Math 2070 Week 12

Rational Root Theorem, Gauss's Theorem, Eisenstein's Criterion

12.1 Polynomials over \mathbb{Z} and \mathbb{Q}

Theorem 12.1 (Rational Root Theorem). Let $f = a_0 + a_1x + \cdots + a_nx^n$, be a polynomial in $\mathbb{Q}[x]$, with $a_i \in \mathbb{Z}$, $a_n \neq 0$. Every rational root r of f in \mathbb{Q} has the form r = b/c $(b, c \in \mathbb{Z})$ where $b|a_0$ and $c|a_n$.

Proof. Let r=b/c be a rational root of f, where b,c are relatively prime integers. We have:

$$0 = \sum_{i=0}^{n} a_i (b/c)^i$$

Multiplying both sides of the above equation by c^n , we have:

$$0 = a_0 c^n + a_1 c^{n-1} b + a_2 c^{n-2} b^2 + \dots + a_n b^n,$$

or equivalently:

$$a_0c^n = -(a_1c^{n-1}b + a_2c^{n-2}b^2 + \dots + a_nb^n).$$

Since b divides the right-hand side, and b and c are relatively prime, b must divide a_0 .

Similarly, we have:

$$a_n b^n = -(a_0 c^n + a_1 c^{n-1} b + a_2 c^{n-2} b^2 + \dots + a_{n-1} c b^{n-1}).$$

Since c divides the right-hand side, and b and c are relatively prime, c must divide a_n .

Definition 12.2. A polynomial $f \in \mathbb{Z}[x]$ is said to be **primitive** if the gcd of its coefficients is 1.

Remark. Note that if f is monic, i.e. its leading coefficient is 1, then it is primitive. If d is the gcd of the coefficients of f, then $\frac{1}{d}f$ is a primitive polynomial in $\mathbb{Z}[x]$.

Lemma 12.3 (Gauss's Lemma). If $f, g \in \mathbb{Z}[x]$ are both primitive, then fg is primitive.

Proof. Write $f = \sum_{k=0}^m a_k x^k$, $g = \sum_{k=0}^n b_k x^k$. Then, $fg = \sum_{k=0}^{m+n} c_k x^k$, where:

$$c_k = \sum_{i+j=k} a_i b_j.$$

Suppose fg is not primitive. Then, there exists a prime p such that p divides c_k for k = 0, 1, 2, ..., m + n.

Since f is primitive, there exists a least $u \in \{0, 1, 2, ..., m\}$ such that a_u is not divisible by p.

Similarly, since g is primitive, there is a least $v \in \{0, 1, 2, ..., n\}$ such that b_v is not divisible by p. We have:

$$c_{u+v} = \sum_{\substack{i+j=u+v\\(i,j)\neq(u,v)}} a_i b_j + a_u b_v,$$

hence:

$$a_u b_v = c_{u+v} - \sum_{\substack{i+j=u+v \ i < u}} a_i b_j - \sum_{\substack{i+j=u+v \ j < v}} a_i b_j.$$

By the minimality conditions on u and v, each term on the right-hand side of the above equation is divisible by p.

Hence, p divides a_ub_v , which by Euclid's Lemma implies that p divides either a_u or b_v , a contradiction.

Lemma 12.4. Every nonzero $f \in \mathbb{Q}[x]$ has a unique factorization:

$$f = c(f)f_0,$$

where c(f) is a positive rational number, and f_0 is a primitive polynomial in $\mathbb{Z}[x]$.

Definition 12.5. *The rational number* c(f) *is called the* **content** *of* f.

Proof. Existence:

Write $f = \sum_{k=0}^{n} (a_k/b_k)x^k$, where $a_k, b_k \in \mathbb{Z}$. Let $B = b_0b_1 \cdots b_n$. Then, g := Bf is a polynomial in $\mathbb{Z}[x]$. Let d be the gcd of the coefficients of g. Let $D = \pm d$, with the sign chosen such that D/B > 0. Observe that $f = c(f)f_0$, where

$$c(f) = D/B,$$

and

$$f_0 := \frac{B}{D}f = \frac{1}{D}g$$

is a primitive polynomial in $\mathbb{Z}[x]$.

Uniqueness:

Suppose $f = ef_1$ for some positive $e \in \mathbb{Q}$ and primitive $f_1 \in \mathbb{Z}[x]$. We have:

$$ef_1 = c(f)f_0.$$

Writing e/c(f) = u/v where u, v are relatively prime positive integers, we have:

$$uf_1 = vf_0$$
.

Since gcd(u, v) = 1, by Euclid's Lemma the above equation implies that v divides each coefficient of f_1 , and u divides each coefficient of f_0 . Since f_0 and f_1 are primitive, we conclude that u = v = 1. Hence, e = c(f), and $f_1 = f_0$.

Corollary 12.6. For $f \in \mathbb{Z}[x] \subseteq \mathbb{Q}[x]$, we have $c(f) \in \mathbb{Z}$.

Proof. Let d be the gcd of the coefficients of f. Then, (1/d)f is a primitive polynomial, and

$$f = d\left(\frac{1}{d}f\right)$$

is a factorization of f into a product of a positive rational number and a primitive polynomial in $\mathbb{Z}[x]$. Hence, by uniqueness of c(f) and f_0 , we have $c(f) = d \in \mathbb{Z}$.

Corollary 12.7. Let f, g, h be nonzero polynomials in $\mathbb{Q}[x]$ such that f = gh. Then, $f_0 = g_0h_0$ and c(f) = c(g)c(h).

Proof. The condition f = gh implies that:

$$c(f)f_0 = c(g)c(h)g_0h_0,$$

where f_0, g_0, h_0 are primitive polynomials and c(f), c(g), c(h) are positive rational numbers. By a previous result g_0h_0 is primitive. It now follows from the uniqueness of c(f) and f_0 that $f_0 = g_0h_0$ and c(f) = c(g)c(h).

Theorem 12.8 (Gauss's Theorem). Let f be a nonzero polynomial in $\mathbb{Z}[x]$. If f = GH for some $G, H \in \mathbb{Q}[x]$, then f = gh for some $g, h \in \mathbb{Z}[x]$, where $\deg g = \deg G$, $\deg h = \deg H$.

Consequently, if f cannot be factored into a product of polynomials of smaller degrees in $\mathbb{Z}[x]$, then it is irreducible as a polynomial in $\mathbb{Q}[x]$.

Proof. Suppose f = GH for some G, H in $\mathbb{Q}[x]$. Then $f = c(f)f_0 = c(G)c(H)G_0H_0$, where G_0 , H_0 are primitive polynomials in $\mathbb{Z}[x]$, and c(G)c(H) = c(f) by the uniqueness of the content of a polynomial.

Moreover, since $f \in \mathbb{Z}[x]$, its content c(f) lies in \mathbb{Z} . Hence, $g = c(f)G_0$ and $h = H_0$ are polynomials in $\mathbb{Z}[x]$, with $\deg g = \deg G$, $\deg h = \deg H$, such that f = gh.

Let p be a prime. Let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} \cong \mathbb{Z}_p$. It is a field, since p is prime. For $a \in \mathbb{Z}$, let \overline{a} denote the residue of a in \mathbb{F}_p .

Exercise: We have $\overline{a} = \overline{a_p}$, where a_p is the remainder of the division of a by p.

Theorem 12.9. Let $f = \sum_{k=0}^{n} a_k x^k$ be a polynomial in $\mathbb{Z}[x]$ such that $p \nmid a_n$ (in particular, $a_n \neq 0$). If $\overline{f} := \sum_{k=0}^{n} \overline{a_k} x^k$ is irreducible in $\mathbb{F}_p[x]$, then f is irreducible in $\mathbb{Q}[x]$.

Proof. Suppose \overline{f} is irreducible in $\mathbb{F}_p[x]$, but f is not irreducible in $\mathbb{Q}[x]$. By Gauss's theorem, there exist $g,h\in\mathbb{Z}[x]$ such that $\deg g,\deg h<\deg f$ and f=gh.

Since by assumption $p \nmid a_n$, we have $\deg \overline{f} = \deg f$.

Moreover, $\overline{gh} = \overline{g} \cdot \overline{h}$ (**Exercise**).

Hence, $\overline{f} = \overline{gh} = \overline{g} \cdot \overline{h}$, where $\deg \overline{g}, \deg \overline{h} < \deg \overline{f}$. This contradicts the irreducibility of \overline{f} in $\mathbb{F}_p[x]$.

Hence, f is irreducible in $\mathbb{Q}[x]$ if \overline{f} is irreducible in $\mathbb{F}_p[x]$.

Example 12.10. The polynomial $f(x) = x^4 - 5x^3 + 2x + 3 \in \mathbb{Q}[x]$ is irreducible.

Proof. Consider $\overline{f} = x^4 - \overline{5}x^3 + \overline{2}x + \overline{3} = x^4 + x^3 + 1$ in $\mathbb{F}_2[x]$. If we can show that \overline{f} is irreducible, then by the previous theorem we can conclude that f is irreducible.

Since $\mathbb{F}_2 = \{0,1\}$ and $\overline{f}(0) = \overline{f}(1) = 1 \neq 0$, we know right away that \overline{f} has no linear factors. So, if \overline{f} is not irreducible, it must be a product of two quadratic factors:

$$\overline{f} = (ax^2 + bx + c)(dx^2 + ex + g), \quad a, b, c, d, e, g \in \mathbb{F}_2.$$

Note that by assumption a, d are nonzero elements of \mathbb{F}_2 , so a = d = 1. This implies that, in particular:

$$1 = \overline{f}(0) = cg$$

$$1 = \overline{f}(1) = (1 + b + c)(1 + e + g)$$

The first equation implies that c = g = 1. The second equation then implies that 1 = (2 + b)(2 + e) = be. Hence, b = e = 1.

We have:

$$x^{4} + x^{3} + 1 = (x^{2} + x + 1)(x^{2} + x + 1)$$
$$= x^{4} + 2x^{3} + 3x^{2} + 2x + 1 = x^{4} + x^{2} + 1.$$

a contradiction.

Hence, \overline{f} is irreducible in $\mathbb{F}_2[x]$, which implies that f is irreducible in $\mathbb{Q}[x]$.

Theorem 12.11 (Eisenstein's Criterion). Let $f = a_0 + a_1x + \cdots + a_nx^n$ be a polynomial in $\mathbb{Z}[x]$. If there exists a prime p such that $p|a_i$ for $0 \le i < n$, but $p \nmid a_n$ and $p^2 \nmid a_0$, then f is irreducible in $\mathbb{Q}[x]$.

Proof. We prove by contradiction. Suppose f is not irreducible in $\mathbb{Q}[x]$. Then, by Gauss's Theorem, there exists $g = \sum_{k=0}^{l} b_k x^k$, $h = \sum_{k=0}^{n-l} c_k x^k \in \mathbb{Z}[x]$, with $\deg g, \deg h < \deg f$, such that f = gh.

Consider the image of these polynomials in $\mathbb{F}_p[x]$. By assumption, we have:

$$\overline{a_n}x^n = \overline{f} = \overline{g}\overline{h}.$$

This implies that \overline{g} and \overline{h} are divisors of $\overline{a_n}x^n$. Since \mathbb{F}_p is a field, unique factorization holds for $\mathbb{F}_p[x]$. Hence, we must have:

$$\overline{g} = \overline{b_u} x^u, \quad \overline{h} = \overline{c_{n-u}} x^{n-u},$$

for some $u \in \{0, 1, 2, \dots, l\}$.

If u < l, then $n - u > n - l \ge deg \overline{h}$, which cannot hold.

So, we conclude that $\overline{g} = \overline{b_l} x^l$, $\overline{h} = \overline{c_{n-l}} x^{n-l}$.

In particular, $\overline{b_0} = \overline{c_0} = 0$ in \mathbb{F}_p , which implies that p divides both b_0 and c_0 . Since $a_0 = b_0 c_0$, we have $p^2 | a_0$, a contradiction.

Example 12.12. The polynomial $x^5 + 3x^4 - 6x^3 + 12x + 3$ is irreducible in $\mathbb{Q}[x]$.