
MATH 2010 Chapter 3

3.1 Polar Coordinates in R2

A point P = (x, y) ∈ R2 can be represented by:

r =
√
x2 + y2 = distance from origin.

θ = angel from the positive x− axis to
−→
OP in counter-clockwise direction.

If x, y > 0, then we can take θ = arctan
(
y
x

)
.

The angle formula above needs to be adjusted for points in other qudrants. For
example, if x < 0, y > 0 (Quadrant II), then:

θ = π + arctan
(y
x

)
Remark. • For P = (0, 0), we have r = 0, but θ is not (uniquely) defined.

• Different conventions for ranges of r and θ:

r ∈ [0,∞) or R

θ ∈ [0, 2π) or R

In this course, we usually take:

r ∈ [0,∞), θ ∈ R.

3.1.1 Change of Coordinates Fomula
If the polar coordinates for a point (x, y) is (r, θ), then:{

x = r cos θ;
y = r sin θ.
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3.1.2 Curves in Polar Coodinates
Example 3.1 (Circle with radius r0). Polar equation

r = r0

Parametric form {
r = r0
θ = t, t ∈ [0, 2π].

Example 3.2 (Half ray from origin). Polar equation

θ = θ0

Polar equation {
r = t, t ∈ [0,∞)
θ = θ0.

Example 3.3 (Archimedes Spiral). Let k > 0 be a constant
Polar equation

r = kθ

Polar equation {
r = kt, t ∈ [0,∞)

θ = t, t ∈ [0,∞)

Example 3.4.
r = 4 cos θ

IFRAME
Observe that the origin, corresponding to r = 0, θ = π/2, lies on the graph of

r = 4 cos θ. Hence, the solution set of r = 4 cos θ is equal to the solution set of:

r2 = 4r cos θ,

which is equivalent to the Cartesian equation:

x2 + y2 = 4x

Completing the square, the equation above is equivalent to:

(x− 2)2 + y2 = 22,

which corresponds to the circle of radius 2 centered at (2, 0).
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Example 3.5.
r cos

(
θ − π

4

)
=
√

2.

(Hint: The graph is a straight line in the Cartesian plane.)

Example 3.6. IFRAME

It is sometimes convenient to allow r < 0 in polar coordinates.
For instance, to describe a line through the origin which forms an angle of π/6

with the positive x-axis, we can simply describe it as the graph of:

θ = π/6

with the assumption that r ∈ R.
(If we only let r ≥ 0, then we only get "half" a line.)

Example 3.7. Let a > 1 be constant. Consider:

r = 1− acosθ

If we require that r ≥ 0, then the equatio above only possibly holds for θ ∈
[δ, 2π − δ], where δ = arccos(1/a).

IFRAME
On the other hand, of we let allow r to also be negative, then for any θ ∈ [0, 2π]

there is an r for which the equation holds. The resulting graph would have one
extra "loop".

IFRAME

3.2 Coordinate Systems in R3

Definition 3.8. Given a point P ∈ R3 with Cartesian coordinates (x, y, z).
The cylindrical coordinates of P is:

(r, θ, z),

where (r, θ) are the polar coordinates of (x, y).

Hence,

x = r cos θ,

y = r sin θ,

z = z.

IFRAME
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Example 3.9. Let a, b ∈ R. A vertical helix with radius a may be described with
cylindrical coordinates as follows:

r = a
θ = t
z = bt

, t ∈ [0, 2π]

Definition 3.10. Given a point P ∈ R3 with Cartesian coordinates (x, y, z).
The spherical coordinates of P is:

(ρ, θ, φ),

where:

• ρ =
√
x2 + y2 + z2 is the distance between P and the origin.

• θ is the angle coordinate of the polar coordinates of (x, y) in the xy-plane.

• φ is the angle between the positive z-axis and
−→
OP .

Hence,

x = ρ sinφ cos θ,

y = ρ sinφ sin θ,

z = ρ cosφ.

IFRAME

Example 3.11 (Sphere).
ρ = 2.

Example 3.12 (Cone).
φ = π/4.

Example 3.13 (Half Plane).
θ = π/3.

Example 3.14 (Circle). Equations:{
ρ = 3,

φ = π/2.

Parametric Form:

(ρ, θ, φ)sph = (3, t, π/2), t ∈ [0, 2π].

4

https://www.geogebra.org/material/iframe/id/ssux6rzs/width/946/height/638/border/888888/sfsb/true/smb/false/stb/true/stbh/true/ai/false/asb/false/sri/true/rc/false/ld/true/sdz/true/ctl/false


3.3 Topological Terminology
Let ~x0 ∈ Rn, ε > 0.

Definition 3.15. The open ball with radius ε centered at ~x0 is:

Bε(~x0) = {~x ∈ Rn : ‖~x− ~x0‖ < ε.}

The closed ball with radius ε centered at ~x0 is:

Bε(~x0) = {~x ∈ Rn : ‖~x− ~x0‖ ≤ ε.}

Let S ⊆ Rn.

Definition 3.16. • The interior of S is the set:

Int(S) = {~x ∈ Rn : Bε(~x) ⊂ S for some ε > 0.}

Points in Int(S) are called interior points of S.

• The exterior of S is the set:

Ext(S) = {~x ∈ Rn : Bε(~x) ⊂ Rn\S for some ε > 0.}

Points in Ext(S) are called exterior points of S.

• The boundary of S is the set:

∂S = {~x ∈ Rn : Bε(~x) ∩ S 6= ∅ and Bε(~x) ∩ Rn\S 6= ∅, for all ε > 0.}

Points in ∂(S) are called boundary points of S.

IMAGE

Example 3.17.

S =
{

(x, y) ∈ R2 : 1 < x2 + y2 ≤ 4
}
⊆ R2

Proposition 3.18. Let S ⊆ Rn. Then,

• Rn is the disjoint union of Int(S),Ext(S) and ∂S.

• Int(S) ⊆ S, Ext(S) ⊆ Rn\S.

Definition 3.19. A subset S ⊆ Rn is said to be

• open if for all x ∈ S, there exists ε > 0 such that Bε(x) ⊆ S.
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• closed if Rn\S is open.

Definition 3.20 (Closure). The closure of a set A ⊆ Rn is:

Ā = A ∪ ∂A

Remark. The closure of any set is always closed.

Theorem 3.21. A subset S ⊆ Rn is:

• open if and only if S = Int(S).

• closed if and only if S = Int(S) ∪ ∂S.

Example 3.22.
Subset S ⊆ Rn B1(0, 0) = {(x, y) ∈ R2 : x2 + y2 < 1} B1(0, 0) = {(x, y) ∈ R2 : x2 + y2 ≤ 1} S1 = {(x, y) ∈ R2 : x2 + y2 = 1} R2 ∅

Int(S)
Ext(S)
∂S

Open?
Closed?

Remark. • There are exactly two subsets of Rn which are both open and
closed:

Rn,∅

• Some subsets of Rn are neither open nor closed:

{(x, y) ∈ R2 : 1 < x2 + y2 ≤ 4} ⊆ Rn

(0, 1] ⊆ R
Q ⊆ R

Exercise : ∂Q = R.

Definition 3.23. A subset S ⊆ Rn is said to be:

• bounded if there exists M > 0 such that:

S ⊆ BM(~0) = {~x ∈ Rn : ‖~x‖ < M}

• unbounded if it is not bounded.

Definition 3.24. A subset S ⊆ Rn is said to be path-connected if any two points
in S can be connected by a curve in S.

Theorem 3.25 (Jordan Curve Theorem). A simple closed curve in R2 divides R2

into two path-connected components, with one bounded and one unbounded.
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