MATH 1510 Chapter 8

8.1 Power Series

Roughly speaking, a power series is a polynomial with degree oco.

Definition 8.1 (Power series). A power series is a function of the form

o)=Y alz—a)t
=cy+c(r—a)+eyr—a)+c(x—a)+---

where a, ¢y, ¢1, ca, . . ., are real numbers. We call a the center of the series.
The implied domain of a power series is the set of x such that it converges.

It is known that any power series either converges everywhere, or there is a
number R such that f(z) converges for all x € (a — R,a + R) and diverges for
all z such that |z — a| > R.

This number R is called the radius of convergence of the series. For con-
venience, if f(z) converges everywhere, we say that its radius of convergence is
R = o0.

It is also known that
Ck

Ck+1

R = lim

k—00

if the limit exists or is equal to infinity.
(If the limit does not exist, it does not mean R does not exist. It just means
that one would have to use some other method to find R.)

Example 8.2. Consider the power series

fla)y=> a"=1+a+2’+a"+- .
k=0



Clearly, a = 0, ¢, = 1 and so,

R=1lim |2 |=1 = R=1.
Since
1 1 NSRS o
fl=z)=1+|z)+1|=z) + (=] +--- converges(geometric series)
2 2 2 2
f(2) =1+2+2%+2%+ ... diverges,

1
we know that 5 € D;but2 ¢ Dy.

Proposition 8.3 (Interval of convergence). The implied domain of any power se-
ries f(x) with center a and radius of convergence R is an interval of the form:

(a—R,a+ R),(a—R,a+ R],[a— R,a+ R)or[a— R,a+ R].

Proof of Interval of convergence. Let us handle the case when R # 0,00. The
cases when R = (0 and R = oo follow from similar arguments. Suppose |z —a| <

R. Then, for the series f(z) = Z cr(x — a)F,
k=0

Char(z — a)Ft!

cx(z — a)k

Therefore, by ratio test, the series converges.On the other hand, if |z — a| > R,
then

B |z — al

<1
R

, (k+1)-thterm|
k-th term koo

k—o0

[ e = || = TR
Again, by ratio test, the series diverges.Hence,
(a—R,a+R)C Dy Cla—R,a+R|
and the result follows. [l

Thus, we call the implied domain of a power series its interval of conver-
gence.



Example 8.4. As in Example Example 8.2,

f(x):Za:k:1+x+x2+x3—|—---.
k=0

Since its center and radius of convergence are 0, 1 respectively, we can conclude
that the interval of convergence of f(z) is either

(=1,1), (=1,1],[-1,1) or [1, 1],

That means f(x) converges whenever « € (—1,1). In fact, for any = € (—1,1),

o

f(x)IZxk=1+x+x2+:c3+~--=
k=0

1
1—z

Example 8.5. For the following power series, find its center and radius of conver-
gence. For what = does the series converge?

fla) = (k) (z = 1)F
fla) = (=1)" (sin27%) 2*
k=0

8.2 Taylor Series

While a calculator can only perform basic arithmetic: 4+, —, X, <, how does it
compute something like sin 1 or e™ ? The answer is Taylor series .

Definition 8.6 (Taylor series). We say that a function f(z) is smooth (or infinitely
differentiable) over an interval [ if f(")(z) is differentiable over I for any n > 0.
The Taylor series of a smooth function f(x) at a point x = a is:

f¥(a)
Kl

cr(r —a)f  where ¢, =

NE

T(z) =

e
Il

f"(a)

f(@) + fa)@ = a) + 2w - o) +

f(a)
31

(@ —a)® + -
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The Maclaurin series of f(x) is its Taylor series with center a = 0 :

1 (3)
ka| a = f(0) + f'(0)x + f2(!0)x2—|—f3—!(0)x3+..._

The Taylor polynomial of order n of f(x) at a point x = a is:

n (k)a "(aq
L (R | I R LY s R

(Expanded up to order n ) The Maclaurin polynomial of order n of f(x) is its
Taylor polynomial of order n with center a = 0 :

1! (7’1)
I R L

n!

Remark. Observe that the Taylor polynomial 7,,(z) of f(z) at x = a is the unique
polynomial which satisfies the condition:

TW(a) = fP(a), 0<k<n.

Example 8.7. Consider the function f(z) = e”. It’s clearly smooth over R. More-
over,

f(@)=¢e® = f™(0)=1and f™(1) =e.

Therefore,
Macl f 1 =1 L
aclaurin series of f(x Z k_ +z+ 5:15 + -
k=0
Taylor series of f(z) about x = 11SZ£ r—1DfF=etelr—1)+ ;(x— D24,

By definition, the Maclaurin polynomials of f(x) of orders 0, 1,2 are

1
Ll4+z,14+2+ §x2respectively.



y=flz

(0, £(0))

y=Tyz) =1

From Example Example 8.7, we can see that Taylor polynomial of order n can
be regarded as a degree n polynomial approximation of f around the center a. In

particular,

Ti(z) = f(a) + f'(a)(z — a)

is the linearization of f at a.

* Taylor polynomials of f(x) = sinz centered at a = 0.
e Taylor polynomials of f(z) = sin z centered at a = /2.
The following are some basic Taylor series:

Proposition 8.8.

x - 1 k 1 2 1 3
e :ZEI :1+x+§x +§x + o
k=0

converges for all x € R

o0

1 1 1 1
o RV ) = R . S . S . ST
sine =) (Vg Tyt e
converges for all v € R
- 1 1 1 1
_ 1k % 1+ L o4 L6
cosx—kgzo( 1) (%)!x =1 TR Pk +

converges for all v € R


https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=content/math1510//chap8.xml&slide=7&item=8.7
https://www.desmos.com/calculator/02r0dupos7
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1 [e.e]
= Zga:—1+x+a:+x+
k=0
converges forall x € (—1,1)
S 1 1 1
n(1 k+1 P BT B ST
+ ) ,;1 2x —1—390 4:6 +

converges for all x € (—1,1]

Remark. In general, a function and its Taylor series are not necessarily equal to
each other as functions.

For instance, the domain of the Maclaurin series of is (—1, 1), while the

— X

domain of is (—o0, 1) U (1, 00).

— X

8.3 Operations on Taylor Series

It is known that if a power series Y - cx(z — a)* converges to a given function
f(z) on an open interval centered at x = a, then that power series is the Taylor
series of f(x) atx = a:

f¥(a)

k!
This implies in particular that the power series centered at * = a converging to
the function f(z) on an open interval is unique : There cannot be another power
series with the same center which also converges to the same function on an open
interval.

This fact offers a "shortcut" to find the Taylor series of various functions based
on known Taylor series.

Suppose

C —

f(z) =sinz, andg(x)= cosz.

(For the following Taylor series, the centers are assumed to be a = 0.)

Taylor series of (f(x) + g(z)) = Taylor series of f(x) + Taylor series of g(x)
2 3 g4
B R T



Taylor series of (f(z) — g(x)) = Taylor series of f(z) — Taylor series of g(x)

Taylor series of (f(x) - g(z)) = (Taylor series of f(x)) - (Taylor series of g(x))

2x3+
- r - — e
3

Taylor series of g(f(z)) = Taylor series of g(y) with y = Taylor series of f(x)

Taylor series of f’'(z) = Differentiating Taylor series of f(x) term by term
x? ot
=1 a + Z + ..

(Notice that this coincides with the Taylor series of g(z) = cos x.)

Taylor series of / f(t) dt = Integrating Taylor series of f(t) term by term
0

2?7t

TR

(Notice that this coincides with the Taylor series of 1 — cos x.)
To find the Taylor series of f(z)
g(x)

f(x)

Taylor series of —= = ¢y + c1x + cox? + 51> + et + -

g(z)

where g(a) # 0, we start by letting:

Then,

f(x)
g9()

Taylor series of f(z) = (Taylor series of ) - (Taylor series of g(x))

1 3

1 1
:(co+clx+02x2—|—03x3+04x4+---)(1—§x2+ﬂx4+~-)



Hence, by comparing the coefficients, we have

2%term: 0 = ¢o(1) = ¢ =0
rlterm: 1 = ¢(0) 4+ ¢i(1) = =1
1
r’term: 0 = ¢ 5t c1(0) + e2(1) = =0
, 1 1 1
x3 term: 5 = co(0) + 1 —5 +c2(0) +c3(1) = 3= 3
, 1 1
o term: 0 = ¢ o)t c1(0) + ¢ -5 )t c3(0) + ca(1)
— ¢y =0

and we can conclude that:

1
Taylor series of /() =z -2+
g(x) 3
Example 8.9. « Find the Maclaurin series of f(x) = sin®z.

* Hence, find 9 (0) and f11(0).
Example 8.10. Find the Maclaurin series of f(z) = /1 + x2.

T

Example 8.11. Find the Maclaurin series of f(z) = T
-z

Example 8.12. Find the Maclaurin series of f(z) = arctan .

Example 8.13. Find the Taylor series of f(z) = % with center a = 1.
x

Example 8.14. Find the Maclaurin polynomial of order 3 of f(x) = ™=,

8.4 Lagrange Form of Remainder

Although Taylor series is powerful, no machine can really perform an infinite sum.
So in practice, a calculator computes a finite sum with acceptable error instead.
That means we need to control the error.

Theorem 8.15 (Taylors Theorem). Suppose f(x) is (n + 1) -times differentiable
over the interval |a, x] (or [x,a] ). Then,

f(x) = Tu(z) + Ry ()



where

Ry(x) = A

(n+1)! (2 —ay™

forsome c € (a,x) (or (x,a) ). R,(z) is called the Lagrange form of remainder

Remark. Be careful: R, (z) looks similar to the (z — a)"™! term of the Taylor
series, but is not the same.

Proof of Taylor’s Theorem. Let:

F(O) = £+ 1O -0+ L8 g 220

2 n! (x =)
and G(t) = (t — x)"™'. Then F(t) is differentiable over [a, x| (or [ a] ) and
G'(t) # 0 over (a,z) (or (x,a) ). Notice that F'(z) = f(x), F'(a) = T,(z) and

" (n)
P =5 (10+ 106 -0+ 5w D0

=[O+ (") (@ —1) = f1(1) + %(f”’(t)(x —t)* = 2f"(t)(z — 1))

L (CARRIOICE LRI O TR

n.

e TAARIGIEE

Therefore, by Theorem 5.9 (Cauchy’s Mean Value Theorem), there exists ¢ €
(a,z) (or (z,a) ) such that

F'(c) _ F(x) = F(a)
G'(c)  G(z) —Gla)
FEE@E =" p(e) = To(a)
(n+1)(c—x) —(a — x)n*!
Py -0 = @) - Tt
Hence, f(z) = T,,(xz) + R, (z) as desired. O
Alternatively,

Proof of Taylor’s Theorem. Recall that T\ ( ) = f®(a) fork = 0,1,2,...,n
Moreover, observe that 7" = 0 for k > n, since 7,, is a polynomial of degree at
most n.
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Let:
F(z) = f(z) = To(2), G(z)=(z—a)"".

Then, F'(a) = G(a) = 0, and by Theorem 5.9 (Cauchy’s Mean Value Theorem),
we have:

fl@) - Tw(z)  F(x)— F(a)
(z—a)'  G(z)—Gla)
_ F'(x4)
G/(l'l)

for some z; between a and x.
Now let:

Fi(z) = F'(z) = f'(x) = T,(2),
Gi(z)=G'(z)=(n+1)(z —a)".

Repeating the same procedure carried out before, we have:

fl@) = Ty@) _ Fl@) _ fO(xs) = Ta (22)

(n+ (e —a)  Gi(®)  (n+ Lnfez — a)"!
for some x5 between a and ;. Repeating this process n + 1 times, we have:

f@) =Ta(z) _ f(a1) =T (2)
(x —a)"tt  (n+1)(x; —a)
[P (a) = T (o)
(n+ 1)n(zy — a)"!

(@) - T ()
 (n+Dnn—1)---2(z, —a)
_ f(n+1)<xn+1) -0

B (n+1)!

for some x,, 1 between a and z. Letting ¢ = x,,.1, the theorem follows. [

Remark. If we apply the Taylor’s Theorem with n = 0, we have

f(&) = To(x) + Ro(x) = f(a) + f(c)(x — a)

10
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Thus, Taylor’s Theorem can be regarded as a generalization of Lagrange’s MVT.
Example 8.16. For any =z > 0,

xT 1 1 ec
e’ =Ts(r) + Ry(x) =1+ 2+ EZBQ + gxi” + Ix‘l

for some ¢ € (0, x). In particular, when = = 1,

144l @
= 276 24

with ¢ ~ 0.214114 € (0,1).

Example 8.17. To approximate the value of sin 1, we apply Taylor’s Theorem on
sinx :

sine = Ty(x) + Ry(z) =2 — =a° + ——

where ¢ € (0, x). By putting x = 1, we have:

5 1 . 5 cosc _H 1
-~ —— <sinl =~ + <
6 120 6 120 6 120

0.825 <sin1 < 0.8416667
(In fact, sin 1 ~ 0.841471)

Example 8.18. Let’s try to approximate

1
/ cos(z?) dx
0

with an error < 0.001. First of all, we apply Taylor’s Theorem on cost :

cost = T,(t) + R,(t), wheren = 2m is even,
1 1 (=)™ sinc
-1 —t2 . —1\)™ t2m 2m+1

ot T UG @m 1 1)!

11



for some ¢ € (0,¢). By putting ¢t = x2, we have

1
Exact value = / cos(x?) dx
0

1 .
sin ¢
-1 m+1 4m+-2 d
* /0 A s DT
= Approximation + Error

So, we can see that:

1 .
S1n C
-1 m+1 4m+2d
/0 (=1) Cm+ 1) x
1

(2m + 1)!(4m + 3)’

1
1
< 4m+2d
—/0 Cm+ )" v

|Error| =

which would be < 0.001 when m = 2. Hence, with m = 2,

1
1 1

Approximation = / (1 — 5:174 + 51’8) dz ~ 0.9046296.
O . .

1
(In fact, / cos(2?) dr ~ 0.9045242.)
0

Example 8.19. Find the exact value of

1 1 1 1
oAy n T

12
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