Math 2070 Week 1

Groups

1.1 Overview

- Groups

- How many ways are there to color a cube, such that each face is either black or white?
Answer: 10. Why?
- How many ways are there to form a triangle with three sticks of equal lengths, colored red, green and blue, respectively?
- What are the symmetries of an equilateral triangle?

Dihedral Group D_{3}
IMAGE

- Rings

- Euclidean Algorithm.
- Chinese Remainder Theorem.
- Partial Fraction Decomposition.
- Algebraic Extension of Fields.

1.2 Groups

Definition 1.1. A group G is a set equipped with a binary operation $*: G \times G \longrightarrow$ G (typically called group operation or "multiplication"), such that:

- Associativity

$$
(a * b) * c=a *(b * c),
$$

for all $a, b, c \in G$. In other words, the group operation is associative .

- Existence of an Identity Element

There is an element $e \in G$, called an identity element, such that:

$$
g * e=e * g=g
$$

for all $g \in G$.

- Invertibility

Each element $g \in G$ has an inverse $g^{-1} \in G$, such that:

$$
g^{-1} * g=g * g^{-1}=e
$$

- Note that we do not require that $a * b=b * a$.
- We often write $a b$ to denote $a * b$.

Definition 1.2. If $a b=b a$ for all $a, b \in G$. We say that the group operation is commutative, and that G is an abelian group.

Example 1.3. The following sets are groups, with respect to the specified group operations:

- $G=\mathbb{Q} \backslash\{0\}$, where the group operation is the usual multiplication for rational numbers. The identity is $e=1$, and the inverse of $a \in \mathbb{Q} \backslash\{0\}$ is $a^{-1}=\frac{1}{a}$. The group G is abelian .
- $G=\mathbb{Q}$, where the group operation is the usual addition + for rational numbers. The identity is $e=0$. The inverse of $a \in \mathbb{Q}$ with respect to + is $-a$. Note that \mathbb{Q} is NOT a group with respect to multiplication. For in that case, we have $e=1$, but $0 \in \mathbb{Q}$ has no inverse $0^{-1} \in \mathbb{Q}$ such that $0 \cdot 0^{-1}=1$.

Exercise 1.4. Verify that the following sets are groups under the specified binary operation:

- $(\mathbb{Z},+)$
- $(\mathbb{R},+)$
- $\left(\mathbb{R}^{\times}, \cdot\right)$
- $\left(U_{m}, \cdot\right)$, where $m \in \mathbb{N}$,

$$
U_{m}=\left\{1, \xi_{m}, \xi_{m}^{2}, \ldots, \xi_{m}^{m-1}\right\}
$$

and $\xi_{m}=e^{2 \pi i / m}=\cos (2 \pi / m)+i \sin (2 \pi / m) \in \mathbb{C}$.

- The set of bijective functions $f: \mathbb{R} \longrightarrow \mathbb{R}$, where $f * g:=f \circ g$ (i.e. composition of functions).

1.2.1 Cayley Table

$*$	a	b	c
a	a^{2}	$a b$	$a c$
b	$b a$	b^{2}	$b c$
c	$c a$	$c b$	c^{2}

https://en.wikipedia.org/wiki/Cayley_table

Cayley Table for D_{3}

$*$	r_{0}	r_{1}	r_{2}	s_{0}	s_{1}	s_{2}
r_{0}	r_{0}	r_{1}	r_{2}	s_{0}	s_{1}	s_{2}
r_{1}	r_{1}	r_{2}	r_{0}	s_{1}	s_{2}	s_{0}
r_{2}	r_{2}	r_{0}	r_{1}	s_{2}	s_{0}	s_{1}
s_{0}	s_{0}	s_{2}	s_{1}	r_{0}	r_{2}	r_{1}
s_{1}	s_{1}	s_{0}	s_{2}	r_{1}	r_{0}	r_{2}
s_{2}	s_{2}	s_{1}	s_{0}	r_{2}	r_{1}	r_{0}

https://en.wikipedia.org/wiki/Dihedral_group

1.2.2 WeBWorK

1. WeBWork

2. WeBWorK
3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK

7. WeBWorK

8. WeBWorK

9. WeBWorK

1.2.3 Matrix Groups

Example 1.5. The set $G=\mathrm{GL}(2, \mathbb{R})$ of real 2×2 matrices with nonzero determinants is a group under matrix multiplication, with identity element:

$$
e=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

In the group G, we have:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Note that there are matrices $A, B \in \mathrm{GL}(2, \mathbb{R})$ such that $A B \neq B A$. Hence $\mathrm{GL}(2, \mathbb{R})$ is not abelian.

The group $\mathrm{GL}(2, \mathbb{R})$ is called a General Linear Group.

Exercise 1.6. The set $\mathrm{SL}(2, \mathbb{R})$ of real 2×2 matrices with determinant 1 is a group under matrix multiplication.

It is called a Special Linear Group.

1.2.4 Basic Properties

Claim 1.7. The identity element e of a group G is unique.
Proof. Suppose there is an element $e^{\prime} \in G$ such that $e^{\prime} g=g e^{\prime}=g$ for all $g \in G$. Then, in particular, we have:

$$
e^{\prime} e=e
$$

But since e is an identity element, we also have $e^{\prime} e=e^{\prime}$. Hence, $e^{\prime}=e$.

Claim 1.8. Let G be a group. For all $g \in G$, its inverse g^{-1} is unique.
Proof. Suppose there exists $g^{\prime} \in G$ such that $g^{\prime} g=g g^{\prime}=e$. By the associativity of the group operation, we have:

$$
g^{\prime}=g^{\prime} e=g^{\prime}\left(g g^{-1}\right)=\left(g^{\prime} g\right) g^{-1}=e g^{-1}=g^{-1} .
$$

Hence, g^{-1} is unique.
Let G be a group with identity element e. For $g \in G, n \in \mathbb{N}$, let:

$$
\begin{aligned}
g^{n} & :=\underbrace{g \cdot g \cdots g}_{n \text { times }} . \\
g^{-n} & :=\underbrace{g^{-1} \cdot g^{-1} \cdots g^{-1}}_{n \text { times }} \\
g^{0} & :=e .
\end{aligned}
$$

Claim 1.9. Let G be a group.

1. For all $g \in G$, we have:

$$
\left(g^{-1}\right)^{-1}=g
$$

2. For all $a, b \in G$, we have:

$$
(a b)^{-1}=b^{-1} a^{-1} .
$$

3. For all $g \in G, n, m \in \mathbb{Z}$, we have:

$$
g^{n} \cdot g^{m}=g^{n+m} .
$$

Proof. Exercise.

Definition 1.10. Let G be a group, with identity element e. The order of G is the number of elements in G. The order ord g of an $g \in G$ is the smallest $n \in \mathbb{N}$ such that $g^{n}=e$. If no such n exists, we say that g has infinite order.

Theorem 1.11. Let G be a group with identity element e. Let g be an element of G. If $g^{n}=e$ for some $n \in \mathbb{N}$, then ord g divides n.

Proof. Shown in class.

