Math 2070 Week 11

Quotient Rings, Polynomials over a Field

11.1 Quotient Rings - continued

Example 11.1. Let *m* be a natural number. Consider the map $\phi : \mathbb{Z} \longrightarrow \mathbb{Z}_m$ defined by:

$$\phi(n) = n_m, \quad \forall n \in \mathbb{Z},$$

where n_m is the remainder of the division of n by m.

Exercise: ϕ *is a homomorphism.*

It is clear that ϕ is surjective, and that ker $\phi = m\mathbb{Z}$. So, it follows from the First Isomorphism Theorem that:

$$\mathbb{Z}_m \cong \mathbb{Z}/m\mathbb{Z}.$$

Definition 11.2 (Gaussian Integers). Let:

 $\mathbb{Z}[i] = \{ z \in \mathbb{C} : z = a + bi \text{ for some } a, b \in \mathbb{Z} \},\$

where $i = \sqrt{-1}$.

Exercise 11.3. Show that the set $\mathbb{Z}[i]$ is a ring under the usual addition + and multiplication \times operations on \mathbb{C} .

Moreover, we have $0_{\mathbb{Z}[i]} = 0$, $1_{\mathbb{Z}[i]} = 1$, and:

$$-(a+bi) = (-a) + (-b)i$$

for any $a, b \in \mathbb{Z}$.

Example 11.4. The ring $\mathbb{Z}[i]/(1+3i)$ is isomorphic to $\mathbb{Z}/10\mathbb{Z}$.

Proof. Define a map $\phi : \mathbb{Z} \longrightarrow \mathbb{Z}[i]/(1+3i)$ as follows:

$$\phi(n) = \overline{n}, \quad \forall n \in \mathbb{Z},$$

where \overline{n} is the residue of $n \in \mathbb{Z}[i]$ modulo (1+3i).

It is clear that ϕ is a homomorphism (**Exercise**). Observe that in $\mathbb{Z}[i]$, we have:

$$1 + 3i \equiv 0 \mod (1 + 3i),$$

which implies that:

$$1 \equiv -3i \mod (1+3i)$$

$$i \cdot 1 \equiv i \cdot (-3i) \mod (1+3i)$$

$$i \equiv 3 \mod (1+3i).$$

Hence, for all $a, b \in \mathbb{Z}$,

$$\overline{a+bi} = \overline{a+3b} = \phi(a+3b)$$

in $\mathbb{Z}[i]/(1+3i)$. Hence, ϕ is surjective.

Suppose n is an element of \mathbb{Z} such that $\phi(n) = \overline{n} = 0$. Then, by the definition of the quotient ring we have:

$$n \in (1+3i).$$

This means that there exist $a, b \in \mathbb{Z}$ such that:

$$n = (a+bi)(1+3i) = (a-3b) + (3a+b)i,$$

which implies that 3a + b = 0, or equivalently, b = -3a. Hence:

$$n = a - 3b = a - 3(-3a) = 10a,$$

which implies that ker $\phi \subseteq 10\mathbb{Z}$. Conversely, for all $m \in \mathbb{Z}$, we have:

$$\phi(10m) = \overline{10m} = \overline{(1+3i)(1-3i)m} = 0$$

in $\mathbb{Z}[i]/(1+3i)$.

This shows that $10\mathbb{Z} \subseteq \ker \phi$. Hence, $\ker \phi = 10\mathbb{Z}$. It now follows from the First Isomorphism Theorem that:

$$\mathbb{Z}/10\mathbb{Z} \cong \mathbb{Z}[i]/(1+3i).$$

11.2 Polynomials over a Field

Let k be a field. For $f \in k[x]$ and $a \in k$, let:

$$f(a) = \phi_a(f),$$

where ϕ_a is the **evaluation homomorphism** defined in Example 9.5. That is:

$$\phi_a\left(\sum_{i=0}^n c_i x^i\right) = \sum_{i=0}^n c_i a^i.$$

Definition 11.5. Let $f = \sum_{i=0}^{n} c_i x^i$ be a polynomial in k[x]. An element $a \in k$ is a root of f if:

$$f(a) = 0$$

in k.

Lemma 11.6. For all $f \in k[x]$, $a \in k$, there exists $q \in k[x]$ such that:

$$f = q(x-a) + f(a)$$

Proof. By the Division Theorem for Polynomials with Unit Leading Coefficients, there exist $q, r \in k[x]$ such that:

$$f = q(x - a) + r$$
, $\deg r < \deg(x - a) = 1$.

This implies that r is a constant polynomial.

Applying the evaluation homomorphism ϕ_a to both sides of the above equation, we have:

$$f(a) = \phi_a(q(x-a)+r)$$

= $\phi_a(q) \cdot \phi_a(x-a) + \phi_a(r)$
= $q(a)(a-a) + r$
= r .

Claim 11.7 (Root Theorem). Let k be a field, f a polynomial in k[x]. Then, $a \in k$ is a root of f if and only if (x - a) divides f in k[x].

Proof. If $a \in k$ is a root of f, then by the previous lemma there exists $q \in k[x]$ such that:

$$f = q(x - a) + \underbrace{f(a)}_{=0} = q(x - a),$$

so (x - a) divides f in k[x].

Conversely, if f = q(x - a) for some $q \in k[x]$, then f(a) = q(a)(a - a) = 0. Hence, a is a root of f. **Theorem 11.8.** Let k be a field, f a nonzero polynomial in k[x].

- 1. If f has degree n, then it has at most n roots in k.
- 2. If f has degree n > 0 and $a_1, a_2, \ldots, a_n \in k$ are distinct roots of f, then:

$$f = c \cdot \prod_{i=1}^{n} (x - a_i) := c(x - a_1)(x - a_2) \cdots (x - a_n)$$

for some $c \in k$.

Proof. 1. We prove Part 1 of the claim by induction. If f has degree 0, then f is a nonzero constant, which implies that it has no roots. So, in this case the claim holds.

Let f be a polynomial with degree n > 0. Suppose the claim holds for all nonzero polynomials with degrees strictly less than n. We want to show that the claim also holds for f. If f has no roots in k, then the claim holds for f since 0 < n. If f has a root $a \in k$, then by the previous claim there exists $q \in k[x]$ such that:

$$f = q(x - a).$$

For any other root $b \in k$ of f which is different from a, we have:

$$0 = f(b) = q(b)(b-a).$$

Since k is a field, it has no zero divisors; so, it follows from $b - a \neq 0$ that q(b) = 0. In other words, b is a root of q. Since deg q < n, by the induction hypothesis q has at most n - 1 roots. So, f has at most n - 1 roots different from a. This shows that f has at most n roots.

2. Let f be a polynomial in k[x] which has $n = \deg f$ distinct roots $a_1, a_2, \ldots, a_n \in k$.

If n = 1, then $f = c_0 + c_1 x$ for some $c_i \in k$, with $c_1 \neq 0$. We have:

$$0 = f(a_1) = c_0 + c_1 a_1,$$

which implies that: $c_0 = -c_1 a_1$. Hence,

$$f = -c_1 a_1 + c_1 x = c_1 (x - a_1).$$

Suppose n > 1. Suppose for all $n' \in \mathbb{N}$, such that $1 \le n' < n$, the claim holds for any polynomial of degree n' which has n' distinct roots in k. By the previous claim, there exists $q \in k[x]$ such that:

$$f = q(x - a_n)$$

Note that $\deg q = n - 1$.

For $1 \le i < n$, we have

$$0 = f(a_i) = q(a_i) \underbrace{(a_i - a_n)}_{\neq 0}.$$

Since k is a field, this implies that $q(a_i) = 0$ for $1 \le i < n$. So, $a_1, a_2, \ldots, a_{n-1}$ are n-1 distinct roots of q. By the induction hypothesis there exists $c \in k$ such that:

$$q = c(x - a_1)(x - a_2) \cdots (x - a_{n-1}).$$

Hence, $f = q(x - a_n) = c(x - a_1)(x - a_2) \cdots (x - a_{n-1})(x - a_n).$

Corollary 11.9. Let k be a field. Let f, g be nonzero polynomials in k[x]. Let $n = \max\{\deg f, \deg g\}$. If f(a) = g(a) for n + 1 distinct $a \in k$. Then, f = g.

Proof. Let h = f - g, then deg $h \le n$. By hypothesis, there are n + 1 distinct elements $a \in k$ such that h(a) = f(a) - g(a) = 0. If $h \ne 0$, then it is a nonzero polynomial with degree $\le n$ which has n + 1 distinct roots, which contradicts the previous theorem. Hence, h must necessarily be the zero polynomial, which implies that f = g.

Definition 11.10. A polynomial in k[x] is called a **monic polynomial** if its leading coefficient is 1.

Corollary 11.11. Let k be a field. Let f, g be nonzero polynomials in k[x]. There exists a unique monic polynomial $d \in k[x]$ with the following property:

1. (f,g) = (d)

Moreover, this d also satisfies the following properties:

- 2. *d* divides both f and g, i.e., there exists $a, b \in k[x]$ such that f = ad, g = bd.
- 3. There are polynomials $p, q \in k[x]$ such that d = pf + qg.
- 4. If $h \in k[x]$ is a divisor of f and g, then h divides d.

Terminology.

- The unique monic d ∈ k[x] which satisfies property 1 is called the Greatest Common Divisor (abbrev. GCD) of f and g.
- We say that f and g are **relatively prime** if their GCD is 1.

Proof. 1. By Theorem 10.18, there exists $d = \sum_{i=0}^{n} a_i x^i \in k[x]$ such that (d) = (f, g). Replacing d by $a_n^{-1}d$ if necessary, we may assume that d is a monic polynomial. It remains to show that d is unique.

Suppose (d) = (d'), where both d and d' are monic polynomials. Then, there exist nonzero $p, q \in k[x]$ such that:

$$d' = pd, \quad d = qd'.$$

Examining the degrees of the polynomials, we have:

$$\deg d' = \deg d + \deg p,$$

and:

$$\deg d = \deg q + \deg d' = \deg p + \deg q + \deg d.$$

This implies that $\deg p + \deg q = 0$. Hence, p and q must both have degree 0; in other words, they are constant polynomials. Moreover, we have $\deg d = \deg d'$. Comparing the leading coefficients of d' and pd, we have p = 1. Hence, d = d'.

- 2. Clear.
- 3. Clear.
- 4. By Part 3 of the corollary, there are $p, q \in k[x]$ such that d = pf + qg. It is then clear that if h divides both f and g, then h must divide d.

Definition 11.12. Let R be a commutative ring. A nonzero element $p \in R$ which is not a unit is said to be **irreducible** if p = ab implies that either a or b is a unit.

Example 11.13. *The set of irreducible elements in the ring* \mathbb{Z} *is* { $\pm p : p$ *a prime number*}.

Let k be a field.

Lemma 11.14. A polynomial $f \in k[x]$ is a unit if and only if it is a nonzero constant polynomial.

Proof. Exercise.

Claim 11.15. A nonzero nonconstant polynomial $p \in k[x]$ is irreducible if and only if there is no $f, g \in k[x]$, with deg f, deg $g < \deg p$, such that fg = p.

Proof. Suppose p is irreducible, and p = fg for some $f, g \in k[x]$ such that $\deg f, \deg g < \deg p$. Then p = fg implies that $\deg f$ and $\deg g$ are both positive. By the previous lemma, both f and g are non-units, which is a contradiction, since the irreducibility of p implies that either f or g must be a unit.

Conversely, suppose p is a nonzero non-unit in k[x], which is not equal to fg for any $f, g \in k[x]$ with deg f, deg $g < \deg p$. Then, p = ab, $a, b \in k[x]$, implies that either a or b must have the same degree as p, and the other factor must be a nonzero constant, in other words a unit in k[x]. Hence, p is irreducible.

Lemma 11.16 (Euclid's Lemma). Let k be a field. Let f, g be polynomials in k[x]. Let p be an irreducible polynomial in k[x]. If p|fg in k[x], then p|f or p|g.

Proof. Suppose $p \nmid f$. Then, any common divisor of p and f must have degree strictly less than deg p. Since p is irreducible, this implies that any common divisor of p and f is a nonzero constant. Hence, the GCD of p and f is 1. By Corollary 11.11, there exist $a, b \in k[x]$ such that:

$$ap + bf = 1$$

Multiplying both sides of the above equation by g, we have:

$$apg + bfg = g.$$

Since p divides the left-hand side of the above equation, it must also divide the right-hand side, which is the polynomial g.

Claim 11.17. If $f, g \in k[x]$ are relatively prime, and both divide $h \in k[x]$, then fg|h.

Proof. Exercise.

Theorem 11.18 (Unique Factorization). Let k be a field. Every nonconstant polynomial $f \in k[x]$ may be written as:

$$f = cp_1 \cdots p_n,$$

where c is a nonzero constant, and each p_i is a monic irreducible polynomial in k[x]. The factorization is unique up to the ordering of the factors.

Proof. **Exercise.** One possible approach is very similar to the proof of unique factorization for \mathbb{Z} . See: The Fundamental Theorem of Arithmetic .

Exercise 11.19. *1*. WeBWorK

Theorem 11.20. Let k be a field. Let p be a polynomial in k[x]. The following statements are equivalent:

- 1. k[x]/(p) is a field.
- 2. k[x]/(p) is an integral domain.
- 3. p is irreducible in k[x].

Remark. Compare this result with Exercise 8.11 and Corollary 8.16.

Proof. 1. $1 \Rightarrow 2$: Clear, since every field is an integral domain.

- 2. 2 ⇒ 3: If p is not irreducible, there exist f, g ∈ k[x], with degrees strictly less than that of p, such that p = fg. Since deg f, deg g < deg p, the polynomial p does not divide f or g in k[x]. Consequently, the congruence classes f and g of f and g, respectively, modulo (p) is not equal to zero in k[x]/(p). On the other hand, f · g = fg = p = 0 in k[x]/(p). This implies that k[x]/(p) is not an integral domain, a contradiction. Hence, p is irreducible if k[x]/(p) is an integral domain.</p>
- 3. 3 ⇒ 1: By definition, the multiplicative identity element 1 of a field is different from the additive identity element 0. So we need to check that the congruence class of 1 ∈ k[x] in k[x]/(p) is not 0. Since p is irreducible, by definition we have deg p > 0. Hence, 1 ∉ (p), for a polynomial of degree > 0 cannot divide a polynomial of degree 0 in k[x]. We conclude that 1 + (p) ≠ 0 + (p) in k[x]/(p).

Next, we need to prove the existence of the multiplicative inverse of any nonzero element in k[x]/(p). Given any $f \in k[x]$ whose congruence class \overline{f} modulo (p) is nonzero in k[x]/(p), we want to find its multiplicative inverse \overline{f}^{-1} . If $\overline{f} \neq 0$ in k[x]/(p), then by definition $f - 0 \notin (p)$, which means that p does not divide f. Since p is irreducible, this implies that GCD(p, f) = 1. By Corollary 11.11 there exist $g, h \in k[x]$ such that fg + hp = 1. It is then clear that $\overline{g} = \overline{f}^{-1}$, since fg - 1 = -hp implies that $fg - 1 \in (p)$, which by definition means that $\overline{f} \cdot \overline{g} = \overline{fg} = 1$ in k[x]/(p).

Example 11.21. The rings $\mathbb{R}[x]/(x^2+1)$ and \mathbb{C} are isomorphic.

Proof. Define a map $\phi : \mathbb{R}[x] \longrightarrow \mathbb{C}$ as follows:

$$\phi(\sum_{k=0}^{n} a_k x^k) = \sum_{k=0}^{n} a_k i^k.$$

Exercise: ϕ is a homomorphism.

For all a + bi $(a, b \in \mathbb{R})$ in \mathbb{C} , we have:

$$\phi(a+bx) = a+bi.$$

Hence, ϕ is surjective.

We now find ker ϕ . Since $\mathbb{R}[x]$ is a PID (see Definition 10.15). There exists $p \in \mathbb{R}[x]$ such that ker $\phi = (p)$.

Observe that $\phi(x^2 + 1) = 0$. So, $x^2 + 1 \in \ker \phi$, which implies that there exists $q \in \mathbb{R}[x]$ such that $x^2 + 1 = pq$. Since $x^2 + 1$ has no real roots, neither p or q can be of degree 1.

So, one of p or q must be a nonzero constant polynomial. p cannot be a nonzero constant polynomial, for that would imply that ker $\phi = \mathbb{R}[x]$. So, q is a constant, which implies that $p = q^{-1}(x^2 + 1)$. We conclude that ker $\phi = (x^2 + 1)$.

It now follows from the First Isomorphism Theorem that $\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$.