MATH 2010 Chapter 3

3.1 Polar Coordinates in \mathbb{R}^2

A point $P = (x, y) \in \mathbb{R}^2$ can be represented by:

 $r = \sqrt{x^2 + y^2} = ext{ distance from origin.}$

 θ = angel from the positive x - axis to \overrightarrow{OP} in counter-clockwise direction.

If x, y > 0, then we can take $\theta = \arctan\left(\frac{y}{x}\right)$.

The angle formula above needs to be adjusted for points in other qudrants. For example, if x < 0, y > 0 (Quadrant II), then:

$$\theta = \pi + \arctan\left(\frac{y}{x}\right)$$

Remark. • For P = (0, 0), we have r = 0, but θ is not (uniquely) defined.

• Different conventions for ranges of r and θ :

$$r \in [0,\infty)$$
 or \mathbb{R}

$$\theta \in [0, 2\pi)$$
 or \mathbb{R}

In this course, we usually take:

$$r \in [0,\infty), \quad \theta \in \mathbb{R}.$$

3.1.1 Change of Coordinates Fomula

If the polar coordinates for a point (x, y) is (r, θ) , then:

$$\begin{cases} x = r\cos\theta; \\ y = r\sin\theta. \end{cases}$$

3.1.2 Curves in Polar Coodinates

Example 3.1 (Circle with radius r0). Polar equation

$$r = r_0$$

Parametric form

$$\left\{ \begin{array}{ll} r=r_0\\ \theta=t, \ t\in [0,2\pi]. \end{array} \right.$$

Example 3.2 (Half ray from origin). Polar equation

$$\theta = \theta_0$$

Polar equation

$$\begin{cases} r = t, \quad t \in [0, \infty) \\ \theta = \theta_0. \end{cases}$$

Example 3.3 (Archimedes Spiral). Let k > 0 be a constant **Polar equation**

 $r = k\theta$

Polar equation

$$\begin{cases} r = kt, t \in [0, \infty) \\ \theta = t, t \in [0, \infty) \end{cases}$$

Example 3.4.

$$r = 4\cos\theta$$

IFRAME

Observe that the origin, corresponding to $r = 0, \theta = \pi/2$, lies on the graph of $r = 4 \cos \theta$. Hence, the solution set of $r = 4 \cos \theta$ is equal to the solution set of:

 $r^2 = 4r\cos\theta,$

which is equivalent to the Cartesian equation:

$$x^2 + y^2 = 4x$$

Completing the square, the equation above is equivalent to:

$$(x-2)^2 + y^2 = 2^2$$

which corresponds to the circle of radius 2 centered at (2, 0).

Example 3.5.

$$r\cos\left(\theta - \frac{\pi}{4}\right) = \sqrt{2}.$$

(Hint: The graph is a straight line in the Cartesian plane.)

Example 3.6. IFRAME

It is sometimes convenient to allow r < 0 in polar coordinates.

For instance, to describe a line through the origin which forms an angle of $\pi/6$ with the positive x-axis, we can simply describe it as the graph of:

$$\theta = \pi/6$$

with the assumption that $r \in \mathbb{R}$.

(If we only let $r \ge 0$, then we only get "half" a line.)

Example 3.7. Let a > 1 be constant. Consider:

 $r = 1 - acos\theta$

If we require that $r \ge 0$, then the equatio above only possibly holds for $\theta \in [\delta, 2\pi - \delta]$, where $\delta = \arccos(1/a)$.

IFRAME

On the other hand, of we let allow r to also be negative, then for any $\theta \in [0, 2\pi]$ there is an r for which the equation holds. The resulting graph would have one extra "loop".

IFRAME

3.2 Coordinate Systems in \mathbb{R}^3

Definition 3.8. Given a point $P \in \mathbb{R}^3$ with Cartesian coordinates (x, y, z). The cylindrical coordinates of P is:

 $(r, \theta, z),$

where (r, θ) are the polar coordinates of (x, y).

Hence,

$$\begin{aligned} x &= r\cos\theta, \\ y &= r\sin\theta, \\ z &= z. \end{aligned}$$

IFRAME

Example 3.9. Let $a, b \in \mathbb{R}$. A vertical helix with radius a may be described with cylindrical coordinates as follows:

$$\begin{cases} r = a \\ \theta = t \\ z = bt \end{cases}, \quad t \in [0, 2\pi]$$

Definition 3.10. Given a point $P \in \mathbb{R}^3$ with Cartesian coordinates (x, y, z). The **spherical coordinates** of P is:

$$(\rho, \theta, \phi),$$

where:

- $\rho = \sqrt{x^2 + y^2 + z^2}$ is the distance between P and the origin.
- θ is the angle coordinate of the polar coordinates of (x, y) in the xy-plane.
- ϕ is the angle between the positive z-axis and \overrightarrow{OP} .

Hence,

$$x = \rho \sin \phi \cos \theta,$$

$$y = \rho \sin \phi \sin \theta,$$

$$z = \rho \cos \phi.$$

IFRAME

Example 3.11 (Sphere).

 $\rho = 2.$

Example 3.12 (Cone).

 $\phi = \pi/4.$

Example 3.13 (Half Plane).

 $\theta = \pi/3.$

Example 3.14 (Circle). Equations:

$$\begin{cases} \rho = 3, \\ \phi = \pi/2. \end{cases}$$

Parametric Form:

$$(\rho, \theta, \phi)_{sph} = (3, t, \pi/2), \quad t \in [0, 2\pi].$$

3.3 Topological Terminology

Let $\vec{x}_0 \in \mathbb{R}^n$, $\varepsilon > 0$.

Definition 3.15. The open ball with radius ε centered at \vec{x}_0 is:

$$B_{\varepsilon}(\vec{x}_0) = \{ \vec{x} \in \mathbb{R}^n : \| \vec{x} - \vec{x}_0 \| < \varepsilon. \}$$

The **closed ball** with radius ε centered at \vec{x}_0 is:

$$\overline{B_{\varepsilon}(\vec{x}_0)} = \{ \vec{x} \in \mathbb{R}^n : \| \vec{x} - \vec{x}_0 \| \le \varepsilon. \}$$

Let $S \subseteq \mathbb{R}^n$.

Definition 3.16. • The interior of S is the set:

Int $(S) = \{ \vec{x} \in \mathbb{R}^n : B_{\varepsilon}(\vec{x}) \subset S \text{ for some } \varepsilon > 0. \}$

Points in Int(S) are called **interior points** of S.

• The **exterior** of *S* is the set:

$$\operatorname{Ext}(S) = \{ \vec{x} \in \mathbb{R}^n : B_{\varepsilon}(\vec{x}) \subset \mathbb{R}^n \setminus S \text{ for some } \varepsilon > 0. \}$$

Points in Ext(S) are called **exterior points** of S.

• The **boundary** of S is the set:

$$\partial S = \{ \vec{x} \in \mathbb{R}^n : B_{\varepsilon}(\vec{x}) \cap S \neq \emptyset \text{ and } B_{\varepsilon}(\vec{x}) \cap \mathbb{R}^n \setminus S \neq \emptyset, \text{ for all } \varepsilon > 0. \}$$

Points in $\partial(S)$ are called **boundary points** of S.

IMAGE

Example 3.17.

 $S = \left\{ (x, y) \in \mathbb{R}^2 : 1 < x^2 + y^2 \le 4 \right\} \subseteq \mathbb{R}^2$

Proposition 3.18. Let $S \subseteq \mathbb{R}^n$. Then,

- \mathbb{R}^n is the disjoint union of Int(S), Ext(S) and ∂S .
- $\operatorname{Int}(S) \subseteq S$, $\operatorname{Ext}(S) \subseteq \mathbb{R}^n \backslash S$.

Definition 3.19. A subset $S \subseteq \mathbb{R}^n$ is said to be

• open if for all $x \in S$, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq S$.

• closed if $\mathbb{R}^n \setminus S$ is open.

Definition 3.20 (Closure). The closure of a set $A \subseteq \mathbb{R}^n$ is:

$$\bar{A} = A \cup \partial A$$

Remark. The closure of any set is always closed.

Theorem 3.21. A subset $S \subseteq \mathbb{R}^n$ is:

- open if and only if S = Int(S).
- closed if and only if $S = Int(S) \cup \partial S$.

Example 3.22.Subset $S \subseteq \mathbb{R}^n$ $B_1(0,0) = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ Int(S) $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ $\overline{B_1(S)}$ $\overline{B_1(0,0)} =$

Remark. • There are exactly two subsets of \mathbb{R}^n which are both open and closed:

 \mathbb{R}^n, \emptyset

• Some subsets of \mathbb{R}^n are neither open nor closed:

$$\{(x,y) \in \mathbb{R}^2 : 1 < x^2 + y^2 \le 4\} \subseteq \mathbb{R}^n$$
$$(0,1] \subseteq \mathbb{R}$$
$$\mathbb{Q} \subseteq \mathbb{R}$$

Exercise : $\partial \mathbb{Q} = \mathbb{R}$.

Definition 3.23. A subset $S \subseteq \mathbb{R}^n$ is said to be:

• **bounded** if there exists M > 0 such that:

$$S \subseteq B_M(0) = \{ \vec{x} \in \mathbb{R}^n : ||\vec{x}|| < M \}$$

• **unbounded** if it is not bounded.

Definition 3.24. A subset $S \subseteq \mathbb{R}^n$ is said to be **path-connected** if any two points in S can be connected by a curve in S.

Theorem 3.25 (Jordan Curve Theorem). A simple closed curve in \mathbb{R}^2 divides \mathbb{R}^2 into two path-connected components, with one bounded and one unbounded.