
Math 2070 Week 13

Field Extensions, Finite Fields

13.1 Field Extensions
Definition 13.1. Let R be a ring. A subset S of R is said to be a subring of R if
it is a ring under the addition +R and multiplication ×R associated with R, and
its additive and multiplicative identity elements 0, 1 are those of R.

Remark. To show that a subset S of a ringR is a subring, it suffices to show that:

• S contains the additive and multiplicative identity elements of R.

• S is "closed under addition": a+R b ∈ S for all a, b ∈ S.

• S is "closed under multiplication": a×R b ∈ S for all a, b ∈ S.

• S is closed under additive inverse: For all a ∈ S, the additive inverse −a
of a in R belongs to S.

Definition 13.2. A subfield k of a field K is a subring of K which is a field.

In particular, for each nonzero element r ∈ k ⊆ K. The multiplicative inverse
of r in K lies k.

Definition 13.3. Let K be a field and k a subfield. Let α be an element of K. We
define k(α) to be the smallest subfield of K containing k and α. In other words,
if F is a subfield of K which contains k and α, then F ⊇ k(α). We say that k(α)
is obtained from k by adjoining α.

Theorem 13.4. Let k be a subfield of a field K. Let α be an element of K.
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1. If α is a root of a nonzero polynomial f ∈ k[x] (viewed as a polynomial in
K[x] with coefficients in k), then α is a root of an irreducible polynomial
p ∈ k[x], such that p|f in k[x].

2. Let p be an irreducible polynomial in k[x] of which α is a root. Then, the
map φ : k[x]/(p) −→ K, defined by:

φ

(
n∑

j=0

cjx
j + (p)

)
=

n∑
j=0

cjα
j,

is a well-defined one-to-one ring homomorphism with imφ = k(α). (Here,∑n
j=0 cjx

j + (p) is the congruence class of
∑n

j=0 cjx
j ∈ k[x] modulo (p).)

Hence,
k[x]/(p) ∼= k(α).

3. If α, β ∈ K are both roots of an irreducible polynomial p in k[x], then there
exists a ring isomorphism σ : k(α) −→ k(β), with σ(α) = β and σ(s) = s,
for all s ∈ k.

4. Let p be an irreducible polynomial in k[x] of which α is a root. Then, each
element in k(α) has a unique expression of the form:

c0 + c1α + · · ·+ cn−1α
n−1,

where ci ∈ k, and n = deg p.

Remark. Suppose p is an irreducible polynomial in k[x] of which α ∈ K is a root.
Part 4 of the theorem essentially says that k(α) is a vectors space of dimension
deg p over k, with basis:

{1, α, α2, . . . , αn−1}.

Example 13.5. Consider k = Q as a subfield of K = R. The element α ∈ 3
√
2 ∈

R is a root of the the polynomial p = x3 − 2 ∈ Q[x], which is irreducible in Q[x]
by the Eisenstein’s Criterion for the prime 2.

The theorem applied to this case says that Q(α), i.e. the smallest subfield of
R containing Q and α, is equal to the set:

{c0 + c1α + c2α
2 : ci ∈ Q}

The addition and multiplication operations in Q(α) are those associated with R,
in other words:

(c0 + c1α + c2α
2) + (b0 + b1α + b2α

2)

= (c0 + b0) + (c1 + b1)α + (c2 + b2)α
2,
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(c0 + c1α + c2α
2) · (b0 + b1α + b2α

2)

= c0b0 + c0b1α + c0b2α
2 + c1b0α + c1b1α

2

+ c1b2α
3 + c2b0α

2 + c2b1α
3 + c2b2α

4

= (c0b0 + 2c1b2 + 2c2b1) + (c0b1 + c1b0 + 2c2b2)α

+ (c0b2 + c1b1 + c2b0)α
2

Exercise 13.6. Given a nonzero γ = c0 + c1α + c2α
2 ∈ Q(α), ci ∈ Q, find

b0, b1, b2 ∈ Q such that b0 + b1α+ b2α
2 is the multiplicative inverse of γ in Q(α).

Proof. (of Theorem 13.4 )

1. Define a map ψ : k[x] −→ K as follows:

ψ
(∑

cjx
j
)
=
∑

cjα
j.

Exercise: ψ is a ring homomorphism.

By assumption, f lies in kerψ. Since k is a field, the ring k[x] is a PID. So,
there exists p ∈ k[x] such that kerψ = (p). Hence, p|f in k[x].

By the First Isomorphism Theorem, imψ is a subring ofK which is isomor-
phic to k[x]/(p). In particular, imψ is an integral domain because K has no
zero divisors. Hence, by Theorem 11.20 , the polynomial p is an irreducible
in k[x].

Since p ∈ (p) = kerψ, we have 0 = ψ(p) = p(α). Hence, α is a root of p.

2. If f+(p) = g+(p) in k[x]/(p), then g−f ∈ (p), or equivalently: g = f+pq
for some q ∈ k[x].
Hence, φ(g + (p)) = f(α) + p(α)q(α) = f(α) = φ(f + (p)).

This shows that φ is a well-defined map. We leave it as an exercise to show
that φ is a one-to-one ring homomorphism.

We now show that imφ = k(α). By the First Isomorphism Theorem, imφ
is isomorphic to k[x]/(p), which is a field since p is irreducible. Moreover,
α = φ(x+ (p)) lies in imφ. Hence, imφ is a subfield of K containing α.

Since each element in imφ has the form
∑n

j=0 cjα
j , where cj ∈ k, and

fields are closed under addition and multiplication, any subfield of K which
contains k and α must contain imφ. This shows that imφ is the smallest
subfield of K containing k and α. Hence, k[x]/(p) ∼= imφ = k(α).
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3. Define φ′ : k[x]/(p) −→ k(β) as follows:

φ′
(∑

cjx
j + (p)

)
=
∑

cjβ
j.

By the same reasoning applied to φ before, the map φ′ is a well-defined ring
isomorphism, with:

φ′(x+ (p)) = β, φ′(s+ (p)) = s for all s ∈ k.

It is then easy to see that the map σ := φ′ ◦ φ−1 : k(α) −→ k(β) is the
desired isomorphism between k(α) and k(β).

4. Since φ in Part 2 is an isomorphism onto imφ = k(α), we know that each
element γ ∈ k(α) is equal to φ(f + (p)) = f(α) :=

∑
cjα

j for some
f =

∑
cjx

j ∈ k[x].
By the division theorem for k[x]. There exist m, r ∈ k[x] such that f =
mp + r, with deg r < deg p = n. In particular, f + (p) = r + (p) in
k[x]/(p).

Write r =
∑n−1

j=0 bjx
j , with bj = 0 if j > deg r.

We have:

γ = φ(f + (p)) = φ(r + (p)) =
n−1∑
j=0

bjα
j.

It remains to show that this expression for γ is unique. Suppose γ = g(α) =∑n−1
j=0 b

′
jα

j for some g =
∑n−1

j=0 b
′
jx

j ∈ k[x].
Then, g(α) = r(α) = γ implies that φ(g + (p)) = φ(r + (p)), hence:

(g − r) + (p) ∈ kerφ.

Since φ is one-to-one, we have (g − r) ≡ 0 modulo (p), which implies that
p|(g − r) in k[x].

Since deg g, deg r < deg p, this implies that g − r = 0. So, the expression
γ = b0 + b1α + · · ·+ bn−1α

n−1 is unique.

Terminology:

• If k is a subfield of K, we say that K is a field extension of k.

• Let α be an element in a field extension K of a field k. If there exists a
polynomial p ∈ k[x] of which α is a root, then α is said to be algebraic
over k.
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• If α ∈ K is algebraic over k, then there exists a unique monic irreducible
polynomial p ∈ k[x] of which α is a root (Exercise). This polynomial p is
called the minimal polynomial of α over k.

For example, 3
√
2 ∈ R is algebraic over Q. Its minimal polynomial over Q is

x3 − 2.

Exercise 13.7. Find the minimal polynomial of 2− 3
√
6 ∈ R over Q, if it exists.

Exercise 13.8. Find the minimal polynomial of 3
√
5 over Q.

Exercise 13.9. Express the multiplicative inverse of γ = 2+ 3
√
5 in Q( 3

√
5) in the

form:

γ−1 = c0 + c1
3
√
5 + c2

(
3
√
5
)2
,

where ci ∈ Q, if possible.

13.2 Splitting Field

Example 13.10. Since 3
√
2 ∈ Q( 3

√
2) is a root of x3−2, the polynomial p = x3−2

has a linear factor in Q( 3
√
2)[x]. More precisely,

x3 − 2 = (x− 3
√
2)(x2 +

3
√
2x+ (

3
√
2)2)

in Q( 3
√
2)[x]. Exercise: Is x2 + 3

√
2x+ ( 3

√
2)2 irreducible in Q( 3

√
2)[x]?

We could repeat this process and adjoin roots of x2 + 3
√
2x+( 3

√
2)2 to Q( 3

√
2)

to further "split" the polynomial x3− 2 into a product of linear factors. That is the
main idea behind the following theorem:

Theorem 13.11. If k is a field, and f is a nonconstant polynomial in k[x], then
there exists a field extension K of k, such that f ∈ k[x] ⊆ K[x] is a product of
linear factors in K[x].

In other words, there exists a field extension K of k, such that:

f = c(x− α1) · · · (x− αn),

for some c, αi ∈ K.
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Proof. We prove by induction on deg f .
If deg f = 1, we are done.
Inductive Step: Suppose deg f > 1. Suppose, for any field extension k′ of k,

and any polynomial g ∈ k′[x] with deg g < deg f , there exists a field extension K
of k′ such that g splits into a product of linear factors in K[x].

Suppose f is irreducible. Let f(t) be the polynomial in k[t] obtained from f by
replacing the variable x with the variable t. Consider k′ := k[t]/(f(t)). Then, k′

is a field extension of k if we identify k with the subset {c+ (f(t)) : c ∈ k} ⊆ k′,
where c is considered as a constant polynomial in k[t].

Observe that k′ contains a root α of f , namely α = t + (f(t)) ∈ k[t]/(f(t)).
Hence, f = (x− α)q in k′[x] for some polynomial q ∈ k′[x] with deg q < deg f .

Now, by the induction hypothesis, there is an extension field K of k′ such
that q splits into a product of linear factors in K[x]. Consequently, f splits into a
product of linear factors in K[x].

If f is not irreducible, then f = gh for some g, h ∈ k[x], with deg g, deg h <
deg f . So, by the induction hypothesis, there is a field extension k′ of k such that
g is a product of linear factors in k′[x].

Hence, f = (x − α1) · · · (x − αn)h in k′[x]. Since deg h < deg f , by the
inductive hypothesis there exists a field extension K of k′ such that h splits into
linear factors in K[x].

Hence, f is a product of linear factors in K[x].

13.3 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

@thm If k is a field, and f is a nonconstant polynomial in k[x], then there exists a
field extension K of k, such that f ∈ k[x] ⊆ K[x] is a product of linear factors in
K[x]. @newcol In other words, there exists a field extension K of k, such that:

f = c(x− α1) · · · (x− αn),

for some c, αi ∈ K. @endcol@end@proof@newcol We prove by induction
on deg f . @col If deg f = 1, we are done. @col<b class="notkw">Inductive
Step:</b> Suppose deg f > 1. Suppose, for any field extension k′ of k, and any
polynomial g ∈ k′[x] with deg g < deg f , there exists a field extension K of
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k′ such that g splits into a product of linear factors in K[x]. @col Suppose f is
irreducible. Let f(t) be the polynomial in k[t] obtained from f by replacing the
variable x with the variable t. Consider k′ := k[t]/(f(t)). Then, k′ is a field ex-
tension of k if we identify k with the subset {c+ (f(t)) : c ∈ k} ⊆ k′, where c is
considered as a constant polynomial in k[t]. @col Observe that k′ contains a root α
of f , namely α = t+(f(t)) ∈ k[t]/(f(t)). Hence, f = (x−α)q in k′[x] for some
polynomial q ∈ k′[x] with deg q < deg f . @col Now, by the induction hypothesis,
there is an extension field K of k′ such that q splits into a product of linear factors
in K[x]. Consequently, f splits into a product of linear factors in K[x]. @col If f
is not irreducible, then f = gh for some g, h ∈ k[x], with deg g, deg h < deg f .
So, by the induction hypothesis, there is a field extension k′ of k such that g is a
product of linear factors in k′[x]. @col Hence, f = (x−α1) · · · (x−αn)h in k′[x].
Since deg h < deg f , by the inductive hypothesis there exists a field extension K
of k′ such that h splits into linear factors in K[x]. @col Hence, f is a product of
linear factors in K[x]. @qed@endcol@end

13.4 Finite Fields
Recall:

Definition 13.12. Let R be a ring with additive and multiplicative identity ele-
ments 0, 1, respectively. The characteristic charR of R is the smallest positive
integer n such that:

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0.

If such an integer does not exist, we say that the ring has characteristic zero.

Example 13.13. • The ring Q has characteristic zero.

• charZ6 = 6.

Exercise 13.14. If a ring R as finitely many elements, then it has positive (i.e.
nonzero) characteristic.

Claim 13.15. If a field F has positive characteristic charF , then charF is a
prime number.

Example 13.16. charF5 = 5, which is prime.

Remark. Note that all finite rings have positive characteristics, but there are
rings with positive characteristics which have infinitely many elements, e.g. the
polynomial ring F5[x].
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Claim 13.17. Let F be a finite field. Then, the number of elements of F is equal
to pn for some prime p and n ∈ N.

Proof. Since F is finite, it has finite characteristic. Since it is a field, charF is a
prime p.

Exercise: Fp is isomorphic to a subfield of F .
Viewing Fp as a subfield of F , we see that F is a vector space over Fp. Since

the cardinality of F is finite, the dimension n of F over Fp must necessarily be
finite.

Hence, there exist n basis elements α1, α2, . . . , αn in F , such that each element
of F may be expressed uniquely as:

c1α1 + c2α2 + · · ·+ cnαn,

where ci ∈ Fp.
Since Fp has p elements, it follows that F has pn elements.

Claim 13.18. Let k be a field, f a nonzero irreducible polynomial in k[x], then
k[x]/(f) is a vector space of dimension deg f over k.

Proof. LetK = k[t]/(f(t)), thenK is a field extension of k which contains a root
α of f , namely, α = t+ (f(t)).

It is clear that K = k(α), since any element in K = k[t]/(f(t)) has the form∑
biα

i, where bi ∈ k.
On the other hand, by Theorem 13.4, every element in k(α) may be expressed

uniquely in the form:

c0 + c1α + c2α
2 + · · ·+ cn−1α

n−1, ci ∈ k, n = deg f,

which shows that K = k(α) is a vector space of dimension deg f over k.
Since K is simply k[x]/(f) with the variable x replaced with t, we conclude

that k[x]/(f) is a vector space of dimension deg f over k.

Corollary 13.19. If k is a finite field with |k| elements, and f is an irreducible
polynomial of degree n in k[x], then the field k[x]/(f) has |k|n elements.

Example 13.20. Let p = 2, n = 2. To construct a finite field with pn = 4
elements. We first start with the finite field F2, then try to find an irreducible
polynomial f ∈ F2[x] such that F2[x]/(f) has 4 elements.

Based on our discussion so far, the degree of f should be equal to n = 2, since
n is precisely the dimension of the desired finite field over F2.

Consider f = x2 + x + 1. Since p is of degree 2 and has no root in F2, it is
irreducible in F2[x]. Hence, F2[x]/(x

2 + x+ 1) is a field with 4 elements.
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Theorem 13.21. (Galois ) Given any prime p and n ∈ N, there exists a finite field
F with pn elements.

Proof. (Not within the scope of the course.)
Consider the polynomial:

f = xp
n − x ∈ Fp[x]

By Kronecker’s theorem, there exists a field extension K of Fp such that f splits
into a product of linear factors in K[x]. Let:

F = {α ∈ K : f(α) = 0}.

Exercise 13.22. Let g = (x − a1)(x − a2) · · · (x − an) be a polynomial in k[x],
where k is a field. Show that the roots a1, a2, . . . , an are distinct if and only if
gcd(g, g′) = 1, where g′ is the derivative of g.

In this case, we have f ′ = pnxp
n−1− 1 = −1 in Fp[x]. Hence, gcd(f, f ′) = 1,

which implies by the exercise that the roots of f are all distinct. So, f has pn

distinct roots in K, hence F has exactly pn elements.
It remains to show that F is a field. Let q = pn. By definition, an element

a ∈ K belongs to F if and only if f(a) = aq − a = 0, which holds if and only if
aq = a. For a, b ∈ F , we have:

(ab)q = aqba = ab,

which implies that F is closed under multiplication. Since K, being a extension
of Fp, has characteristic p. we have (a+ b)p = ap + bp. Hence,

(a+ b)q = (a+ b)p
n

= ((a+ b)p)p
n−1

= (ap + bp)p
n−1

= (ap + bp)p)p
n−2

= (ap
2

+ bp
2

)p
n−2

= · · · = ap
n

+ bp
n

= a+ b,

which implies that F is closed under addition.
Let 0, 1 be the additive and multiplicative identity elements, respectively, of

K. Since 0q = 0 and 1q = 1, they are also the additive and multiplicative identity
elements of F .

For nonzero a ∈ F , we need to prove the existence of the additive and multi-
plicative inverses of a in F .

Let −a be the additive inverse of a in K. Since (−1)q = −1 (even if p = 2,
since 1 = −1 in F2), we have:

(−a)q = (−1)qaq = −a,
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so −a ∈ F . Hence, a ∈ F has an additive inverse in F . Since aq = a in K, we
have:

aq−2a = aq−1 = 1

in K. Since a ∈ F and F is closed under multiplication, aq−2 = a · · · a︸ ︷︷ ︸
q−2 times

lies in F .

So, aq−2 is a multiplicative inverse of a in F .
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