MATH 2010 Chapter 9

9.1 Application of Chain Rule

9.1.1 Level Sets

Let

$$f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R},c\in\mathbb{R}$$

Recall that the level set of f corresponding to $c \in \mathbb{R}$ is:

$$L_c = f^{-1}(c) = \{x \in \Omega : f(x) = c\}$$

Example 9.1. Some level sets of $f(x, y) = x^2 + y^2$:

$$f^{-1}(1) = \{x^2 + y^2 = 1\}$$

$$f^{-1}(4) = \{x^2 + y^2 = 4\}$$

IFRAME IFRAME

Theorem 9.2. Let $f : \Omega \subseteq \mathbb{R}^n \to \mathbb{R}, \Omega$ is open, Let $c \in \mathbb{R}, S = f^{-1}(c)$ and $a \in S$. Suppose f is differentiable at a, and $\nabla f(a) \neq 0$. Then, $\nabla f(a) \perp S$ at a.

Example 9.3.

$$f(x,y) = x^2 + y^2$$
 $\nabla f = (2x, 2y)$

Let $S = f^{-1}(25)$, then $(4,3) \in S$ $\nabla f(4,3) = (8,6)$ **IFRAME**

Example 9.4. $f(x,y) = x^2 - y^2$ $\nabla f(x,y) = (2x, -2y)$ **IFRAME**

Example 9.5.

$$S: x^2 + 4y^2 + 9z^2 = 22$$
 (Ellipsoid)

Find equation of tangent plane of S at (3, 1, 1)**IFRAME**

Solution. Let $f(x, y, z) = x^2 + 4y^2 + 9z^2$, $S = f^{-1}(22)$ Also f(3,1,1)=22 , so $(3,1,1)\in S$ $\nabla f = (2x, 8y, 18z)$ $\nabla f(3,1,1) = (6,8,18) \perp S$ at (3,1,1)

 \therefore (6, 8, 18) is a normal vector for the tangent plane. Equation of the tangent plane:

$$[(x, y, z) - (3, 1, 1)] \cdot (6, 8, 18) = 0$$

$$6(x - 3) + 8(y - 1) + 18(z - 1) = 0$$

$$3x + 4y + 9z = 22$$

Proof of Example 9.5. Let r(t) be a curve on S, r(0) = a. Then r(t) on $S = f^{-1}(c)$

$$\Rightarrow f(r(t)) = c$$
 is a constant

By the chain rule,

$$\nabla f(r(t)) \cdot r'(t) = \frac{df}{dt} = 0$$

Put t = 0, then $\nabla f(a) \cdot r'(0) = 0$ $\therefore \nabla f(a) \perp$ any curve on S at a. $\therefore \nabla f(a) \perp S$ at a.

9.1.2 Implicit Differentiation

Consider the curve:

$$C: \quad x^2 + y^2 = 1$$

Find $\frac{dy}{dx}$ at $(\frac{3}{5}, -\frac{4}{5})$. Locally near $(\frac{3}{5}, -\frac{4}{5})$, we have:

$$y^2 = 1 - x^2, y < 0 \Rightarrow y = -\sqrt{1 - x^2}$$

 $\therefore y$ is a function of x near $(\frac{3}{5}, -\frac{4}{5})$. To find $\frac{dy}{dx}$ at $(\frac{3}{5}, -\frac{4}{5})$, Method 1: Compute:

$$\frac{d}{dx}\left(-\sqrt{1-x^2}\right)$$

Method 2: Implicit Differentiation (chain rule)

$$x^{2} + y^{2} = 1 \begin{pmatrix} \text{Regard } x \text{ as a variable} \\ y \text{ as a function of } x \end{pmatrix}$$

Differentiating both sides:

$$\frac{d}{dx}: 2x + 2y\frac{dy}{dx} = 0$$

Evaluating at $(x, y) = (\frac{3}{5}, -\frac{4}{5})$, we have:

$$2(\frac{3}{5}) + 2(-\frac{4}{5})\frac{dy}{dx} = 0$$

 $\therefore \left. \frac{dy}{dx} \right|_{\left(\frac{3}{5}, -\frac{4}{5}\right)} = \frac{3}{4}$

Example 9.6. Consider

$$S: x^3 + z^2 + ye^{xz} + z\cos y = 0 \quad \circledast$$

Given that z can be regarded as a function z = z(x, y) of independent variables x, y locally near (0, 0, 0).

Find $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ at (0, 0, 0).

Remark. It is not easy to express z in terms of x, y.

Solution. Take $\frac{\partial}{\partial x}$ to \circledast ,

$$3x^{2} + 2z\frac{\partial z}{\partial x} + ye^{xz}(z + x\frac{\partial z}{\partial x}) + \frac{\partial z}{\partial x}\cos y = 0$$

Substitute $\left(x,y,z\right) =\left(0,0,0\right)$,

$$0 + 0 + 0 + \frac{\partial z}{\partial x}(1) = 0 \Rightarrow \boxed{\frac{\partial z}{\partial x}(0,0) = 0}$$

Similarly, take $\frac{\partial}{\partial y}$ to \circledast

$$0 + 2z\frac{\partial z}{\partial y} + e^{xz} + ye^{xz}\left(x\frac{\partial z}{\partial y}\right) + \frac{\partial z}{\partial y}\cos y - z\sin y = 0$$

Substitute $\left(x,y,z\right) =\left(0,0,0\right)$, then

$$0 + 0 + 1 + 0 + \frac{\partial z}{\partial y}(1) - 0 = 0 \Rightarrow \boxed{\frac{\partial z}{\partial y}(0, 0) = -1}$$

Remark. From computations above, we have:

$$\frac{\partial z}{\partial x} = -\frac{3x^2 + yze^{xz}}{2z + xye^{xz} + \cos y}$$
$$\frac{\partial z}{\partial y} = \frac{z\sin y - e^{xz}}{2z + xye^{xz} + \cos y}$$

whenever the denominator is non-zero.

9.2 Finding Extrema (Maximum or Minimum)

Definition 9.7. Let:

$$f: A \subseteq \mathbb{R}^n \to \mathbb{R}, \quad a \in A.$$

1. The function f is said to have **global** (absolute) maximum at a if:

$$f(x) \le f(a)$$

for all $x \in A$.

2. The function f is said to have **local** (relative) maximum at a if:

$$f(x) \le f(a)$$

for all $x \in A$ near a, (i.e. There exists $\epsilon > 0$ such that $f(x) \leq f(a)$ for all $x \in A \cap B_{\varepsilon}(a)$.)

3. Global (absolute) minimum and local (relative) minimum are defined similarly.

Remark. Any global extremum (max/min) is also a local extremum.

A function does not necessarily have a global maximum/minimum.

Example 9.8. Let $f(x) = e^x$: on \mathbb{R}

$$\lim_{x \to -\infty} f(x) = 0.$$
$$\lim_{x \to \infty} f(x) = \infty.$$

But f(x) > 0 for all $x \in \mathbb{R}$. Hence, f has neither global maximum nor global minimum.

Example 9.9. Let f(x) = x on (-1, 1] (Domain is not closed).

Then f attains its global maximum at x = 1, but it has no global minimum.

Example 9.10. Let:

$$f: [-1, 1] \to \mathbb{R}$$
$$f(x) = \begin{cases} 1-x & \text{if } x \in (0, 1] \\ 0 & \text{if } x = 0 \\ -1-x & \text{if } x \in [-1, 0) \end{cases}$$

The function f has neither global maximum nor global minimum. (f is not continuous)

Question: When must a function have global extremum?

Theorem 9.11 (Extreme Value Theorem EVT). Let A be closed and bounded subset of \mathbb{R}^n . Let $f : A \to \mathbb{R}$ be a continuous function. Then f has a global maximum and a global minimum.

Remark. 1. A closed and bounded subset of \mathbb{R}^n is said to be **compact**.

2. The theorem provides a sufficient, but not necessary, condition for the existence of global extrema.

Example 9.12. Let:

$$f: A = [0, 4] \to \mathbb{R},$$

IFRAME

Observe that A is closed and bounded, and f is continuous.

Hence, by Extreme Value Theorem (EVT), the function f has a global maximum and a global minimum on A.

Recall that in one-variable calculus: local extrema can only occur at:

- 1. Critical points (i.e. points a in the interior of the domain where f'(a) = 0 or DNE.)
- 2. The boundary points of the domain.

Definition 9.13. Let:

$$f: A \to \mathbb{R}, \quad a \in \text{Int}(A).$$

Then, *a* is called a **critical point** of *f* if either of the following conditions holds:

- 1. $\nabla f(a)$ DNE (i.e. $\frac{\partial f}{\partial x_i}(a)$ DNE for some *i*)
- 2. $\nabla f(a) = \vec{0}$ (i.e. $\frac{\partial f}{\partial x_i}(a) = 0$ for all i)

Theorem 9.14. Suppose $f : A \subseteq \mathbb{R}^n \to \mathbb{R}$ attains a local extremum at $a \in Int(A)$, then a is a critical point of f.

Proof of Theorem 9.14. Suppose f has a local extremum at $a \in Int(A)$. If $\nabla f(a)$ DNE, then a is a critical point. If $\nabla f(a)$ exists, then all $\frac{\partial f}{\partial x_i}(a)$ exist. For any $i = 1, \dots, n$, let:

$$g_i(t) = f(a + te_i)$$

Note that $a \in Int(A)$ implies that $g_i(t)$ is defined for t near 0.

By assumption, $g'_i(0) = \frac{\partial f}{\partial x_i}(a)$ exists. Hence, f has a local extremum at a. This implies that g_i has a local extremum at 0. This in turn implies that $g'_i(0) = 0$ since by assumption $g'_i(0)$ exists. We conclude that:

$$\frac{\partial f}{\partial x_i}(a) = 0$$
 (for all $i = 1, 2, \cdots, n$).

Hence, $\nabla f(a) = \vec{0}$. So, a is a critical point.

9.2.1 Finding Extrema on a Bounded Region

Strategy for finding extrema:

Given:

$$f: A \subseteq \mathbb{R}^n \to \mathbb{R}.$$

To find the extrema of f:

- 1. Find critical points of f in Int(A).
- 2. Consider the restriction of f to the boundary ∂A of A. Find maximum/minimum of f on ∂A
- 3. Comparing values of f at points found in 1. and 2.

Example 9.15. Find global maximum/minimum of

$$f(x,y) = x^2 + 2y^2 - x + 3$$

on the region:

$$A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$$

Remark. The region A is is closed and bounded.

Moreover, since f is polynomial, it is continuous.

So, by Extreme Value Theorem (EVT), the function f has global maximum and minimum on A.

Solution. We follow the strategy above:

Step 1 Consider the critical points of f in Int(A): First, notice that $\nabla f = (2x - 1, 4y)$ exists everywhere. Moreover:

$$\nabla f = \vec{0} \iff \begin{cases} 2x - 1 = 0\\ 4y = 0 \end{cases}$$
$$\Leftrightarrow (x, y) = \left(\frac{1}{2}, 0\right)$$

Also, $(\frac{1}{2}, 0)$ lies in $Int(A) = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$. So, we conclude that f has only one critical point $(\frac{1}{2}, 0)$ in Int(A), with:

$$f\left(\frac{1}{2},0\right) = \left(\frac{1}{2}\right)^2 + 0 - \frac{1}{2} + 3 = \frac{11}{4}$$

Step 2 Consider f on $\partial A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$ Parametrize ∂A as follows:

$$(x, y) = (\cos \theta, \sin \theta), \theta \in [0, 2\pi]$$

$$f(\cos\theta,\sin\theta) = \cos^2\theta + 2\sin^2\theta - \cos\theta + 3$$
$$= \cos^2\theta + 2(1 - \cos^2\theta) - \cos\theta + 3$$
$$= -\cos^2\theta - \cos\theta + 5$$
$$= -(\cos\theta + \frac{1}{2})^2 + \frac{1}{4} + 5$$
$$= \frac{21}{4} - (\cos\theta + \frac{1}{2})^2$$

Maximum value of f on ∂A is $\frac{21}{4}$. It is attained when:

$$x = \cos \theta = -\frac{1}{2}$$
 i.e. $(x, y) = (-\frac{1}{2}, \pm \frac{\sqrt{3}}{2})$

Minimum value of f on ∂A is 3. It is attained when:

$$x = \cos \theta = 1$$
, i.e. $(x, y) = (1, 0)$

Step 3 Reviewing the values of f at the points obtained in Steps 1 and 2, we have:

$$f\left(\frac{1}{2},0\right) = \frac{11}{4} \quad \text{(minimum)}$$
$$f\left(-\frac{1}{2},\pm\frac{\sqrt{3}}{2}\right) = \frac{21}{4} \quad \text{(maximum)}$$
$$f(1,0) = 3$$

Hence, the maximum value of f is $\frac{21}{4}$. It is attained at $\left(-\frac{1}{2}, \pm \frac{\sqrt{3}}{2}\right)$ The minimum value of f is $\frac{11}{4}$. It is attained at $\left(\frac{1}{2}, 0\right)$.

Example 9.16. Find the global extrema of

$$f(x,y) = \sqrt{x^2 + y^4} - y$$

on $R = \{(x, y) \in \mathbb{R}^2 : -1 \le x, y \le 1\}$

IFRAME

Solution. *R* is the square $[-1, 1] \times [-1, 1] \subseteq \mathbb{R}^2$

R is closed and bounded.

Also, f is continuous.

By Extreme Value Theorem (EVT), the function f has a global maximum and a global minimum.

First, observe that: $\operatorname{Int}(R) = \{(x, y) \in \mathbb{R}^2, -1 < x, y < 1\}$ **Exercise** : Show that $\frac{\partial f}{\partial x}(0, 0)$ DNE. (Hint: (f(x, 0)) = |x|).) For $(x, y) \neq (0, 0)$, the gradient ∇f exists, with:

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = \left(\frac{x}{\sqrt{x^2 + y^4}}, \frac{2y^3}{\sqrt{x^2 + y^4}} - 1\right)$$

Hence:

$$\nabla f = (0,0) \Leftrightarrow \begin{cases} \frac{x}{\sqrt{x^2 + y^4}} = 0\\ \frac{2y^3}{\sqrt{x^2 + y^4}} - 1 = 0 \end{cases}$$

Hence, $\nabla f(x, y) = \vec{0}$ if and only if: x = 0, and

$$\frac{2y^3}{y^2} - 1 = 0,$$

which holds if and only if $y = \frac{1}{2}$. Therefore, f has two critical points in Int(R):

$$\underbrace{(0,0)}_{\nabla f \text{ DNE}}, \quad \underbrace{\left(0,\frac{1}{2}\right)}_{\nabla f=\vec{0}}$$

Note that:

$$f(0,0) = 0, \quad f\left(0,\frac{1}{2}\right) = -\frac{1}{4}$$

Consider f on ∂R :

$$f(x,y) = \sqrt{x^2 + y^4} - y$$

$$\partial R = \{(x,y) : |x| = 1, -1 \le y \le 1\} \cup \{(x,y) : |y| = 1, -1 \le x \le 1\}$$

Consider different parts of ∂R :

1.
$$y = 1, -1 \le x \le 1$$

 $f(x, 1) = \sqrt{x^2 + 1} - 1 \Rightarrow 0 \le f \le \sqrt{2} - 1$

2. $y = -1, -1 \le x \le 1$

$$f(x, -1) = \sqrt{x^2 + 1} + 1 \Rightarrow 2 \le f \le \sqrt{2} + 1$$

3. $|x| = 1, -1 \le y \le 1$

$$f(x,y) = \sqrt{1+y^4} - y.$$

If $-1 \le y \le 1$, then $1 \le \sqrt{1+y^4} \le \sqrt{2}$, and $-1 \le -y \le 1$. Hence: $0 = 1 - 1 \le \sqrt{1+y^4} - y \le \sqrt{2} + 1$.

Restricted to $C = \{(x, y) | |x| = 1, -1 \le y \le 1\}$, the maximum value of f(x, y) is therefore $f(\pm 1, -1) = \sqrt{2} + 1$.

Since we already know that f(0,1) = 0, which is less than all possible values of f restricted to C. The exact minimum of f on C is of little interest to us.

Hence, on ∂R , the function f has a minimum value of 0 at (0, 1), and a maximum value of $\sqrt{2} + 1$ at $(\pm 1, -1)$.

Comparing values of f at points obtained in Steps 1 and 2:

$$\begin{split} f(0,0) &= 0 \\ f(0,\frac{1}{2}) &= -\frac{1}{4} \quad \text{(minimum)} \\ f(0,1) &= 0 \\ f(\pm 1,-1) &= \sqrt{2} + 1 \quad \text{(maximum)} \\ f(\pm 1,1) &= \sqrt{2} - 1, \end{split}$$

we conclude that the maximum value of f is $\sqrt{2} + 1$, attained at $(\pm 1, -1)$, and the minimum value is $-\frac{1}{4}$, attained at $(0, \frac{1}{2})$.

9.2.2 Finding Extrema on an Unbounded Region

Example 9.17. Find the global extrema of

$$f(x,y) = x^2 + y^2 - 4x + 6y + 7$$

on \mathbb{R}^2 .

Remark. \mathbb{R}^2 is not bounded. So f might not have global extrema. Observe that:

$$\lim_{(x,y)\to\infty} f(x,y) = +\infty$$

"(x, y) are far away from origin."

Hence,

- 1. *f* has no global maximum on \mathbb{R}^2
- 2. Strategy for finding global minimum

Find a closed and bounded region A such that f is "large enough" outside R. Then, the minimum of f on A is equal to the minimum of f of \mathbb{R} .

min on
$$R = \min$$
 on \mathbb{R}^2

Solution. Find the critical points of f.

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right) = (2x - 4, 2y + 6)$$

is defined everywhere on \mathbb{R}^2 .

$$\nabla f = (0,0) \Leftrightarrow \begin{cases} 2x - 4 = 0\\ 2y + 6 = 0\\ \Leftrightarrow (x,y) = (2,-3) \end{cases}$$

Hence, the function f has only one critical point (2, -3), with f(2, -3) = -6.

We want to show that f has a global minimum at (2, -3): For $(x, y) \in \mathbb{R}^2$, let $r = \sqrt{x^2 + y^2}$

Then
$$f(x, y) = x^2 + y^2 - 4x + 6y + 7$$

 $\geq r^2 - 4r - 6r + 7$
 $= r(r - 10) + 7.$

This is because:

$$r = \sqrt{x^2 + y^2} \ge |x|, |y|,$$

which implies:

$$\begin{cases} x \le r \Rightarrow -4x \ge -4r \\ -y \le r \Rightarrow 6y \ge -6r \end{cases}$$

Hence, if $\sqrt{x^2 + y^2} = r \ge 10$, then $f(x, y) \ge 7 > f(2, -3)$.

Let $A = \overline{B_{10}(0,0)}$. Let $f|_R$ denote the restriction of f on R.

By Extreme Value Theorem (EVT) , the function $f|_R$ has global a minimum. In Int(R), the point (2, -3) is the only critical point, with:

$$f(2, -3) = -6$$

On ∂A , we have $f(x, y) \ge 7 > f(2, -3)$. Hence, $f|_R$ has a global minimum at (2, -3).

For $(x, y) \notin R$, we have $f(x, y) \ge 7 > f(2, -3)$. Hence, f has no global maximum, but it has a global minimum value of -6 at (2, -3).

Remark. 1. It is in fact easier to solve this problem using elementary algebra: Since

$$f(x,y) = x^{2} + y^{2} - 4x + 6y + 7$$

= $(x-2)^{2} + (y+3)^{2} - 6$,

it is quite clear what the global minimum of f is.

2. A function can have neither global maximum nor global minimum. For example, let $g(x,y) = x^2 - y^2 - 4x + 6y + 7$

Along the line x = 0, we have $g(0, y) = -y^2 + 6y + 7$. So:

 $\lim_{y \to \pm \infty} g(0, y) = -\infty \Rightarrow \text{ no global minimum.}$

Along y = 0, we have $g(x, 0) = x^2 - 4x + 7$. So:

$$\lim_{x \to \pm \infty} g(x, 0) = \infty \Rightarrow \text{ no global maximum.}$$

Another example of extrema on unbounded region.

Example 9.18. Make a box (without top) with volume = 16 Cost:

Base \$2/unit area Side \$0.5/unit area **Question** : How to minimize cost?

Solution. Want to minimize

$$C(x,y) = 2xy + \left(\frac{16}{xy}x + \frac{16}{xy}y\right)(2)(0.5)$$
$$= 2xy + \frac{16}{x} + \frac{16}{y}$$

on the domain $\Omega = \{(x,y) \in \mathbb{R}^2: x,y>0\}$

- Ω is neither closed nor bounded. Hence, Extreme Value Theorem (EVT) cannot be applied directly.
- C is large if x or y is small or large.

Strategy: Find a rectangle R such that the values of $C|_{\mathbb{R}^2\setminus R}$ are all greater than the minimum of $C|_R$.

Step 1

Find critical points

$$\nabla C = (2y - \frac{16}{x^2}, 2x - \frac{16}{y^2})$$
 exists everywhere

$$\nabla C = \vec{0} \Leftrightarrow \left\{ \begin{array}{l} 2y - \frac{16}{x^2} = 0\\ 2x - \frac{16}{y^2} = 0 \end{array} \right.$$

Hence, $y = \frac{8}{x^2}, x = \frac{8}{y^2} = \frac{8}{\frac{64}{x^4}} = \frac{x^4}{8}, x > 0 \Rightarrow x^3 = 8, x = 2, y = 2$ Hence, Only one critical point (2, 2), C(2, 2) = 24.

Step 2

Choose R s.t. C > 24 on ∂R and outside R.

$$C(x,y) = 2xy + \frac{16}{x} + \frac{16}{y}$$

One possible choice: $R = [0.1, 1000] \times [0.1, 1000]$

• If $x \le 0.1$ or $y \le 0.1$,

then
$$C > \frac{16}{x} + \frac{16}{y} > \frac{16}{0.1} = 160 > 24$$

• If $(x \ge 0.1, y \ge 1000)$ or $(y \ge 0.1, x \ge 1000)$,

then C > 2(0.1)(1000) = 200 > 24

Step 3

Analysis

• R is closed and bounded, C is continuous.

By Extreme Value Theorem (EVT), $C|_R$ has minimum.

- C has only one critical point $(2,2) \in \Omega(2,2) \in \text{Int}(R), C(2,2) = 24$ C > 24 on $\partial R \Rightarrow C|_R$ has minimum value 24 at (2,2)
- C > 24 outside R

Hence, C has the minimum value of 24 at (2, 2) on Ω .