MATH 2010 Chapter 13

13.1 Implicit Function Theorem

Theorem 13.1 (Implicit Function Theorem). Let $\Omega \subseteq \mathbb{R}^{n+k}$ be open, $F : \Omega \to \mathbb{R}^k$ be C^1 Denote $x = (x_1, \dots, x_n), y = (y_1, \dots, y_k)$

$$F(\vec{x}, \vec{y}) = \begin{bmatrix} F_1(\vec{x}, \vec{y}) \\ \vdots \\ F_k(\vec{x}, \vec{y}) \end{bmatrix}$$
$$= \begin{bmatrix} F_1(x_1, y_1) \\ \vdots \\ F_k(x_1, y_2) \end{bmatrix}$$
$$= \begin{bmatrix} F_1(x_1, \cdots, x_n, y_1, \cdots, y_k) \\ \vdots \\ F_k(x_1, \cdots, x_n, y_1, \cdots, y_k) \end{bmatrix}$$

Suppose $(a, b) \in \Omega$, where $a = \vec{a} \in \mathbb{R}^n$, $b = \vec{b} \in \mathbb{R}^k$, such that

$$F(a,b) = \vec{c} = \begin{bmatrix} c_1 \\ \vdots \\ c_k \end{bmatrix} \in \mathbb{R}^k$$

and the $k \times k$ matrix

$$(D_{\vec{y}}F)|_{(a,b)} := \left[\frac{\partial F_i}{\partial y_j}(a,b)\right]_{1 \le i,j \le k} = \begin{bmatrix}\frac{\partial F_1}{\partial y_1}(a,b) & \cdots & \frac{\partial F_1}{\partial y_k}(a,b)\\ \vdots & & \vdots\\ \frac{\partial F_k}{\partial y_1}(a,b) & \cdots & \frac{\partial F_k}{\partial y_k}(a,b)\end{bmatrix}$$
 is invertible.

Then, there exist open sets $U\subseteq \mathbb{R}^n$ containing a , $V\subseteq \mathbb{R}^k$ containing b and a C^1 function

$$\varphi: U \to V$$

 $x = (x_1, \cdots, x_n) \in U \to y = (y_1, \cdots, y_k) \in V$

such that

- 1. $\varphi(a) = b$
- 2. $F(x,\varphi(x)) = c$
- 3. For any $(x, y) \in U \times V$ such that F(x, y) = c, we have $y = \varphi(x)$.
- 4. For $1 \le i \le k$, $1 \le j \le n$,

$$\left[\frac{\partial y_i}{\partial x_j}(a)\right] = \left[\frac{\partial \varphi_i}{\partial x_j}(a)\right] = -\left(\left(D_{\vec{y}}F\right)^{-1}D_{\vec{x}}F\right)_{ij}$$

Remark. Provided that we know $\vec{y} = \vec{y}(\vec{x})$ is a differentiable function of \vec{x} , the last item follows from the Chain Rule.

If \vec{y} is a differentiable function of \vec{x} , then (\vec{x}, \vec{y}) may be viewed as a vectorvalued function:

$$\vec{\phi}: \mathbb{R}^n \longrightarrow \mathbb{R}^{n+k}$$

where:

$$ec{\phi}(ec{x}) = egin{bmatrix} ec{x} \\ ec{y}(ec{x}) \end{bmatrix}$$

Applying the chain rule for differentiation with respect to \vec{x} to both sides of:

$$\underbrace{F(\vec{x}, \vec{y})}_{F\left(\vec{\phi}(\vec{x})\right)} = \vec{c},$$

we have:

$$\begin{bmatrix} \frac{\partial F_{1}}{\partial x_{1}} & \cdots & \frac{\partial F_{1}}{\partial x_{n}} & \frac{\partial F_{1}}{\partial y_{1}} & \cdots & \frac{\partial F_{1}}{\partial y_{k}} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{\partial F_{1}}{\partial x_{1}} & \cdots & \frac{\partial F_{k}}{\partial x_{n}} & \frac{\partial F_{k}}{\partial y_{1}} & \frac{\partial F_{k}}{\partial y_{1}} & \frac{\partial F_{k}}{\partial y_{k}} \end{bmatrix} \begin{bmatrix} \frac{\partial \phi_{1}}{\partial x_{1}} & \cdots & \frac{\partial \phi_{1}}{\partial x_{n}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial \phi_{n}}{\partial x_{1}} & \cdots & \frac{\partial \phi_{n}}{\partial x_{n}} \\ \frac{\partial \phi_{n+1}}{\partial x_{1}} & \cdots & \frac{\partial \phi_{n+1}}{\partial x_{n}} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial \phi_{n+k}}{\partial x_{1}} & \cdots & \frac{\partial \phi_{n+k}}{\partial x_{n}} \end{bmatrix} \\ DF = \begin{bmatrix} D_{\vec{x}}F \mid D_{\vec{y}}F \end{bmatrix} & DF = \begin{bmatrix} \frac{\partial F_{1}}{\partial y_{1}} & \cdots & \frac{\partial F_{1}}{\partial y_{k}} \\ \vdots & \vdots & \vdots \\ \frac{\partial F_{1}}{\partial x_{1}} & \cdots & \frac{\partial F_{k}}{\partial x_{n}} \end{bmatrix} I_{n} + \begin{bmatrix} \frac{\partial F_{1}}{\partial y_{1}} & \cdots & \frac{\partial F_{1}}{\partial y_{k}} \\ \vdots & \vdots & \vdots \\ \frac{\partial F_{1}}{\partial x_{1}} & \cdots & \frac{\partial F_{k}}{\partial x_{n}} \end{bmatrix} \begin{bmatrix} \frac{\partial F_{1}}{\partial x_{1}} & \cdots & \frac{\partial F_{1}}{\partial x_{n}} \\ \vdots & \vdots & \vdots \\ \frac{\partial F_{1}}{\partial x_{1}} & \cdots & \frac{\partial F_{k}}{\partial x_{n}} \end{bmatrix} I_{n} + \begin{bmatrix} \frac{\partial F_{1}}{\partial y_{1}} & \cdots & \frac{\partial F_{1}}{\partial y_{k}} \\ \frac{\partial F_{1}}{\partial y_{1}} & \cdots & \frac{\partial F_{k}}{\partial y_{k}} \end{bmatrix} \begin{bmatrix} \frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\ \vdots & \vdots & \vdots \\ \frac{\partial y_{k}}{\partial x_{1}} & \cdots & \frac{\partial y_{k}}{\partial x_{n}} \end{bmatrix} = \vec{0}$$

Hence,

$$\begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial y_k}{\partial x_1} & \cdots & \frac{\partial y_k}{\partial x_n} \end{bmatrix} = -\begin{bmatrix} \frac{\partial F_1}{\partial y_1} & \cdots & \frac{\partial F_1}{\partial y_k} \\ \vdots & \vdots & \vdots \\ \frac{\partial F_1}{\partial y_1} & \cdots & \frac{\partial F_k}{\partial y_k} \end{bmatrix}^{-1} \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_k}{\partial x_n} \end{bmatrix}$$

Remark. Applying the theorem to the special case where we have a real-valued differentiable function $F : \mathbb{R}^2 \longrightarrow \mathbb{R}$ satisfying:

$$F(x,y) = c,$$

we have:

$$\frac{\partial y}{\partial x} = -\frac{F_x}{F_y}$$

Example 13.2. n = 2, k = 1.

Consider the surface (a sphere to be precise) desribed by the following equation:

$$x^2 + y^2 + z^2 = 2.$$

Is z implicitly a function of
$$(x, y)$$
 near the point $(0, 1, 1)$ on the surface?

If so, what is $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$ at (x, y, z) = (0, 1, 1)?

Solution. The equation describing the surface is equivalent to F(x, y, z) = 2, where:

$$F(x,y,z) = x^2 + y^2 + z^2 : \mathbb{R}^3 \longrightarrow \mathbb{R}^1$$

Observe that F is C^1 on \mathbb{R}^3 . In the context of the IFT, we have k = 1, n = 3 - 1 = 2.

So, it is possible that any one (k = 1) of (x, y, z) is implicitly a function of the other two (n = 2).

We have:

$$D_{(z)}F = [F_z] = [2z].$$

At (0, 1, 1), we have $[F_z]|_{(0,1,1)} = [2 \cdot 1] = [2]$, which is an invertible 1×1 matrix, with inverse:

$$\left(D_{(z)}F|_{(0,1,1)}\right)^{-1} = \left[1/2\right]$$

Hence, the conditions of IFT are satisfied. The variable z is implicitly a C^1 function of (x, y) near (0, 1, 1) on the surface.

Moreover, we have:

$$\begin{bmatrix} \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \end{bmatrix} \Big|_{(0,1,1)} = -(D_{(z)}F|_{(0,1,1)})^{-1} \begin{bmatrix} F_x & F_y \end{bmatrix} |_{(0,1,1)}$$
$$= -[1/2] \begin{bmatrix} F_x & F_y \end{bmatrix} |_{(0,1,1)}$$
$$= -[1/2] \begin{bmatrix} 2x & 2y \end{bmatrix} |_{(0,1,1)}$$
$$= -[1/2] \begin{bmatrix} 0 & 2 \end{bmatrix}$$

Hence:

$$\frac{\partial z}{\partial x}|_{(0,1,1)} = -\frac{1}{2} \cdot 0 = 0, \quad \frac{\partial z}{\partial y}|_{(0,1,1)} = -\frac{1}{2} \cdot 2 = -1$$

Example 13.3. n = 1, k = 2 Consider the curve (a circle) which is the intersection the following two surfaces:

$$\begin{cases} x^2 + y^2 + z^2 &= 2\\ x + z &= 1 \end{cases}$$

IFRAME

What does IFT say in this case? Define $F : \mathbb{R}^{2+1} \longrightarrow \mathbb{R}^2$ as follows:

$$F(x, y, z) = \begin{bmatrix} F_1 \\ F_2 \end{bmatrix} = \begin{bmatrix} x^2 + y^2 + z^2 \\ x + z \end{bmatrix}$$

Then, the curve in question corresponds to the constraint:

$$F(x, y, z) = \vec{c} = \begin{bmatrix} 2\\1 \end{bmatrix}$$

Since the codomain of F is \mathbb{R}^2 (k = 2), and F has 3 variables, by IFT, any two (k = 2) of the variables of F could implicitly be a function of the remaining one variable (n = 3 - k = 1).

We have:

$$D_{(y,z)}F = \begin{bmatrix} F_{1,y} & F_{1,z} \\ F_{2,y} & F_{2,z} \end{bmatrix} = \begin{bmatrix} 2y & 2z \\ 0 & 1 \end{bmatrix}$$

Hence, at, for example, the point (0, 1, 1), we have:

$$D_{(y,z)}F|_{(0,1,1)} = \begin{bmatrix} 2 & 2\\ 0 & 1 \end{bmatrix},$$

which is invertible.

Hence, by IFT, on the curve the variables y, z are implicitly differentiable functions of x near the point (0, 1, 1), with:

$$\begin{bmatrix} \frac{\partial y}{\partial x} \\ \frac{\partial z}{\partial x} \end{bmatrix} = -D_{(y,z)}F\Big|_{(0,1,1)}^{-1} \begin{bmatrix} F_{1,x} \\ F_{2,x} \end{bmatrix}\Big|_{(0,1,1)} = -\frac{1}{2} \begin{bmatrix} 1 & -2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 \cdot 0 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Remark. There is no intrinsic ordering to the variables x, y, z, so we might equally ask whether x, y are implicitly functions of z on the curve.

Since

$$D_{(x,y)}F\Big|_{(0,1,1)} = \begin{bmatrix} F_{1,x} & F_{1,y} \\ F_{2,x} & F_{2,y} \end{bmatrix}\Big|_{(0,1,1)} = \begin{bmatrix} 2x & 2y \\ 1 & 0 \end{bmatrix}\Big|_{(0,1,1)} = \begin{bmatrix} 0 & 2 \\ 1 & 0 \end{bmatrix}$$

is invertible, the IFT says that on the curve the variable x, y are implicitly functions of z near the point (0, 1, 1), with:

$$\begin{bmatrix} \frac{\partial x}{\partial z} \\ \frac{\partial y}{\partial z} \end{bmatrix} = -D_{(x,y)}F\Big|_{(0,1,1)}^{-1} \begin{bmatrix} F_{1,z} \\ F_{2,z} \end{bmatrix}\Big|_{(0,1,1)} = \frac{1}{2} \begin{bmatrix} 0 & -2 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 2 \cdot 1 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

Example 13.4. Consider the constraints

$$\begin{cases} xz + \sin(yz - x^2) = 8\\ x + 4y + 3z = 18 \end{cases}$$

Near (2, 1, 4), can we express 2 of the variables as functions of the remaining variable?

Solution. Let $F(x, y, z) = \begin{bmatrix} F_1(x, y, z) \\ F_2(x, y, z) \end{bmatrix} = \begin{bmatrix} xz + \sin(yz - x^2) \\ x + 4y + 3z \end{bmatrix}$. Then:

$$DF = \begin{bmatrix} z - 2x\cos(yz - x^2) & z\cos(yz - x^2) & x + y\cos(yz - x^2) \\ 1 & 4 & 3 \end{bmatrix}$$

$$DF(2,1,4) = \begin{bmatrix} 0 & 4 & 3 \\ 1 & 4 & 3 \end{bmatrix}$$

 $D_{(x,y)}F|_{(2,1,4)}$:

$$\begin{vmatrix} 0 & 4 \\ 1 & 4 \end{vmatrix} = -4 \neq 0 \stackrel{IFT}{\Rightarrow} x, y \text{ can be expressed as functions of } z \text{ near } (2, 1, 4)$$

$$D_{(x,z)}F|_{(2,1,4)}$$
:

 $\begin{vmatrix} 0 & 3 \\ 1 & 3 \end{vmatrix} = -3 \neq 0 \stackrel{IFT}{\Rightarrow} x, z \text{ can be expressed as functions of } y \text{ near } (2, 1, 4)$

 $D_{(y,z)}F|_{(2,1,4)}$:

$$\left|\begin{array}{cc}4&3\\4&3\end{array}\right|=0$$

Hence, $D_{(y,z)}F|_{(2,1,4)}$ is not invertible. We may not conclude from the IFT whether y, z are locally functions of x near (2, 1, 4).

Remark. The variables y, z are in fact not differentiable functions of x near (2, 1, 4).

Otherwise, by implicit differentiation, we have:

$$D_{(y,z)}F|_{(2,1,4)} \begin{bmatrix} \frac{dy}{dx} \\ \frac{dz}{dx} \end{bmatrix} \Big|_{(2,1,4)} = -D_xF|_{(2,1,4)} = -\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} 4 & 3 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} \frac{dy}{dx} \\ \frac{dz}{dx} \end{bmatrix} \Big|_{(2,1,4)} = -\begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

which has no solutions, i.e. not satisfied for any values of $\frac{\partial y}{\partial x}|_{(2,1,4)}, \frac{\partial z}{\partial x}|_{(2,1,4)}$.

Hence, y, z cannot be differentiable functions of x near (2, 1, 4).

Remark. Implicit Function Theorem has many important applications, such as rigorous proofs of

- 1. Implicit differentiation
- 2. Tangent plane of surface F(x, y, z) = c
- 3. Lagrange Multipliers

13.2 Inverse Function Theorem

Theorem 13.5 (Inverse Function Theorem). Let $\Omega \subseteq \mathbb{R}^n$ be open.

 $f: \Omega \to \mathbb{R}^n$ be $C^1, f(a) = b$. Suppose Df(a) is an invertible $n \times n$ matrix Then, there exist open sets $U_1, U_2 \subseteq \mathbb{R}^n, a \in U_1, b \in U_2$ and a C^1 function $g: U_2 \to U_1$ such that:

1. g(b) = a

2.
$$g(f(x)) = x$$
 for all $x \in U_1$
 $f(g(y)) = y$ for all $y \in U_2$
(g is a local inverse of $f : g = (f|_{U_1})^{-1}$)

3. $Dg(b) = Df(a)^{-1}$

Remark. The Inverse Function Theorem is equivalent to Implicit Function Theorem.

Idea:

 \Rightarrow : Given F(x,y) = c, where $x \in \mathbb{R}^n$ and $y, c \in \mathbb{R}^k$, apply the Inverse Function Theorem to: $H(x,y) = (x, F(x,y)) : \mathbb{R}^{n+k} \longrightarrow \mathbb{R}^{n+k}$.

 \Leftarrow : Given $H : \mathbb{R}^n \longrightarrow \mathbb{R}^n$, apply the Implicit Function Theorem to F(x, y) = 0, where $F(x, y) = y - H(x) : \mathbb{R}^{2n} \longrightarrow \mathbb{R}^n$.

Example 13.6. $f : \mathbb{R}^2 \to \mathbb{R}^2$ $f(x, y) = (x^2 - y^2, 2xy)$ Clearly f(-x, -y) = f(x, y) $\Rightarrow f$ is not injective and has no global inverse. How about local inverse?

Solution.

$$f(x,y) = \begin{bmatrix} x^2 - y^2 \\ 2xy \end{bmatrix}$$

$$Df(x,y) = \begin{bmatrix} 2x & -2y \\ 2y & 2x \end{bmatrix}$$

$$\det Df(x,y) = 4(x^2 + y^2) > 0 \Leftrightarrow (x,y) \neq (0,0)$$

By the Inverse Function Theorem, f is locally invertible with differentiable local inverse.

For instance, let g(u, v) be a local inverse of f(x, y) near (x, y) = (1, -1). Then $f(1, -1) = (0, -2) \Rightarrow g(0, -2) = (1, -1)$, and:

$$Dg(0,-2) = Df(1,-1)^{-1} = \begin{bmatrix} 2 & 2 \\ -2 & 2 \end{bmatrix}^{-1} = \frac{1}{4} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

In fact, we can find g(u, v) explicitly.

Let:

$$\left\{ \begin{array}{rrr} u &=& x^2 - y^2 \\ v &=& 2xy \end{array} \right.$$

Near $(x, y) = (1, -1), x \neq 0 \Rightarrow y = \frac{v}{2x}$

$$\therefore u = x^2 - \left(\frac{v}{2x}\right)^2$$

$$4x^4 - 4ux^2 - v^2 = 0$$

$$x^2 = \frac{4u \pm \sqrt{(-4u)^2 - 4(4)(-v^2)}}{8}$$

$$= \frac{u \pm \sqrt{u^2 + v^2}}{2}$$

Let (x, y) = (1, -1), then (u, v) = (0, -2).

$$\Rightarrow 1^2 = \frac{0 \pm \sqrt{4}}{2}$$

So, we may reject the negative sign, and it follows that:

$$x^{2} = \frac{u + \sqrt{u^{2} + v^{2}}}{2}$$

$$\Rightarrow x = \sqrt{\frac{u + \sqrt{u^2 + v^2}}{2}}, y = \frac{2v}{x} = \frac{2\sqrt{2}v}{\sqrt{u + \sqrt{u^2 + v^2}}}$$

Hence,

$$g(u,v) = \left(\sqrt{\frac{u + \sqrt{u^2 + v^2}}{2}}, \frac{2\sqrt{2}v}{\sqrt{u + \sqrt{u^2 + v^2}}}\right)$$

In both Implicit and Inverse Function Theorems,

we assume a Jacobi matrix to be invertible.

Without this assumption, the theorems are **inconclusive** on the existence of local implicit or inverse function. See the examples below:

Implicit Function Theorem

- $F(x, y) = x^2 y^2 = 0$ $\frac{\partial F}{\partial y}|_{(0,0)} = 0$
- $F(x, y) = x^3 y^3 = 0$ $\frac{\partial F}{\partial y}|_{(0,0)} = 0$

y = x locally (and in fact globally).

Inverse Function Theorem

f(x) = x²
f'(0) = 0
Not injective near x = 0.
Hence, no local inverse near x = 0.

•
$$f(x) = x^3$$

 $f'(0) = 0$

The function f has a global inverse: $g(y)=\sqrt[3]{y}$