Math 2070 Week 13

Field Extensions, Finite Fields

13.1 Field Extensions

Definition 13.1. Let R be a ring. A subset S of R is said to be a subring of R if it is a ring under the addition $+_{R}$ and multiplication \times_{R} associated with R, and its additive and multiplicative identity elements 0,1 are those of R.

Remark. To show that a subset S of a ring R is a subring, it suffices to show that:

- S contains the additive and multiplicative identity elements of R.
- S is "closed under addition": $a+_{R} b \in S$ for all $a, b \in S$.
- S is "closed under multiplication": $a \times_{R} b \in S$ for all $a, b \in S$.
- S is closed under additive inverse: For all $a \in S$, the additive inverse $-a$ of a in R belongs to S.

Definition 13.2. A subfield k of a field K is a subring of K which is a field.
In particular, for each nonzero element $r \in k \subseteq K$. The multiplicative inverse of r in K lies k.

Definition 13.3. Let K be a field and k a subfield. Let α be an element of K. We define $k(\alpha)$ to be the smallest subfield of K containing k and α. In other words, if F is a subfield of K which contains k and α, then $F \supseteq k(\alpha)$. We say that $k(\alpha)$ is obtained from k by adjoining α.

Theorem 13.4. Let k be a subfield of a field K. Let α be an element of K.

1. If α is a root of a nonzero polynomial $f \in k[x]$ (viewed as a polynomial in $K[x]$ with coefficients in k), then α is a root of an irreducible polynomial $p \in k[x]$, such that $p \mid f$ in $k[x]$.
2. Let p be an irreducible polynomial in $k[x]$ of which α is a root. Then, the map $\phi: k[x] /(p) \longrightarrow K$, defined by:

$$
\phi\left(\sum_{j=0}^{n} c_{j} x^{j}+(p)\right)=\sum_{j=0}^{n} c_{j} \alpha^{j},
$$

is a well-defined one-to-one ring homomorphism with $\operatorname{im} \phi=k(\alpha)$. (Here, $\sum_{j=0}^{n} c_{j} x^{j}+(p)$ is the congruence class of $\sum_{j=0}^{n} c_{j} x^{j} \in k[x]$ modulo (p).) Hence,

$$
k[x] /(p) \cong k(\alpha) .
$$

3. If $\alpha, \beta \in K$ are both roots of an irreducible polynomial p in $k[x]$, then there exists a ring isomorphism $\sigma: k(\alpha) \longrightarrow k(\beta)$, with $\sigma(\alpha)=\beta$ and $\sigma(s)=s$, for all $s \in k$.
4. Let p be an irreducible polynomial in $k[x]$ of which α is a root. Then, each element in $k(\alpha)$ has a unique expression of the form:

$$
c_{0}+c_{1} \alpha+\cdots+c_{n-1} \alpha^{n-1}
$$

where $c_{i} \in k$, and $n=\operatorname{deg} p$.
Remark. Suppose p is an irreducible polynomial in $k[x]$ of which $\alpha \in K$ is a root. Part 4 of the theorem essentially says that $k(\alpha)$ is a vectors space of dimension $\operatorname{deg} p$ over k, with basis:

$$
\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\} .
$$

Example 13.5. Consider $k=\mathbb{Q}$ as a subfield of $K=\mathbb{R}$. The element $\alpha \in \sqrt[3]{2} \in$ \mathbb{R} is a root of the the polynomial $p=x^{3}-2 \in \mathbb{Q}[x]$, which is irreducible in $\mathbb{Q}[x]$ by the Eisenstein's Criterion for the prime 2 .

The theorem applied to this case says that $\mathbb{Q}(\alpha)$, i.e. the smallest subfield of \mathbb{R} containing \mathbb{Q} and α, is equal to the set:

$$
\left\{c_{0}+c_{1} \alpha+c_{2} \alpha^{2}: c_{i} \in \mathbb{Q}\right\}
$$

The addition and multiplication operations in $\mathbb{Q}(\alpha)$ are those associated with \mathbb{R}, in other words:

$$
\begin{aligned}
\left(c_{0}+c_{1} \alpha+c_{2} \alpha^{2}\right)+\left(b_{0}+b_{1} \alpha+b_{2} \alpha^{2}\right) & \\
& =\left(c_{0}+b_{0}\right)+\left(c_{1}+b_{1}\right) \alpha+\left(c_{2}+b_{2}\right) \alpha^{2}
\end{aligned}
$$

$$
\begin{aligned}
\left(c_{0}+c_{1} \alpha+c_{2} \alpha^{2}\right) \cdot & \left(b_{0}+b_{1} \alpha+b_{2} \alpha^{2}\right) \\
= & c_{0} b_{0}+c_{0} b_{1} \alpha+c_{0} b_{2} \alpha^{2}+c_{1} b_{0} \alpha+c_{1} b_{1} \alpha^{2} \\
& \quad+c_{1} b_{2} \alpha^{3}+c_{2} b_{0} \alpha^{2}+c_{2} b_{1} \alpha^{3}+c_{2} b_{2} \alpha^{4} \\
=(& \left.c_{0} b_{0}+2 c_{1} b_{2}+2 c_{2} b_{1}\right)+\left(c_{0} b_{1}+c_{1} b_{0}+2 c_{2} b_{2}\right) \alpha \\
& +\left(c_{0} b_{2}+c_{1} b_{1}+c_{2} b_{0}\right) \alpha^{2}
\end{aligned}
$$

Exercise 13.6. Given a nonzero $\gamma=c_{0}+c_{1} \alpha+c_{2} \alpha^{2} \in \mathbb{Q}(\alpha)$, $c_{i} \in \mathbb{Q}$, find $b_{0}, b_{1}, b_{2} \in \mathbb{Q}$ such that $b_{0}+b_{1} \alpha+b_{2} \alpha^{2}$ is the multiplicative inverse of γ in $\mathbb{Q}(\alpha)$.

Proof. (of Theorem 13.4)

1. Define a map $\psi: k[x] \longrightarrow K$ as follows:

$$
\psi\left(\sum c_{j} x^{j}\right)=\sum c_{j} \alpha^{j} .
$$

Exercise: ψ is a ring homomorphism.
By assumption, f lies in ker ψ. Since k is a field, the ring $k[x]$ is a PID. So, there exists $p \in k[x]$ such that ker $\psi=(p)$. Hence, $p \mid f$ in $k[x]$.
By the First Isomorphism Theorem, $\operatorname{im} \psi$ is a subring of K which is isomorphic to $k[x] /(p)$. In particular, $\operatorname{im} \psi$ is an integral domain because K has no zero divisors. Hence, by Theorem 11.20, the polynomial p is an irreducible in $k[x]$.
Since $p \in(p)=\operatorname{ker} \psi$, we have $0=\psi(p)=p(\alpha)$. Hence, α is a root of p.
2. If $f+(p)=g+(p)$ in $k[x] /(p)$, then $g-f \in(p)$, or equivalently: $g=f+p q$ for some $q \in k[x]$.
Hence, $\phi(g+(p))=f(\alpha)+p(\alpha) q(\alpha)=f(\alpha)=\phi(f+(p))$.
This shows that ϕ is a well-defined map. We leave it as an exercise to show that ϕ is a one-to-one ring homomorphism.
We now show that $\operatorname{im} \phi=k(\alpha)$. By the First Isomorphism Theorem, $\operatorname{im} \phi$ is isomorphic to $k[x] /(p)$, which is a field since p is irreducible. Moreover, $\alpha=\phi(x+(p))$ lies in im ϕ. Hence, $\operatorname{im} \phi$ is a subfield of K containing α.
Since each element in $\operatorname{im} \phi$ has the form $\sum_{j=0}^{n} c_{j} \alpha^{j}$, where $c_{j} \in k$, and fields are closed under addition and multiplication, any subfield of K which contains k and α must contain $\operatorname{im} \phi$. This shows that $\operatorname{im} \phi$ is the smallest subfield of K containing k and α. Hence, $k[x] /(p) \cong \operatorname{im} \phi=k(\alpha)$.
3. Define $\phi^{\prime}: k[x] /(p) \longrightarrow k(\beta)$ as follows:

$$
\phi^{\prime}\left(\sum c_{j} x^{j}+(p)\right)=\sum c_{j} \beta^{j} .
$$

By the same reasoning applied to ϕ before, the map ϕ^{\prime} is a well-defined ring isomorphism, with:

$$
\phi^{\prime}(x+(p))=\beta, \quad \phi^{\prime}(s+(p))=s \text { for all } s \in k .
$$

It is then easy to see that the map $\sigma:=\phi^{\prime} \circ \phi^{-1}: k(\alpha) \longrightarrow k(\beta)$ is the desired isomorphism between $k(\alpha)$ and $k(\beta)$.
4. Since ϕ in Part 2 is an isomorphism onto $\operatorname{im} \phi=k(\alpha)$, we know that each element $\gamma \in k(\alpha)$ is equal to $\phi(f+(p))=f(\alpha):=\sum c_{j} \alpha^{j}$ for some $f=\sum c_{j} x^{j} \in k[x]$.
By the division theorem for $k[x]$. There exist $m, r \in k[x]$ such that $f=$ $m p+r$, with $\operatorname{deg} r<\operatorname{deg} p=n$. In particular, $f+(p)=r+(p)$ in $k[x] /(p)$.
Write $r=\sum_{j=0}^{n-1} b_{j} x^{j}$, with $b_{j}=0$ if $j>\operatorname{deg} r$.
We have:

$$
\gamma=\phi(f+(p))=\phi(r+(p))=\sum_{j=0}^{n-1} b_{j} \alpha^{j} .
$$

It remains to show that this expression for γ is unique. Suppose $\gamma=g(\alpha)=$ $\sum_{j=0}^{n-1} b_{j}^{\prime} \alpha^{j}$ for some $g=\sum_{j=0}^{n-1} b_{j}^{\prime} x^{j} \in k[x]$.
Then, $g(\alpha)=r(\alpha)=\gamma$ implies that $\phi(g+(p))=\phi(r+(p))$, hence:

$$
(g-r)+(p) \in \operatorname{ker} \phi
$$

Since ϕ is one-to-one, we have $(g-r) \equiv 0$ modulo (p), which implies that $p \mid(g-r)$ in $k[x]$.
Since $\operatorname{deg} g, \operatorname{deg} r<\operatorname{deg} p$, this implies that $g-r=0$. So, the expression $\gamma=b_{0}+b_{1} \alpha+\cdots+b_{n-1} \alpha^{n-1}$ is unique.

Terminology:

- If k is a subfield of K, we say that K is a field extension of k.
- Let α be an element in a field extension K of a field k. If there exists a polynomial $p \in k[x]$ of which α is a root, then α is said to be algebraic over k.
- If $\alpha \in K$ is algebraic over k, then there exists a unique monic irreducible polynomial $p \in k[x]$ of which α is a root (Exercise). This polynomial p is called the minimal polynomial of α over k.

For example, $\sqrt[3]{2} \in \mathbb{R}$ is algebraic over \mathbb{Q}. Its minimal polynomial over \mathbb{Q} is $x^{3}-2$.

Exercise 13.7. Find the minimal polynomial of $2-\sqrt[3]{6} \in \mathbb{R}$ over \mathbb{Q}, if it exists.
Exercise 13.8. Find the minimal polynomial of $\sqrt[3]{5}$ over \mathbb{Q}.
Exercise 13.9. Express the multiplicative inverse of $\gamma=2+\sqrt[3]{5}$ in $\mathbb{Q}(\sqrt[3]{5})$ in the form:

$$
\gamma^{-1}=c_{0}+c_{1} \sqrt[3]{5}+c_{2}(\sqrt[3]{5})^{2}
$$

where $c_{i} \in \mathbb{Q}$, if possible.

13.2 Splitting Field

Example 13.10. Since $\sqrt[3]{2} \in \mathbb{Q}(\sqrt[3]{2})$ is a root of $x^{3}-2$, the polynomial $p=x^{3}-2$ has a linear factor in $\mathbb{Q}(\sqrt[3]{2})[x]$. More precisely,

$$
x^{3}-2=(x-\sqrt[3]{2})\left(x^{2}+\sqrt[3]{2} x+(\sqrt[3]{2})^{2}\right)
$$

in $\mathbb{Q}(\sqrt[3]{2})[x]$. Exercise: Is $x^{2}+\sqrt[3]{2} x+(\sqrt[3]{2})^{2}$ irreducible in $\mathbb{Q}(\sqrt[3]{2})[x]$?
We could repeat this process and adjoin roots of $x^{2}+\sqrt[3]{2} x+(\sqrt[3]{2})^{2}$ to $\mathbb{Q}(\sqrt[3]{2})$ to further "split" the polynomial $x^{3}-2$ into a product of linear factors. That is the main idea behind the following theorem:

Theorem 13.11. If k is a field, and f is a nonconstant polynomial in $k[x]$, then there exists a field extension K of k, such that $f \in k[x] \subseteq K[x]$ is a product of linear factors in $K[x]$.

In other words, there exists a field extension K of k, such that:

$$
f=c\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right),
$$

for some $c, \alpha_{i} \in K$.

Proof. We prove by induction on $\operatorname{deg} f$.
If $\operatorname{deg} f=1$, we are done.
Inductive Step: Suppose $\operatorname{deg} f>1$. Suppose, for any field extension k^{\prime} of k, and any polynomial $g \in k^{\prime}[x]$ with $\operatorname{deg} g<\operatorname{deg} f$, there exists a field extension K of k^{\prime} such that g splits into a product of linear factors in $K[x]$.

Suppose f is irreducible. Let $f(t)$ be the polynomial in $k[t]$ obtained from f by replacing the variable x with the variable t. Consider $k^{\prime}:=k[t] /(f(t))$. Then, k^{\prime} is a field extension of k if we identify k with the subset $\{c+(f(t)): c \in k\} \subseteq k^{\prime}$, where c is considered as a constant polynomial in $k[t]$.

Observe that k^{\prime} contains a root α of f, namely $\alpha=t+(f(t)) \in k[t] /(f(t))$. Hence, $f=(x-\alpha) q$ in $k^{\prime}[x]$ for some polynomial $q \in k^{\prime}[x]$ with $\operatorname{deg} q<\operatorname{deg} f$.

Now, by the induction hypothesis, there is an extension field K of k^{\prime} such that q splits into a product of linear factors in $K[x]$. Consequently, f splits into a product of linear factors in $K[x]$.

If f is not irreducible, then $f=g h$ for some $g, h \in k[x]$, with $\operatorname{deg} g, \operatorname{deg} h<$ $\operatorname{deg} f$. So, by the induction hypothesis, there is a field extension k^{\prime} of k such that g is a product of linear factors in $k^{\prime}[x]$.

Hence, $f=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right) h$ in $k^{\prime}[x]$. Since $\operatorname{deg} h<\operatorname{deg} f$, by the inductive hypothesis there exists a field extension K of k^{\prime} such that h splits into linear factors in $K[x]$.

Hence, f is a product of linear factors in $K[x]$.

13.3 WeBWorK

1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

@ thm If k is a field, and f is a nonconstant polynomial in $k[x]$, then there exists a field extension K of k, such that $f \in k[x] \subseteq K[x]$ is a product of linear factors in $K[x]$. @ newcol In other words, there exists a field extension K of k, such that:

$$
f=c\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right)
$$

for some $c, \alpha_{i} \in K$. @endcol@end@proof@ newcol We prove by induction on $\operatorname{deg} f$. @col If $\operatorname{deg} f=1$, we are done. @col<b class="notkw" $>$ Inductive Step: $</ \mathrm{b}>$ Suppose $\operatorname{deg} f>1$. Suppose, for any field extension k^{\prime} of k, and any polynomial $g \in k^{\prime}[x]$ with $\operatorname{deg} g<\operatorname{deg} f$, there exists a field extension K of
k^{\prime} such that g splits into a product of linear factors in $K[x]$. @col Suppose f is irreducible. Let $f(t)$ be the polynomial in $k[t]$ obtained from f by replacing the variable x with the variable t. Consider $k^{\prime}:=k[t] /(f(t))$. Then, k^{\prime} is a field extension of k if we identify k with the subset $\{c+(f(t)): c \in k\} \subseteq k^{\prime}$, where c is considered as a constant polynomial in $k[t]$. @ col Observe that k^{\prime} contains a root α of f, namely $\alpha=t+(f(t)) \in k[t] /(f(t))$. Hence, $f=(x-\alpha) q$ in $k^{\prime}[x]$ for some polynomial $q \in k^{\prime}[x]$ with $\operatorname{deg} q<\operatorname{deg} f$. @col Now, by the induction hypothesis, there is an extension field K of k^{\prime} such that q splits into a product of linear factors in $K[x]$. Consequently, f splits into a product of linear factors in $K[x]$. @col If f is not irreducible, then $f=g h$ for some $g, h \in k[x]$, with $\operatorname{deg} g, \operatorname{deg} h<\operatorname{deg} f$. So, by the induction hypothesis, there is a field extension k^{\prime} of k such that g is a product of linear factors in $k^{\prime}[x]$. @ col Hence, $f=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right) h$ in $k^{\prime}[x]$. Since $\operatorname{deg} h<\operatorname{deg} f$, by the inductive hypothesis there exists a field extension K of k^{\prime} such that h splits into linear factors in $K[x]$. @col Hence, f is a product of linear factors in $K[x]$. @qed@endcol@end

13.4 Finite Fields

Recall:
Definition 13.12. Let R be a ring with additive and multiplicative identity elements 0,1 , respectively. The characteristic char R of R is the smallest positive integer n such that:

$$
\underbrace{1+1+\cdots+1}_{n \text { times }}=0 .
$$

If such an integer does not exist, we say that the ring has characteristic zero.
Example 13.13. - The ring \mathbb{Q} has characteristic zero.

- char $\mathbb{Z}_{6}=6$.

Exercise 13.14. If a ring R as finitely many elements, then it has positive (i.e. nonzero) characteristic.

Claim 13.15. If a field F has positive characteristic char F, then char F is a prime number.

Example 13.16. char $\mathbb{F}_{5}=5$, which is prime.
Remark. Note that all finite rings have positive characteristics, but there are rings with positive characteristics which have infinitely many elements, e.g. the polynomial ring $\mathbb{F}_{5}[x]$.

Claim 13.17. Let F be a finite field. Then, the number of elements of F is equal to p^{n} for some prime p and $n \in \mathbb{N}$.

Proof. Since F is finite, it has finite characteristic. Since it is a field, char F is a prime p.

Exercise: \mathbb{F}_{p} is isomorphic to a subfield of F.
Viewing \mathbb{F}_{p} as a subfield of F, we see that F is a vector space over \mathbb{F}_{p}. Since the cardinality of F is finite, the dimension n of F over \mathbb{F}_{p} must necessarily be finite.

Hence, there exist n basis elements $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ in F, such that each element of F may be expressed uniquely as:

$$
c_{1} \alpha_{1}+c_{2} \alpha_{2}+\cdots+c_{n} \alpha_{n}
$$

where $c_{i} \in \mathbb{F}_{p}$.
Since \mathbb{F}_{p} has p elements, it follows that F has p^{n} elements.
Claim 13.18. Let k be a field, f a nonzero irreducible polynomial in $k[x]$, then $k[x] /(f)$ is a vector space of dimension $\operatorname{deg} f$ over k.

Proof. Let $K=k[t] /(f(t))$, then K is a field extension of k which contains a root α of f, namely, $\alpha=t+(f(t))$.

It is clear that $K=k(\alpha)$, since any element in $K=k[t] /(f(t))$ has the form $\sum b_{i} \alpha^{i}$, where $b_{i} \in k$.

On the other hand, by Theorem 13.4, every element in $k(\alpha)$ may be expressed uniquely in the form:

$$
c_{0}+c_{1} \alpha+c_{2} \alpha^{2}+\cdots+c_{n-1} \alpha^{n-1}, \quad c_{i} \in k, n=\operatorname{deg} f,
$$

which shows that $K=k(\alpha)$ is a vector space of dimension $\operatorname{deg} f$ over k.
Since K is simply $k[x] /(f)$ with the variable x replaced with t, we conclude that $k[x] /(f)$ is a vector space of dimension $\operatorname{deg} f$ over k.

Corollary 13.19. If k is a finite field with $|k|$ elements, and f is an irreducible polynomial of degree n in $k[x]$, then the field $k[x] /(f)$ has $|k|^{n}$ elements.

Example 13.20. Let $p=2, n=2$. To construct a finite field with $p^{n}=4$ elements. We first start with the finite field \mathbb{F}_{2}, then try to find an irreducible polynomial $f \in \mathbb{F}_{2}[x]$ such that $\mathbb{F}_{2}[x] /(f)$ has 4 elements.

Based on our discussion so far, the degree of f should be equal to $n=2$, since n is precisely the dimension of the desired finite field over \mathbb{F}_{2}.

Consider $f=x^{2}+x+1$. Since p is of degree 2 and has no root in \mathbb{F}_{2}, it is irreducible in $\mathbb{F}_{2}[x]$. Hence, $\mathbb{F}_{2}[x] /\left(x^{2}+x+1\right)$ is a field with 4 elements.

Theorem 13.21. (Galois) Given any prime p and $n \in \mathbb{N}$, there exists a finite field F with p^{n} elements.

Proof. (Not within the scope of the course.)
Consider the polynomial:

$$
f=x^{p^{n}}-x \in \mathbb{F}_{p}[x]
$$

By Kronecker's theorem, there exists a field extension K of \mathbb{F}_{p} such that f splits into a product of linear factors in $K[x]$. Let:

$$
F=\{\alpha \in K: f(\alpha)=0\} .
$$

Exercise 13.22. Let $g=\left(x-a_{1}\right)\left(x-a_{2}\right) \cdots\left(x-a_{n}\right)$ be a polynomial in $k[x]$, where k is a field. Show that the roots $a_{1}, a_{2}, \ldots, a_{n}$ are distinct if and only if $\operatorname{gcd}\left(g, g^{\prime}\right)=1$, where g^{\prime} is the derivative of g.

In this case, we have $f^{\prime}=p^{n} x^{p^{n}-1}-1=-1$ in $\mathbb{F}_{p}[x]$. Hence, $\operatorname{gcd}\left(f, f^{\prime}\right)=1$, which implies by the exercise that the roots of f are all distinct. So, f has p^{n} distinct roots in K, hence F has exactly p^{n} elements.

It remains to show that F is a field. Let $q=p^{n}$. By definition, an element $a \in K$ belongs to F if and only if $f(a)=a^{q}-a=0$, which holds if and only if $a^{q}=a$. For $a, b \in F$, we have:

$$
(a b)^{q}=a^{q} b^{a}=a b,
$$

which implies that F is closed under multiplication. Since K, being a extension of \mathbb{F}_{p}, has characteristic p. we have $(a+b)^{p}=a^{p}+b^{p}$. Hence,

$$
\begin{aligned}
(a+b)^{q}=(a+b)^{p^{n}}=\left((a+b)^{p}\right)^{p^{n-1}}=\left(a^{p}+b^{p}\right)^{p^{n-1}} \\
\left.=\left(a^{p}+b^{p}\right)^{p}\right)^{p^{n-2}}=\left(a^{p^{2}}+b^{p^{2}}\right)^{p^{n-2}} \\
\quad=\cdots=a^{p^{n}}+b^{p^{n}}=a+b,
\end{aligned}
$$

which implies that F is closed under addition.
Let 0,1 be the additive and multiplicative identity elements, respectively, of K. Since $0^{q}=0$ and $1^{q}=1$, they are also the additive and multiplicative identity elements of F.

For nonzero $a \in F$, we need to prove the existence of the additive and multiplicative inverses of a in F.

Let $-a$ be the additive inverse of a in K. Since $(-1)^{q}=-1$ (even if $p=2$, since $1=-1$ in \mathbb{F}_{2}), we have:

$$
(-a)^{q}=(-1)^{q} a^{q}=-a,
$$

so $-a \in F$. Hence, $a \in F$ has an additive inverse in F. Since $a^{q}=a$ in K, we have:

$$
a^{q-2} a=a^{q-1}=1
$$

in K. Since $a \in F$ and F is closed under multiplication, $a^{q-2}=\underbrace{a \cdots a}_{q-2 \text { times }}$ lies in F. So, a^{q-2} is a multiplicative inverse of a in F.

