
MATH 1510 Chapter 7

7.1 MVT for integrals
How should one define the “average value” of f(x) = x2 over the interval [0, 2] ?
Let’s start with approximating it by taking the function values at 4 points:

Average ≈ 1

4
(f(0.5) + f(1) + f(1.5) + f(2)),

which can also be written as:
1

2− 0
(f(0.5)0.5 + f(1)0.5 + f(1.5)0.5 + f(2)0.5)

Approximation of the (signed) area under the curve with 4 regular subintervals.

Naturally, we can get a better approximation by taking the function values at
8 points:

Average ≈ 1

8
(f(0.25) + f(0.5) + f(0.75) + f(1)

+f(1.25) + f(1.5) + f(1.75) + f(2)),
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which can also be written as

1

2− 0
(f(0.25)0.25 + f(0.5)0.25 + f(0.75)0.25 + · · ·+ f(1.75)0.25 + f(2)0.25)

Approximation of the (signed) area under the curve with 8 regular subintervals.

Intuitively, yhe exact “average value” can then be found by dividing [0, 2] into
n regular subintervals and taking n → +∞.

Hence, by FTC, the “average value” of f(x) = x2 over the interval [0, 2] will
then be:

Average =
1

2− 0

∫ 2

0

f(x)dx =
4

3
.
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(One can immediately deduce that:

(2− 0) · Average =

∫ 2

0

f(x) dx.

That means the areas of the red box and the region shaded in blue are equal.)
In general,

Definition 7.1 (Average Value of a Function).

Average value of f(x) over [a, b] =
1

b− a

∫ b

a

f(x) dx.

Theorem 7.2 (Mean Value Theorem for Integrals). Suppose f(x) is continuous
on [a, b]. Then,

f(c) =
1

b− a

∫ b

a

f(x) dx for some c ∈ (a, b).

(Basically, that means the average value will be achieved by some point in the
interval.)

Proof of Mean Value Theorem for Integrals. Let:

F (x) =

∫ x

a

f(t) dt

By FTC, F is differentiable over [a, b]. By Lagrange’s MVT, there exists c ∈ (a, b)
such that

F (b)− F (a)

b− a
= F ′(c) =⇒

∫ b

a
f(t) dt

b− a
= f(c)

as desired.

Example 7.3. Compute the average value of f(x) =
√
x over [1, 4].
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7.2 Area between Curves
Suppose f(x), g(x) are two continuous functions and f(x) ≥ g(x) over [a, b] :

From the above graph, we can see that:

Area of R = lim
∑

(f(x)− g(x))∆x.

Hence,

Proposition 7.4. If f(x), g(x) are continuous functions such that f(x) ≥ g(x)
over [a, b], then

Area of the region bounded by f(x), g(x) over [a, b] =
∫ b

a

(f(x)− g(x)) dx

Example 7.5. Consider the function y = f(x) = x3 over the interval [−1, 1].
Since f(x) ≥ 0 when x ∈ [0, 1] and f(x) ≤ 0 when x ∈ [−1, 0], to find

the area of the region bounded by y = f(x) and the x -axis, we need to split the
interval [−1, 1] into [−1, 0] and [0, 1]:

Area =

∫ 0

−1

(
0− x3

)
dx+

∫ 1

0

(
x3 − 0

)
dx =

1

2
.

(
Note that:

∫ 1

−1

x3 dx = 0.

)
Example 7.6. Find the area of the region bounded by the curves:

y = f(x) = x2 − 2x

y = g(x) = x+ 4
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First of all, we need to find the intersections:

f(x) = g(x) ⇐⇒ x = −1 or 4.

From the sign chart for g(x) − f(x), we know that g(x) − f(x) ≥ 0 over the
interval [−1, 4]. Therefore,

Area =

∫ 4

−1

(g(x)− f(x)) dx =
125

6
.

In general, the function f(x) might not always be greater than g(x):

In this case,
∫ b

a

(f(x)− g(x)) dx won’t give us the desired result as there will

be some cancellation of signed areas. Instead, we should split the interval [a, b]
into subintervals such that f(x), g(x) won’t change order within each subinterval:

Area =

∫ c

a

(f(x)− g(x)) dx︸ ︷︷ ︸
f(x)≥g(x) over [a,c]

+

∫ b

c

(g(x)− f(x)) dx︸ ︷︷ ︸
f(x)≤g(x) over [c,b]
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In fact, by taking absolute value inside, we will always be summing up the “posi-
tive areas of the rectangles”. Hence,

Proposition 7.7. If f(x), g(x) are continuous functions over [a, b], then:

Area of the region bounded by f(x), g(x) over [a, b] =
∫ b

a

|f(x)− g(x)| dx

Example 7.8. Find the area of the region(s) bounded by the curves

y = f(x) =
√
x

y = g(x) =
x

2

over the interval [0, 5].

Example 7.9. Consider the curves

y = x− 1

y2 = 2x+ 6.

By some simple calculations, we know that they intersect at (−1,−2) and
(5, 4). If we compute the area of the bounded region by summing up vertical
rectangles like before, then

Total area = Area of A + Area of B

where

Area of A =

∫ −1

−3

(
√
2x+ 6− (−

√
2x+ 6)) dx,
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Area of B =

∫ 5

−1

(
√
2x+ 6− (x− 1)) dx.

Or, we could sum up horizontal rectangles instead:

Total area =

∫ 4

−2

(
(y + 1)− 1

2
(y2 − 6)

)
dy

= 18.
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7.3 Volume
The volume of a right circular cone is:

V =
1

3
πr2h.

But why?
Consider the line segment defined by the equation y =

r

h
x over the interval

[0, h]. If we rotate it about the x -axis, we obtain the same right circular cone. To
find its volume, we “scan” in the x -direction, cut the cone into infinitely many
slices and approximate each slice by a cylinder:
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∆V = πy2∆x.

Hence,

Volume = V = lim
∑

∆V

= lim
∑

πy2∆x

= lim
∑

π
( r
h
x
)2

∆x

=

∫ h

0

π
( r
h
x
)2

dx

=
1

3
πr2h

as desired.
If the segment of a curve y = f(x) over the interval [a, b] is rotated about a

line y = L :
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then we obtain a solid of revolution.
As before, we can deduce that

Volume = lim
∑

∆V

= lim
∑

π(f(x)− L)2∆x

=

∫ b

a

π(f(x)− L)2 dx

Example 7.10. Find the volume of the solid obtained by revolving the curve y =
f(x) = x2 over [0, 2] about the line y = 1. Express it as the integral of a function
(You do not need to evaluate the integrals).

If a region is rotated about a line to form a solid of revolution, it’s possible to

have hole(s). Consider the region bounded by the curves f(x) = x+ 1, g(x) =
1

x
over the interval [1, 2] :

If it’s rotated about the x -axis to form a solid, its cross section will look like:
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and its volume will then be:

V =

∫ 2

1

(πf(x)2 − πg(x)2) dx =

∫ 2

1

(
π(x+ 1)2 − π

(
1

x

)2
)

dx =
35

6
π.

Example 7.11. Consider the region bounded by the curve y = x3 and the line
y = 1 over the interval [0, 1]. Find the volume of the solid defined by rotating it
about:

• the line y = 1 ;

• x -axis;

• y -axis.

Express it as the integral of a function (You do not need to evaluate the integrals).
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