MATH 2010 Chapter 1

In one-variable calculus course, you study functions f(x) with both the "input" variable x and "output" value f(x) are real numbers. In this course, we will look at more general functions where the input or output may consist of a tuple of numbers. For example, the function

$$f(x, y, z) = (xy - \cos z, x^2 - y + z)$$

maps the tuple (2, 1, 0) to the tuple f(2, 1, 0) = (1, 3). Tuples like this are called vectors. Here x, y, z are the variables. We say that f is vector-valued multivariable function.

In this chapter, we will discuss vectors and some of its basic properties.

1.1 Euclidean Space

Let \mathbb{R} be the set of real numbers and n be a positive integer. Consider the set

$$\mathbb{R}^{n} = \mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R} \text{ (n copies of } \mathbb{R}$)}$$
$$= \{(x_{1}, x_{2}, \ldots, x_{n}) : x_{i} \in \mathbb{R} \text{ for } 1 \leq i \leq n\}$$

The set \mathbb{R}^n is called the *n*-dimensional Euclidean space. Its elements are called *n*-dimensional vectors or simply vectors. A vector is often written in bold (**v**), or with an arrow on top (\vec{v}). It can be geometrically represented by an arrow. For example, the vector $\vec{v} = (2, -1) \in \mathbb{R}^2$ can be denoted by an arrow that goes to the right by 2 units and goes up by -1 unit, i.e., down by 1 unit, on the plane.

Below are two vectors in \mathbb{R} and \mathbb{R}^3 . It is more difficult to visualize *n*-dimensional vectors when $n \ge 4$.

$$n \in \mathbb{N}, \quad \mathbb{R}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \middle| x_i \in \mathbb{R} \right\}$$

- Each $(x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ may be viewed as a point or a vector in \mathbb{R}^n .
- A vector in \mathbb{R}^n is typically denoted by a symbol of the form \vec{v} .
- If A and B are points in \mathbb{R}^n , then the vector with initial point A and terminal point B is often written as \overrightarrow{AB} .
- The vector whose entries are all zero is called the **zero vector**. We denote it by $\vec{0}$.

1.2 Basic operations of vectors

Let $\vec{v} = (v_1, v_2, \dots, v_n)$, $\vec{w} = (w_1, w_2, \dots, w_n) \in \mathbb{R}^n$ and $r \in \mathbb{R}$. Define

- Addition Law $\vec{v} + \vec{w} = (v_1 + w_1, v_2 + w_2, \cdots, v_n + w_n)$
- Scalar Multiplication $r\vec{v} = (rv_1, rv_2 \cdots, rv_n)$
- Subtraction $\vec{v} \vec{w} = v + (-1)\vec{w} = (v_1 w_1, v_2 w_2, \cdots, v_n w_n)$

1.2.1 Geometric Interpretation of Vector Algebra

The algebraic operations defined on vectors can be represented graphically:

IFRAME

Similar to numbers, there is also a zero vector $\vec{0} = (0, 0, \dots, 0) \in \mathbb{R}^n$ in each dimension n. The zero vectors and the basic operations above have many properties similar to those of numbers.

Proposition 1.1. Let $\vec{u}, \vec{v}, \vec{w}$ be vectors, $\alpha, \beta \in \mathbb{R}$.

- *1.* $0\vec{v} = \vec{0}$
- 2. $1\vec{v} = \vec{v}$
- 3. Associativity $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
- 4. Commutativity $\vec{v} + \vec{w} = \vec{w} + \vec{v}$
- 5. $\vec{v} + \vec{0} = \vec{v}$
- 6. Distributivity $(\alpha + \beta)\vec{v} = \alpha\vec{v} + \beta\vec{v}$
- 7. Distributivity $\alpha(\vec{v} + \vec{w}) = \alpha \vec{v} + \alpha \vec{w}$
- 8. $(\alpha\beta)\vec{v} = \alpha(\beta\vec{v})$

Given two points A and B in \mathbb{R}^n . An arrow can be drawn from A to B. It represents a vector which is denoted by \overrightarrow{AB} . The point A is called the **initial point** or the **tail** while B is called the **end point** or the **head**.

It is clear from the definitions and also the geometric properties that

• $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

•
$$\overrightarrow{BA} = -\overrightarrow{AB}$$

A **position vector** is a vector with initial point at the origin. If P has coordinates (x_1, x_2, \ldots, x_n) , the position vector is also given by $\overrightarrow{OP} = (x_1, x_2, \ldots, x_n)$. More generally, the initial point of a vector may not be the origin. For example,

More generally, the initial point of a vector may not be the origin. For example, consider the vector from $A = (x_1, y_1)$ to $B = (x_2, y_2)$. To move from the initial point to the terminal point, the vector goes to the right by $x_2 - x_1$ and up by $y_2 - y_1$. Hence, $\overrightarrow{AB} = (x_2 - x_1, y_2 - y_1)$.

More generally, the vector from $A = (a_1, a_2, \ldots, a_n)$ to $B = (b_1, b_2, \ldots, b_n)$ in \mathbb{R}^n is

$$\overrightarrow{AB} = (b_1 - a_1, b_2 - a_2, \dots, b_n - a_n).$$

This formula can also be obtained by considering \overrightarrow{AB} as a difference of position vectors:

$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$$
$$= -\overrightarrow{OA} + \overrightarrow{OB}$$
$$= -(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n)$$
$$= (b_1 - a_1, b_2 - a_2, \dots, b_n - a_n).$$

Remark. Besides vectors, an element $x \in \mathbb{R}^n$ can be viewed as a point in the Euclidean space. If we want to describe a location, it is more convenient to think about x as a point. If we want to describe a quantity with both length and direction (e.g. the displacement from one point to another), it is better to think about x as a vector. Some people use notations like $\langle x, y, z \rangle$ for vectors and (x, y, z) for points. We will not follow this convention and write (x, y, z) for both vectors and points.

Example 1.2. Let A = (1,0), B = (3,3), C = (2,4), D = (0,1) be points on the plane. Show that *ABCD* is a parallelogram.

Solution.

$$\overrightarrow{AB} = (3,3) - (1,0) = (2,3)$$

 $\overrightarrow{DC} = (2,4) - (0,1) = (2,3) = \overrightarrow{AB}$

Hence, *ABCD* is a parallelogram.

Remark. \overrightarrow{AB} and \overrightarrow{DC} are considered equal because they have the same magnitude and direction even though their initial points are different.

1.3 Length and Dot Product

Definition 1.3. The **norm** (or **length**, or **magnitude**) of a vector $\vec{v} = \langle v_1, v_2, \dots, v_n \rangle \in \mathbb{R}^n$ is:

$$\|\vec{v}\| = \sqrt{\sum_{i=1}^{n} v_i^2} = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2}.$$

Definition 1.4. The **dot product** of two vectors $\vec{v}, \vec{w} \in \mathbb{R}^n$ is:

$$\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v} = \sum_{i=1}^{n} v_i w_i.$$

Proposition 1.5. Let $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$, $r \in \mathbb{R}$. Then:

- 1. $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$ and $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$.
- 2. $(r\vec{v}) \cdot \vec{w} = \vec{v} \cdot (r\vec{w}) = r(\vec{v} \cdot \vec{w})$
- 3. $\vec{v} \cdot \vec{w} = \vec{w} \cdot \vec{v}$
- 4. $||r\vec{v}|| = |r|||\vec{v}||$
- 5. $\vec{v} \cdot \vec{v} = \|\vec{v}\|^2$
- 6. $\vec{v} \cdot \vec{v} \ge 0$ with equality $\vec{v} \cdot \vec{v} = 0$ occurs if and only if $\vec{v} = \overrightarrow{0}$.
- 7. $\vec{v} \cdot \vec{w} = \|\vec{v}\| \|\vec{w}\| \cos \theta$ where θ is the angle between \vec{v} and \vec{w} . Hence, if $\vec{v}, \vec{w} \neq \vec{0}$, then:

$$\vec{v} \cdot \vec{w} = 0 \iff \cos \theta = 0 \iff \vec{v} \perp \vec{w}$$

Proof of Proposition 1.5. We will prove property 7 for the case $n \leq 3$. The proof is essentially the same as that of cosine law. Assume $\theta < \frac{\pi}{2}$. Consider the following triangle.

Note:

$$\begin{aligned} ||\vec{v} - \vec{w}||^2 &= (||\vec{v}||\sin\theta)^2 + (||\vec{w}|| - ||\vec{v}||\cos\theta)^2 \\ &= ||\vec{v}||^2\sin^2\theta + ||\vec{w}||^2 - 2||\vec{w}|| \, ||\vec{v}||\cos\theta + ||\vec{v}||^2\cos^2\theta \\ &= ||\vec{v}||^2 + ||\vec{w}||^2 - 2||\vec{w}|| \, ||\vec{v}||\cos\theta \quad (1) \end{aligned}$$

Also,

$$\begin{aligned} ||\vec{v} - \vec{w}||^2 &= (\vec{v} - \vec{w}) \cdot (\vec{v} - \vec{w}) \\ &= \vec{v} \cdot \vec{v} - \vec{w} \cdot \vec{v} - \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{w} \\ &= ||\vec{v}||^2 + ||\vec{w}||^2 - 2\vec{v} \cdot \vec{w} \end{aligned}$$
(2)

Compare (1) and (2), we have

$$\vec{v} \cdot \vec{w} = ||\vec{v}|| \, ||\vec{w}|| \cos \theta.$$

The proof for the cases $\theta \geq \frac{\pi}{2}$ can be done similarly.

Remark. Properties 5 and 7 are geometric properties of length and angle in \mathbb{R}^n for $n \leq 3$. They are used for defining length and angle in higher dimension $n \geq 4$.

A vector of length 1 is called a **unit vector**.

For $\vec{v} \neq \vec{0}$, the vector $\frac{1}{\|\vec{v}\|}\vec{v}$ has length:

$$\left|\frac{1}{\|\vec{v}\|}\vec{v}\right| = \frac{1}{\|\vec{v}\|}\|\vec{v}\| = 1.$$

We call $\frac{1}{\|\vec{v}\|}\vec{v}$ the unit vector associated with \vec{v} . It captures the direction of \vec{v} .

Every nonzero vector \vec{v} has the form:

$$\vec{v} = \lambda \vec{u}, \quad \lambda > 0,$$

where $\vec{u} = \frac{1}{\|\vec{v}\|}\vec{v}$ is the unit vector associated with \vec{v} , and $\lambda = \|\vec{v}\|$ is the length of \vec{v} .

Example 1.6. Let \vec{v} , \vec{w} have the same length. Show that $(\vec{v} + \vec{w}) \cdot (\vec{v} - \vec{w}) = 0$.

Solution.

$$\begin{aligned} (v + w) \cdot (v - w) &= v \cdot v - v \cdot w + w \cdot v - w \cdot w \\ &= \|v\|^2 - v \cdot w + v \cdot w - \|w\|^2 \\ &= \|v\|^2 - \|v\|^2 \\ &= 0 \end{aligned}$$

Remark. The assumption $||\vec{v}|| = ||\vec{w}||$ means that the parallelogram spanned by \vec{v} and \vec{w} is a rhombus. The computation above shows the fact that the diagonals of a rhombus are perpendicular.

Example 1.7. Consider a circle centered at *O*. *AB* is diameter. Show that $\angle ACB$ is a right angle.

Solution.

$$\overrightarrow{AC} = \overrightarrow{AO} + \overrightarrow{OC}$$

$$\overrightarrow{BC} = \overrightarrow{BO} + \overrightarrow{OC} = -\overrightarrow{AO} + \overrightarrow{OC}$$

$$\overrightarrow{AC} \cdot \overrightarrow{BC} = (\overrightarrow{AO} + \overrightarrow{OC}) \cdot (-\overrightarrow{AO} + \overrightarrow{OC})$$

$$= -\overrightarrow{AO} \cdot \overrightarrow{AO} + \overrightarrow{AO} \cdot \overrightarrow{OC} - \overrightarrow{OC} \cdot \overrightarrow{AO} + \overrightarrow{OC} \cdot \overrightarrow{OC}$$

$$= -||\overrightarrow{AO}||^2 + ||\overrightarrow{OC}||^2 \qquad (||\overrightarrow{AO}|| = ||\overrightarrow{OC}|| \text{ are radius})$$

$$= 0$$

Therefore, $\overrightarrow{AC} \perp \overrightarrow{BC}$. Hence, $\angle ACB$ is a right angle.

Theorem 1.8 (Cauchy-Schwarz Inequality). For all $\vec{a}, \vec{b} \in \mathbb{R}^n$, the following inequality holds:

$$\|\vec{a} \cdot \vec{b}\| \le \|\vec{a}\| \|\vec{b}\|.$$

Remark. For lower dimensional spaces like \mathbb{R}^2 and \mathbb{R}^3 , the inequality follows from the Law of Cosine, since the cosine function has absolute value at most 1.

For n > 3, it's not as easy to visualize the situation. We prove the inequality as follows:

Proof of Cauchy-Schwarz Inequality. Observe that for all $t \in \mathbb{R}$, we have:

$$0 \le \|\vec{a} - t\vec{b}\|^2 = (\vec{a} - t\vec{b}) \cdot (\vec{a} - t\vec{b}) = \|\vec{a}\|^2 - 2(\vec{a} \cdot \vec{b})t + t^2 \|\vec{b}\|^2$$

In other words, $\|\vec{a}\|^2$, $-2\vec{a} \cdot \vec{b}$ and $\|\vec{b}\|^2$ are coefficients of a quadratic function which is always non-negative.

The discriminant of such a quadratic function must be non-positive. Hence:

$$(-2(\vec{a}\cdot\vec{b}))^2 - 4\|\vec{a}\|^2\|\vec{b}\|^2 \le 0$$

which implies that:

$$|\vec{a} \cdot \vec{b}\| \le \|\vec{a}\| \|\vec{b}\|$$

Theorem 1.9 (Triangle Inequality). For any $\vec{a}, \vec{b} \in \mathbb{R}^n$, we have:

$$\|\vec{a} + \vec{b}\| \le \|\vec{a}\| + \|\vec{b}\|.$$

Proof of Triangle Inequality.

$$\|\vec{a} + \vec{b}\|^2 = \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = \|\vec{a}\|^2 + 2\vec{a} \cdot \vec{b} + \|\vec{b}\|^2.$$

By the Cauchy-Schwarz inequality

$$|\vec{a} \cdot \vec{b}| \le \|\vec{a}\| \|\vec{b}\|,$$

thus

$$\|\vec{a} + \vec{b}\|^2 \le \|\vec{a}\|^2 + 2\|\vec{a}\| \|\vec{b}\| + \|\vec{b}\|^2 = (\|\vec{a}\| + \|\vec{b}\|)^2.$$

The result follows by taking square roots on both sides.

1.4 Cross Product

Besides dot product, there is another type of product, called cross product, for vectors in \mathbb{R}^3 . It can be defined using determinant. Recall the following formulas for 2×2 and 3×3 determinants.

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$

Example 1.10.

$$\begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = (1)(4) - (2)(3) = -2 \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = (1) \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - (2) \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + (3) \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = (1)[(5)(9) - (6)(8)] - (2)[(4)(9) - (6)(7)] + (3)[(4)(8) - (5)(7)] = -3 + 12 - 9 = 0 \end{vmatrix}$$

Definition 1.11 (Cross product). Let $\vec{a} = (a_1, a_2, a_3)$ and $\vec{b} = (b_1, b_2, b_3)$. Their cross product is defined to be

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
$$= \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \hat{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \hat{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \hat{k}$$
$$= (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1).$$

Here the vectors $\hat{i} = (1, 0, 0)$, $\hat{j} = (0, 1, 0)$ and $\hat{k} = (0, 0, 1)$ are the standard unit vectors. A hat instead of an arrow is written on top of each of them to mean that they are unit vectors (vectors of length one).

Example 1.12.

$$\hat{i} \times \hat{j} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix}$$
$$= \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix} \hat{i} - \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} \hat{j} + \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \hat{k}$$
$$= 0\hat{i} - 0\hat{j} + 1\hat{k} = \hat{k}$$

Similarly, we can compute the cross products of other standard unit vectors:

$$\begin{array}{ll} \hat{i} \times \hat{i} = \vec{0} & \hat{i} \times \hat{j} = \hat{k} & \hat{i} \times \hat{k} = -\hat{j} \\ \hat{j} \times \hat{i} = -\hat{k} & \hat{j} \times \hat{j} = \vec{0} & \hat{j} \times \hat{k} = \hat{i} \\ \hat{k} \times \hat{i} = \hat{j} & \hat{k} \times \hat{j} = -\hat{i} & \hat{k} \times \hat{k} = \vec{0} \end{array}$$

The diagram below helps you to remember the cross products of standard unit vectors.

Example 1.13. Let $\vec{a} = 2\hat{i} + 3\hat{j} + 5\hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$. Then

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 5 \\ 1 & 2 & 3 \end{vmatrix}$$
$$= \begin{vmatrix} 3 & 5 \\ 2 & 3 \end{vmatrix} \begin{vmatrix} \hat{i} - \\ 1 & 3 \end{vmatrix} \begin{vmatrix} 2 & 5 \\ 1 & 3 \end{vmatrix} \begin{vmatrix} \hat{j} + \\ 1 & 2 \end{vmatrix} \begin{vmatrix} 2 & 3 \\ 1 & 2 \end{vmatrix} \begin{vmatrix} \hat{k} \end{vmatrix}$$
$$= -\hat{i} - \hat{j} + \hat{k}$$

Find $\vec{b} \times \vec{a}$ and $\vec{b} \times \vec{b}$.

Cross product has the following properties.

Proposition 1.14. Let $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$, $\alpha, \beta \in \mathbb{R}$. Then

- 1. $\vec{a} \times \vec{a} = \vec{0}$
- 2. $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
- 3. $(\alpha \vec{a} + \beta \vec{b}) \times \vec{c} = \alpha \vec{a} \times \vec{c} + \beta \vec{b} \times \vec{c}$
- 4. Let θ be the angle between \vec{a} , \vec{b} .

 $\|\vec{a} \times \vec{b}\| = \|\vec{a}\| \|\vec{b}\| \sin \theta =$ Area of the parallelogram spanned by \vec{a} and \vec{b} .

5. $(\vec{a} \times \vec{b}) \cdot \vec{a} = (\vec{a} \times \vec{b}) \cdot \vec{b} = 0.$

We will prove property 4 below. The other properties can be proved by straightforward computations or properties of determinant.

Remark. From property 4 above,

$$\vec{a} \times \vec{b} = \vec{0} \iff$$
 Area of parallelogram = 0
 $\Leftrightarrow \vec{a}, \vec{b}$ lie on the same line
 $\Leftrightarrow \{\vec{a}, \vec{b}\}$ is linearly dependent.

Hence, two non-zero vectors have zero cross product if and only if they are pointing the same or opposite directions.

Moreover:

- Area of the triangle spanned by \vec{a} and $\vec{b} = \frac{1}{2} ||\vec{a} \times \vec{b}||$.
- If $\vec{c}, \vec{d} \in \mathbb{R}^2$, then

Area of the parallelogram spanned by \vec{c} and $\vec{d} = \left| \det \begin{bmatrix} c_1 & c_2 \\ d_1 & d_2 \end{bmatrix} \right|$

Proof of Proposition 1.14. By direct expansion,

$$\begin{split} \|\vec{a} \times \vec{b}\|^2 &= \|\vec{a}\|^2 \|\vec{b}\|^2 - (\vec{a} \cdot \vec{b})^2 \\ &= \|\vec{a}\|^2 \|\vec{b}\|^2 (1 - \cos^2 \theta) \\ &= \|\vec{a}\|^2 \|\vec{b}\|^2 \sin^2 \theta \end{split}$$

Since $0 \le \theta \le \pi$, we have $\sin \theta \ge 0$ and so

$$\|\vec{a} \times \vec{b}\| = \|\vec{a}\| \, \|\vec{b}\| |\sin \theta| = \|\vec{a}\| \, \|\vec{b}\| \sin \theta$$

Suppose $\vec{a} \times \vec{b}$ are non-zero. Then \vec{a} and \vec{b} are both non-zero. From property 5 above, $\vec{a} \times \vec{b}$ is perpendicular to both \vec{a} and \vec{b} . It can be shown that $\vec{a}, \vec{b}, \vec{a} \times \vec{b}$ satisfy the **right hand rule**.

Example 1.15. Let A = (1, 2, 1), B = (1, -1, 0) and C = (2, 3, 2) be points on a plane P. Find a normal vector of P, i.e. a vector perpendicular to P.

Solution. The line segments AB and AC both lie on P. Hence, the cross product $\overrightarrow{AB} \times \overrightarrow{AC}$ is perpendicular to P.

$$\begin{split} \overrightarrow{AB} &= (1, -1, 0) - (1, 2, 1) = (0, -3, -1) \\ \overrightarrow{AC} &= (2, 3, 2) - (1, 2, 1) = (1, 1, 1) \\ \overrightarrow{AB} \times \overrightarrow{AC} &= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & -3 & -1 \\ 1 & 1 & 1 \end{vmatrix} \\ &= \begin{vmatrix} -3 & -1 \\ 1 & 1 \end{vmatrix} \begin{vmatrix} \hat{i} - \begin{vmatrix} 0 & -1 \\ 1 & 1 \end{vmatrix} \begin{vmatrix} \hat{j} + \begin{vmatrix} 0 & -3 \\ 1 & 1 \end{vmatrix} \begin{vmatrix} \hat{k} \\ &= [(-3)(1) - (-1)(1)] \hat{i} - [(0)(1) - (-1)(1)] \hat{j} + [(0)(1) - (-3)(1)] \hat{k} \\ &= -2\hat{i} - \hat{j} + 3\hat{k} \end{split}$$

Therefore, $(-2, -1, 3) \perp P$.

Another product closely related to cross product is also defined for vectors in \mathbb{R}^3 .

Definition 1.16. The triple product of $\vec{a}, \vec{b}, \vec{c} \in \mathbb{R}^3$ is defined to be $\vec{a} \cdot (\vec{b} \times \vec{c})$.

From this definition, it is easy to see that

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (a_1, a_2, a_3) \cdot \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
$$= (a_1, a_2, a_3) \cdot \left(\begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix}, - \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix}, \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} \right)$$
$$= a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix}$$
$$= \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

It follows from this formula that a triple product depends on the order of its factors. From properties of determinant,

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b}) = -\vec{a} \cdot (\vec{c} \times \vec{b}) = -\vec{b} \cdot (\vec{a} \times \vec{c}) = -\vec{c} \cdot (\vec{b} \times \vec{a})$$

Proposition 1.17. Three vectors \vec{a}, \vec{b} and \vec{c} in \mathbb{R}^3 determine a parallelepiped as below.

Its volume can be computed using triple product:

 $|\vec{a} \cdot (\vec{b} \times \vec{c})| =$ Volume of parallelepiped spanned by $\vec{a}, \vec{b}, \vec{c}$.

Proof of Proposition 1.17. Consider the parallelogram spanned by \vec{b} and \vec{c} as the base of the parallelopiped. Let α be the angle between \vec{a} and $\vec{b} \times c$. Suppose $\alpha \leq \pi/2$.

Then:

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \|\vec{a}\| \|\vec{b} \times \vec{c}\| \cos \alpha$$
$$= \|\vec{b} \times \vec{c}\| h$$
$$= \text{Base Area } \times \text{ height}$$
$$= \text{Volume of parallelepiped}$$

The case for $\pi/2 < \alpha \leqslant \pi$ can be done similarly. In that case,

 $\vec{a} \cdot (\vec{b} \times \vec{c}) = -$ Volume of parallelepiped

Remark.

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} a_1 & a_1 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = 0 \iff \text{Volume of parallelepiped} = 0$$
$$\iff \{\vec{a}, \vec{b}, \vec{c}\} \text{ is linearly dependent}$$

Consider a tetrahedron with vertices $A, B, C, D \in \mathbb{R}^3$. To find a formula of its volume, we compare the tetrahedron with the parallelopiped spanned by $\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{AD}$.

Volume of Tetrahedron =
$$\frac{1}{3} \cdot \operatorname{Area}(\triangle ABC) \cdot \operatorname{height}$$

= $\frac{1}{3} \cdot \frac{1}{2} \cdot (\operatorname{Area} \text{ of parallelogram spanned by } \overrightarrow{AB}, \overrightarrow{AC}) \cdot \operatorname{height}$
= $\frac{1}{6} \cdot \operatorname{Volume of Parallelepiped}$
= $\frac{1}{6} \left| \overrightarrow{AB} \cdot (\overrightarrow{AC} \times \overrightarrow{AD}) \right|$

Example 1.18. Let A = (1, 0, 1), B = (1, 1, 2), C = (2, 1, 1), D = (2, 1, 3). Find the volume of the tetrahedron *ABCD*.

Solution.

$$\overrightarrow{AB} = (1, 1, 2) - (1, 0, 1) = (0, 1, 1)$$
$$\overrightarrow{AC} = (2, 1, 1) - (1, 0, 1) = (1, 1, 0)$$
$$\overrightarrow{AD} = (2, 1, 3) - (1, 0, 1) = (1, 1, 2)$$

Their triple product is:

$$(\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD} = \begin{vmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \end{vmatrix} = -2$$

and so:

Volume of the tetrahedron
$$ABCD = \frac{1}{6} \cdot |2| = \frac{1}{3}$$