R as finitely many elements, then it has positive (i.e. nonzero) characteristic.

Claim 13.15. If a field F has positive characteristic char F, then char F is a prime number.

Example 13.16. char $\mathbb{F}_5 = 5$, which is prime.

Remark. Note that all finite rings have positive characteristics, but there are rings with positive characteristics which have infinitely many elements, e.g. the polynomial ring $\mathbb{F}_5[x]$.

Claim 13.17. Let F be a finite field. Then, the number of elements of F is equal to p^n for some prime p and $n \in \mathbb{N}$.

Proof. Since F is finite, it has finite characteristic. Since it is a field, char F is a prime p.

Exercise: \mathbb{F}_p is isomorphic to a subfield of *F*.

Viewing \mathbb{F}_p as a subfield of F, we see that F is a vector space over \mathbb{F}_p . Since the cardinality of F is finite, the dimension n of F over \mathbb{F}_p must necessarily be finite.

Hence, there exist n basis elements $\alpha_1, \alpha_2, \ldots, \alpha_n$ in F, such that each element of F may be expressed uniquely as:

$$c_1\alpha_1 + c_2\alpha_2 + \cdots + c_n\alpha_n,$$

where $c_i \in \mathbb{F}_p$.

Since \mathbb{F}_p has p elements, it follows that F has p^n elements.

Claim 13.18. Let k be a field, f a nonzero irreducible polynomial in k[x], then k[x]/(f) is a vector space of dimension deg f over k.

Proof. Let K = k[t]/(f(t)), then K is a field extension of k which contains a root α of f, namely, $\alpha = t + (f(t))$.

It is clear that $K = k(\alpha)$, since any element in K = k[t]/(f(t)) has the form $\sum b_i \alpha^i$, where $b_i \in k$.

On the other hand, by Theorem 13.4, every element in $k(\alpha)$ may be expressed uniquely in the form:

$$c_0 + c_1 \alpha + c_2 \alpha^2 + \dots + c_{n-1} \alpha^{n-1}, \quad c_i \in k, \ n = \deg f,$$

which shows that $K = k(\alpha)$ is a vector space of dimension deg f over k.

Since K is simply k[x]/(f) with the variable x replaced with t, we conclude that k[x]/(f) is a vector space of dimension deg f over k.

Corollary 13.19. If k is a finite field with |k| elements, and f is an irreducible polynomial of degree n in k[x], then the field k[x]/(f) has $|k|^n$ elements.

Example 13.20. Let p = 2, n = 2. To construct a finite field with $p^n = 4$ elements. We first start with the finite field \mathbb{F}_2 , then try to find an irreducible polynomial $f \in \mathbb{F}_2[x]$ such that $\mathbb{F}_2[x]/(f)$ has 4 elements.

Based on our discussion so far, the degree of f should be equal to n = 2, since n is precisely the dimension of the desired finite field over \mathbb{F}_2 .

Consider $f = x^2 + x + 1$. Since p is of degree 2 and has no root in \mathbb{F}_2 , it is irreducible in $\mathbb{F}_2[x]$. Hence, $\mathbb{F}_2[x]/(x^2 + x + 1)$ is a field with 4 elements.

Theorem 13.21. (Galois) Given any prime p and $n \in \mathbb{N}$, there exists a finite field F with p^n elements.

Proof. (Not within the scope of the course.)

Consider the polynomial:

$$f = x^{p^n} - x \in \mathbb{F}_p[x]$$

By Kronecker's theorem, there exists a field extension K of \mathbb{F}_p such that f splits into a product of linear factors in K[x]. Let:

$$F = \{ \alpha \in K : f(\alpha) = 0 \}.$$

Exercise 13.22. Let $g = (x - a_1)(x - a_2) \cdots (x - a_n)$ be a polynomial in k[x], where k is a field. Show that the roots a_1, a_2, \ldots, a_n are distinct if and only if gcd(g, g') = 1, where g' is the derivative of g.

In this case, we have $f' = p^n x^{p^n-1} - 1 = -1$ in $\mathbb{F}_p[x]$. Hence, gcd(f, f') = 1, which implies by the exercise that the roots of f are all distinct. So, f has p^n distinct roots in K, hence F has exactly p^n elements.

It remains to show that F is a field. Let $q = p^n$. By definition, an element $a \in K$ belongs to F if and only if $f(a) = a^q - a = 0$, which holds if and only if $a^q = a$. For $a, b \in F$, we have:

$$(ab)^q = a^q b^a = ab,$$

which implies that F is closed under multiplication. Since K, being a extension of \mathbb{F}_p , has characteristic p. we have $(a + b)^p = a^p + b^p$. Hence,

$$(a+b)^{q} = (a+b)^{p^{n}} = ((a+b)^{p})^{p^{n-1}} = (a^{p}+b^{p})^{p^{n-1}}$$
$$= (a^{p}+b^{p})^{p^{n-2}} = (a^{p^{2}}+b^{p^{2}})^{p^{n-2}}$$
$$= \dots = a^{p^{n}}+b^{p^{n}} = a+b,$$

which implies that F is closed under addition.

Let 0, 1 be the additive and multiplicative identity elements, respectively, of K. Since $0^q = 0$ and $1^q = 1$, they are also the additive and multiplicative identity elements of F.

For nonzero $a \in F$, we need to prove the existence of the additive and multiplicative inverses of a in F.

Let -a be the additive inverse of a in K. Since $(-1)^q = -1$ (even if p = 2, since 1 = -1 in \mathbb{F}_2), we have:

$$(-a)^q = (-1)^q a^q = -a,$$

so $-a \in F$. Hence, $a \in F$ has an additive inverse in F. Since $a^q = a$ in K, we have:

$$a^{q-2}a = a^{q-1} = 1$$

in K. Since $a \in F$ and F is closed under multiplication, $a^{q-2} = \underbrace{a \cdots a}_{q-2 \text{ times}}$ lies in F. So, a^{q-2} is a multiplicative inverse of a in F.