
MATH 1510 Chapter 8

8.1 Power Series
Roughly speaking, a power series is a polynomial with degree ∞.

Definition 8.1 (Power series). A power series is a function of the form

f(x) =
∞∑
k=0

ck(x− a)k

= c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

where a, c0, c1, c2, . . . , are real numbers. We call a the center of the series.
The implied domain of a power series is the set of x such that it converges.

It is known that any power series either converges everywhere, or there is a
number R such that f(x) converges for all x ∈ (a − R, a + R) and diverges for
all x such that |x− a| > R.

This number R is called the radius of convergence of the series. For con-
venience, if f(x) converges everywhere, we say that its radius of convergence is
R = ∞.

It is also known that

R = lim
k→∞

∣∣∣∣ ck
ck+1

∣∣∣∣
if the limit exists or is equal to infinity.

(If the limit does not exist, it does not mean R does not exist. It just means
that one would have to use some other method to find R.)

Example 8.2. Consider the power series

f(x) =
∞∑
k=0

xk = 1 + x+ x2 + x3 + · · · .
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Clearly, a = 0, ck = 1 and so,

R = lim
k→∞

∣∣∣∣ ck
ck+1

∣∣∣∣ = 1 =⇒ R = 1.

Since

f

(
1

2

)
= 1 +

(
1

2

)
+

(
1

2

)2

+

(
1

2

)3

+ · · · converges(geometric series)

f(2) = 1 + 2 + 22 + 23 + · · · diverges,

we know that
1

2
∈ Df but 2 /∈ Df .

Proposition 8.3 (Interval of convergence). The implied domain of any power se-
ries f(x) with center a and radius of convergence R is an interval of the form:

(a−R, a+R), (a−R, a+R], [a−R, a+R) or [a−R, a+R].

Proof of Interval of convergence. Let us handle the case when R ̸= 0,∞. The
cases when R = 0 and R = ∞ follow from similar arguments. Suppose |x−a| <

R. Then, for the series f(x) =
∞∑
k=0

ck(x− a)k,

lim
k→∞

∣∣∣∣(k + 1)-th term
k-th term

∣∣∣∣ = lim
k→∞

∣∣∣∣ck+1(x− a)k+1

ck(x− a)k

∣∣∣∣ = |x− a|
R

< 1

Therefore, by ratio test, the series converges.On the other hand, if |x − a| > R,
then

lim
k→∞

∣∣∣∣(k + 1)-th term
k-th term

∣∣∣∣ = lim
k→∞

∣∣∣∣ck+1(x− a)k+1

ck(x− a)k

∣∣∣∣ = |x− a|
R

> 1

Again, by ratio test, the series diverges.Hence,

(a−R, a+R) ⊆ Df ⊆ [a−R, a+R]

and the result follows.

Thus, we call the implied domain of a power series its interval of conver-
gence.
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Example 8.4. As in Example Example 8.2,

f(x) =
∞∑
k=0

xk = 1 + x+ x2 + x3 + · · · .

Since its center and radius of convergence are 0, 1 respectively, we can conclude
that the interval of convergence of f(x) is either

(−1, 1), (−1, 1], [−1, 1) or [−1, 1].

That means f(x) converges whenever x ∈ (−1, 1). In fact, for any x ∈ (−1, 1),

f(x) =
∞∑
k=0

xk = 1 + x+ x2 + x3 + · · · = 1

1− x
.

Example 8.5. For the following power series, find its center and radius of conver-
gence. For what x does the series converge?

•

f(x) =
∞∑
k=0

(k!)(x− 1)k

•

f(x) =
∞∑
k=0

(−1)k
(
sin 2−k

)
xk

8.2 Taylor Series
While a calculator can only perform basic arithmetic: +,−,×,÷, how does it
compute something like sin 1 or eπ ? The answer is Taylor series .

Definition 8.6 (Taylor series). We say that a function f(x) is smooth (or infinitely
differentiable) over an interval I if f (n)(x) is differentiable over I for any n ≥ 0.
The Taylor series of a smooth function f(x) at a point x = a is:

T (x) =
∞∑
k=0

ck(x− a)k where ck =
f (k)(a)

k!

= f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f (3)(a)

3!
(x− a)3 + · · ·
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The Maclaurin series of f(x) is its Taylor series with center a = 0 :

T (x) =
∞∑
k=0

f (k)(0)

k!
xk = f(0) + f ′(0)x+

f ′′(0)

2!
x2 +

f (3)(0)

3!
x3 + · · · .

The Taylor polynomial of order n of f(x) at a point x = a is:

Tn(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k = f(a) + f ′(a)(x− a) +

f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

(Expanded up to order n ) The Maclaurin polynomial of order n of f(x) is its
Taylor polynomial of order n with center a = 0 :

Tn(x) =
n∑

k=0

f (k)(0)

k!
xk = f(0) + f ′(0)x+

f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn.

Remark. Observe that the Taylor polynomial Tn(x) of f(x) at x = a is the unique
polynomial which satisfies the condition:

T (k)
n (a) = f (k)(a), 0 ≤ k ≤ n.

Example 8.7. Consider the function f(x) = ex. It’s clearly smooth over R. More-
over,

f (n)(x) = ex =⇒ f (n)(0) = 1 and f (n)(1) = e.

Therefore,

Maclaurin series of f(x) =
∞∑
k=0

1

k!
xk = 1 + x+

1

2!
x2 + · · ·

Taylor series of f(x) about x = 1 is
∞∑
k=0

e

k!
(x− 1)k = e+ e(x− 1) +

e

2!
(x− 1)2 + · · · .

By definition, the Maclaurin polynomials of f(x) of orders 0, 1, 2 are

1, 1 + x, 1 + x+
1

2
x2respectively.
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From Example Example 8.7, we can see that Taylor polynomial of order n can
be regarded as a degree n polynomial approximation of f around the center a. In
particular,

T1(x) = f(a) + f ′(a)(x− a)

is the linearization of f at a.

• Taylor polynomials of f(x) = sinx centered at a = 0.

• Taylor polynomials of f(x) = sinx centered at a = π/2.

The following are some basic Taylor series:

Proposition 8.8.

ex =
∞∑
k=0

1

k!
xk = 1 + x+

1

2!
x2 +

1

3!
x3 + · · ·

converges for all x ∈ R

sinx =
∞∑
k=0

(−1)k
1

(2k + 1)!
x2k+1 = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + · · ·

converges for all x ∈ R

cosx =
∞∑
k=0

(−1)k
1

(2k)!
x2k = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + · · ·

converges for all x ∈ R
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1

1− x
=

∞∑
k=0

xk = 1 + x+ x2 + x3 + · · ·

converges for all x ∈ (−1, 1)

ln(1 + x) =
∞∑
k=1

(−1)k+1 1

k
xk = x− 1

2
x2 +

1

3
x3 − 1

4
x4 + · · ·

converges for all x ∈ (−1, 1]

Remark. In general, a function and its Taylor series are not necessarily equal to
each other as functions.

For instance, the domain of the Maclaurin series of
1

1− x
is (−1, 1), while the

domain of
1

1− x
is (−∞, 1) ∪ (1,∞).

8.3 Operations on Taylor Series
It is known that if a power series

∑∞
k=0 ck(x − a)k converges to a given function

f(x) on an open interval centered at x = a, then that power series is the Taylor
series of f(x) at x = a:

ck =
f (k)(a)

k!

This implies in particular that the power series centered at x = a converging to
the function f(x) on an open interval is unique : There cannot be another power
series with the same center which also converges to the same function on an open
interval.

This fact offers a "shortcut" to find the Taylor series of various functions based
on known Taylor series.

Suppose

f(x) = sinx, and g(x) = cos x.

(For the following Taylor series, the centers are assumed to be a = 0.)

Taylor series of (f(x) + g(x)) = Taylor series of f(x) + Taylor series of g(x)

= 1 + x− x2

2!
− x3

3!
+

x4

4!
+ · · ·
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Taylor series of (f(x)− g(x)) = Taylor series of f(x)− Taylor series of g(x)

= −1 + x+
x2

2!
− x3

3!
− x4

4!
+ · · ·

Taylor series of (f(x) · g(x)) = (Taylor series of f(x)) · (Taylor series of g(x))

= x− 2x3

3
+ · · ·

Taylor series of g(f(x)) = Taylor series of g(y) with y = Taylor series of f(x)

= 1− x2

2!
+

5x4

4!
+ · · ·

Taylor series of f ′(x) = Differentiating Taylor series of f(x) term by term

= 1− x2

2!
+

x4

4!
+ · · ·

(Notice that this coincides with the Taylor series of g(x) = cos x.)

Taylor series of
∫ x

0

f(t) dt = Integrating Taylor series of f(t) term by term

=
x2

2!
− x4

4!
+ · · ·

(Notice that this coincides with the Taylor series of 1− cosx.)

To find the Taylor series of
f(x)

g(x)
where g(a) ̸= 0, we start by letting:

Taylor series of
f(x)

g(x)
= c0 + c1x+ c2x

2 + c3x
3 + c4x

4 + · · ·

Then,

Taylor series of f(x) =
(

Taylor series of
f(x)

g(x)

)
· (Taylor series of g(x))

x− 1

6
x3 + · · ·

= (c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + · · · )

(
1− 1

2
x2 +

1

24
x4 + · · ·

)
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Hence, by comparing the coefficients, we have

x0 term: 0 = c0(1) =⇒ c0 = 0
x1 term: 1 = c0(0) + c1(1) =⇒ c1 = 1

x2 term: 0 = c0

(
−1

2

)
+ c1(0) + c2(1) =⇒ c2 = 0

x3 term: −1

6
= c0(0) + c1

(
−1

2

)
+ c2(0) + c3(1) =⇒ c3 =

1

3

x4 term: 0 = c0

(
1

24

)
+ c1(0) + c2

(
−1

2

)
+ c3(0) + c4(1)

=⇒ c4 = 0

and we can conclude that:

Taylor series of
f(x)

g(x)
= x+

1

3
x3 + · · ·

Example 8.9. • Find the Maclaurin series of f(x) = sin2 x.

• Hence, find f (10)(0) and f (11)(0).

Example 8.10. Find the Maclaurin series of f(x) =
√
1 + x2.

Example 8.11. Find the Maclaurin series of f(x) =
x

1− x3
.

Example 8.12. Find the Maclaurin series of f(x) = arctan x.

Example 8.13. Find the Taylor series of f(x) =
x

x+ 1
with center a = 1.

Example 8.14. Find the Maclaurin polynomial of order 3 of f(x) = ecosx.

8.4 Lagrange Form of Remainder
Although Taylor series is powerful, no machine can really perform an infinite sum.
So in practice, a calculator computes a finite sum with acceptable error instead.
That means we need to control the error.

Theorem 8.15 (Taylors Theorem). Suppose f(x) is (n + 1) -times differentiable
over the interval [a, x] (or [x, a] ). Then,

f(x) = Tn(x) +Rn(x)
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where

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1

for some c ∈ (a, x) (or (x, a) ). Rn(x) is called the Lagrange form of remainder

Remark. Be careful: Rn(x) looks similar to the (x − a)n+1 term of the Taylor
series, but is not the same.

Proof of Taylor’s Theorem. Let:

F (t) = f(t) + f ′(t)(x− t) +
f ′′(t)

2!
(x− t)2 + · · ·+ f (n)(t)

n!
(x− t)n

and G(t) = (t − x)n+1. Then F (t) is differentiable over [a, x] (or [x, a] ) and
G′(t) ̸= 0 over (a, x) (or (x, a) ). Notice that F (x) = f(x), F (a) = Tn(x) and

F ′(t) =
d

dt

(
f(t) + f ′(t)(x− t) +

f ′′(t)

2!
(x− t)2 + · · ·+ f (n)(t)

n!
(x− t)n

)
= f ′(t) + (f ′′(t)(x− t)− f ′(t)) +

1

2!
(f ′′′(t)(x− t)2 − 2f ′′(t)(x− t))

+ · · ·+ 1

n!
(f (n+1)(t)(x− t)n − nf (n)(t)(x− t)n−1)

=
1

n!
f (n+1)(t)(x− t)n,

Therefore, by Theorem 5.9 (Cauchy’s Mean Value Theorem), there exists c ∈
(a, x) (or (x, a) ) such that

F ′(c)

G′(c)
=

F (x)− F (a)

G(x)−G(a)
1

n!
f (n+1)(c)(x− c)n

(n+ 1)(c− x)n
=

f(x)− Tn(x)

−(a− x)n+1

f (n+1)(c)

(n+ 1)!
(−1)n(−1)(a− x)n+1 = f(x)− Tn(x)

Hence, f(x) = Tn(x) +Rn(x) as desired.

Alternatively,

Proof of Taylor’s Theorem. Recall that T (k)
n (a) = f (k)(a) for k = 0, 1, 2, . . . , n.

Moreover, observe that T (k)
n = 0 for k > n, since Tn is a polynomial of degree at

most n.
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Let:
F (x) = f(x)− Tn(x), G(x) = (x− a)n+1.

Then, F (a) = G(a) = 0, and by Theorem 5.9 (Cauchy’s Mean Value Theorem),
we have:

f(x)− Tn(x)

(x− a)n+1
=

F (x)− F (a)

G(x)−G(a)

=
F ′(x1)

G′(x1)

=
f ′(x1)− T ′

n(x1)

(n+ 1)(x1 − a)n

for some x1 between a and x.
Now let:

F1(x) = F ′(x) = f ′(x)− T ′
n(x),

G1(x) = G′(x) = (n+ 1)(x− a)n.

Repeating the same procedure carried out before, we have:

f ′(x1)− T ′
n(x1)

(n+ 1)(x1 − a)n
=

F ′
1(x)

G′
1(x)

=
f (2)(x2)− T

(2)
n (x2)

(n+ 1)n(x2 − a)n−1

for some x2 between a and x1. Repeating this process n+ 1 times, we have:

f(x)− Tn(x)

(x− a)n+1
=

f ′(x1)− T ′
n(x1)

(n+ 1)(x1 − a)n

=
f (2)(x2)− T

(2)
n (x2)

(n+ 1)n(x2 − a)n−1

...

=
f (n)(xn)− T

(n)
n (xn)

(n+ 1)n(n− 1) · · · 2(xn − a)

=
f (n+1)(xn+1)− 0

(n+ 1)!

for some xn+1 between a and x. Letting c = xn+1, the theorem follows.

Remark. If we apply the Taylor’s Theorem with n = 0, we have

f(x) = T0(x) +R0(x) = f(a) + f ′(c)(x− a)
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=⇒ f(x)− f(a)

x− a
= f ′(c)

Thus, Taylor’s Theorem can be regarded as a generalization of Lagrange’s MVT.

Example 8.16. For any x > 0,

ex = T3(x) +R3(x) = 1 + x+
1

2!
x2 +

1

3!
x3 +

ec

4!
x4

for some c ∈ (0, x). In particular, when x = 1,

e = 1 + 1 +
1

2
+

1

6
+

ec

24

with c ≈ 0.214114 ∈ (0, 1).

Example 8.17. To approximate the value of sin 1, we apply Taylor’s Theorem on
sinx :

sinx = T4(x) +R4(x) = x− 1

3!
x3 +

cos c

5!
x5

where c ∈ (0, x). By putting x = 1, we have:

5

6
− 1

120
≤ sin 1 =

5

6
+

cos c

120
≤ 5

6
+

1

120

0.825 ≤ sin 1 ≤ 0.8416667

(In fact, sin 1 ≈ 0.841471 )

Example 8.18. Let’s try to approximate∫ 1

0

cos(x2) dx

with an error < 0.001. First of all, we apply Taylor’s Theorem on cos t :

cos t = Tn(t) +Rn(t), where n = 2m is even,

= 1− 1

2!
t2 + · · ·+ (−1)m

1

(2m)!
t2m +

(−1)m+1 sin c

(2m+ 1)!
t2m+1
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for some c ∈ (0, t). By putting t = x2, we have

Exact value =

∫ 1

0

cos(x2) dx

=

∫ 1

0

(
1− 1

2!
x4 + · · ·+ (−1)m

1

(2m)!
x4m

)
dx

+

∫ 1

0

(−1)m+1 sin c

(2m+ 1)!
x4m+2 dx

= Approximation + Error

So, we can see that:

|Error| =
∣∣∣∣∫ 1

0

(−1)m+1 sin c

(2m+ 1)!
x4m+2 dx

∣∣∣∣ ≤ ∫ 1

0

1

(2m+ 1)!
x4m+2 dx

=
1

(2m+ 1)!(4m+ 3)
,

which would be < 0.001 when m = 2. Hence, with m = 2,

Approximation =

∫ 1

0

(
1− 1

2!
x4 +

1

4!
x8

)
dx ≈ 0.9046296.

(In fact,
∫ 1

0

cos(x2) dx ≈ 0.9045242.)

Example 8.19. Find the exact value of

1

1!
− 1

2!
+

1

3!
− 1

4!
+ · · ·
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