MATH 1510 Chapter 7

7.1 MVT for integrals

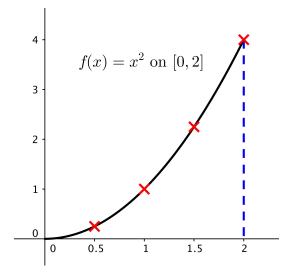
How should one define the "average value" of $f(x) = x^2$ over the interval [0, 2]? Let's start with approximating it by taking the function values at 4 points:

Average
$$\approx \frac{1}{4}(f(0.5) + f(1) + f(1.5) + f(2)),$$

which can also be written as:

$$\frac{1}{2-0}(f(0.5)0.5 + f(1)0.5 + f(1.5)0.5 + f(2)0.5)$$

Approximation of the (signed) area under the curve with 4 regular subintervals.



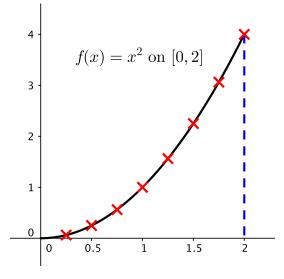
Naturally, we can get a better approximation by taking the function values at 8 points:

Average
$$\approx \frac{1}{8}(f(0.25) + f(0.5) + f(0.75) + f(1) + f(1.25) + f(1.5) + f(1.75) + f(2)),$$

which can also be written as

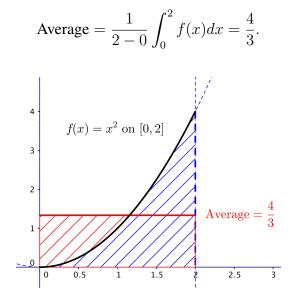
$$\frac{1}{2-0}(f(0.25)0.25 + f(0.5)0.25 + f(0.75)0.25 + \dots + f(1.75)0.25 + f(2)0.25)$$

Approximation of the (signed) area under the curve with 8 regular subintervals.



Intuitively, yhe exact "average value" can then be found by dividing [0, 2] into n regular subintervals and taking $n \to +\infty$.

Hence, by FTC, the "average value" of $f(x) = x^2$ over the interval [0, 2] will then be:



(One can immediately deduce that:

$$(2-0)$$
 · Average = $\int_0^2 f(x) dx$.

That means the areas of the red box and the region shaded in blue are equal.) In general,

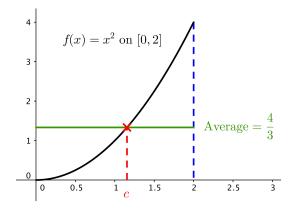
Definition 7.1 (Average Value of a Function).

Average value of
$$f(x)$$
 over $[a, b] = \frac{1}{b-a} \int_{a}^{b} f(x) dx$.

Theorem 7.2 (Mean Value Theorem for Integrals). Suppose f(x) is continuous on [a, b]. Then,

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$
 for some $c \in (a, b)$.

(Basically, that means the average value will be achieved by some point in the interval.)



Proof of Mean Value Theorem for Integrals. Let:

$$F(x) = \int_{a}^{x} f(t) \, dt$$

By FTC, F is differentiable over [a, b]. By Lagrange's MVT, there exists $c \in (a, b)$ such that

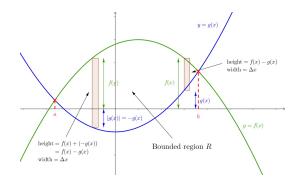
$$\frac{F(b) - F(a)}{b - a} = F'(c) \implies \frac{\int_a^b f(t) dt}{b - a} = f(c)$$

as desired.

Example 7.3. Compute the average value of $f(x) = \sqrt{x}$ over [1, 4].

7.2 Area between Curves

Suppose f(x), g(x) are two continuous functions and $f(x) \ge g(x)$ over [a, b]:



From the above graph, we can see that:

Area of
$$R = \lim \sum (f(x) - g(x)) \Delta x$$
.

Hence,

Proposition 7.4. If f(x), g(x) are continuous functions such that $f(x) \ge g(x)$ over [a, b], then

Area of the region bounded by
$$f(x), g(x)$$
 over $[a, b] = \int_{a}^{b} (f(x) - g(x)) dx$

Example 7.5. Consider the function $y = f(x) = x^3$ over the interval [-1, 1].

Since $f(x) \ge 0$ when $x \in [0,1]$ and $f(x) \le 0$ when $x \in [-1,0]$, to find the area of the region bounded by y = f(x) and the x -axis, we need to split the interval [-1,1] into [-1,0] and [0,1]:

Area =
$$\int_{-1}^{0} (0 - x^3) dx + \int_{0}^{1} (x^3 - 0) dx = \frac{1}{2}$$
.
(Note that: $\int_{-1}^{1} x^3 dx = 0$.)

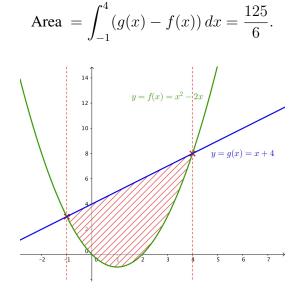
Example 7.6. Find the area of the region bounded by the curves:

$$y = f(x) = x^2 - 2x$$
$$y = g(x) = x + 4$$

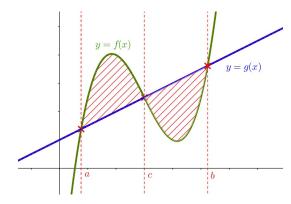
First of all, we need to find the intersections:

$$f(x) = g(x) \iff x = -1 \text{ or } 4.$$

From the sign chart for g(x) - f(x), we know that $g(x) - f(x) \ge 0$ over the interval [-1, 4]. Therefore,



In general, the function f(x) might not always be greater than g(x):



In this case, $\int_{a}^{b} (f(x) - g(x)) dx$ won't give us the desired result as there will be some cancellation of signed areas. Instead, we should split the interval [a, b] into subintervals such that f(x), g(x) won't change order within each subinterval:

Area =
$$\underbrace{\int_{a}^{c} (f(x) - g(x)) dx}_{f(x) \ge g(x) \text{ over } [a,c]} + \underbrace{\int_{c}^{b} (g(x) - f(x)) dx}_{f(x) \le g(x) \text{ over } [c,b]}$$

In fact, by taking absolute value inside, we will always be summing up the "positive areas of the rectangles". Hence,

Proposition 7.7. If f(x), g(x) are continuous functions over [a, b], then:

Area of the region bounded by
$$f(x), g(x)$$
 over $[a, b] = \int_{a}^{b} |f(x) - g(x)| dx$

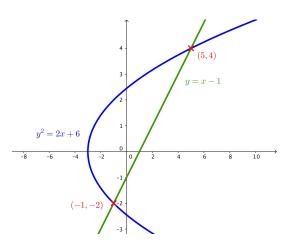
Example 7.8. Find the area of the region(s) bounded by the curves

$$y = f(x) = \sqrt{x}$$
$$y = g(x) = \frac{x}{2}$$

over the interval [0, 5].

Example 7.9. Consider the curves

$$y = x - 1$$
$$y^2 = 2x + 6$$

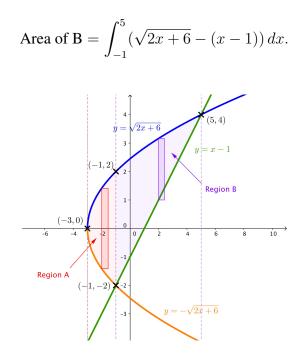


By some simple calculations, we know that they intersect at (-1, -2) and (5, 4). If we compute the area of the bounded region by summing up vertical rectangles like before, then

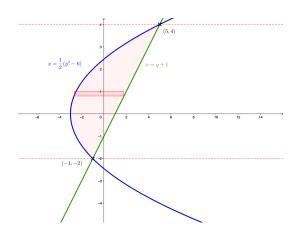
Total area = Area of
$$A + Area$$
 of B

where

Area of A =
$$\int_{-3}^{-1} (\sqrt{2x+6} - (-\sqrt{2x+6})) dx$$
,



Or, we could sum up horizontal rectangles instead:



Total area =
$$\int_{-2}^{4} \left((y+1) - \frac{1}{2}(y^2 - 6) \right) dy$$

= 18.

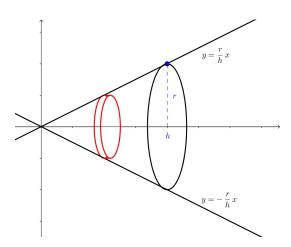
7.3 Volume

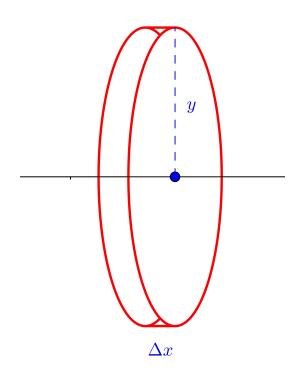
The volume of a right circular cone is:

$$V = \frac{1}{3}\pi r^2 h.$$

But why?

Consider the line segment defined by the equation $y = \frac{r}{h}x$ over the interval [0, h]. If we rotate it about the x -axis, we obtain the same right circular cone. To find its volume, we "scan" in the x -direction, cut the cone into infinitely many slices and approximate each slice by a cylinder:





 $\Delta V = \pi y^2 \Delta x.$

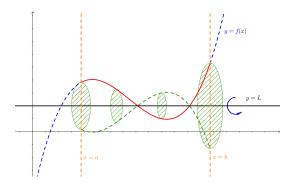
Hence,

Volume =
$$V = \lim \sum \Delta V$$

= $\lim \sum \pi y^2 \Delta x$
= $\lim \sum \pi \left(\frac{r}{h}x\right)^2 \Delta x$
= $\int_0^h \pi \left(\frac{r}{h}x\right)^2 dx$
= $\frac{1}{3}\pi r^2 h$

as desired.

If the segment of a curve y = f(x) over the interval [a, b] is rotated about a line y = L:



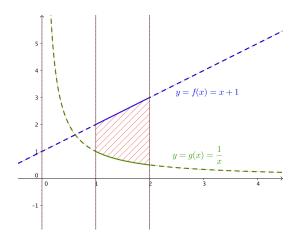
then we obtain a **solid of revolution**. As before, we can deduce that

Volume =
$$\lim \sum \Delta V$$

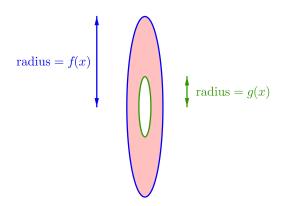
= $\lim \sum \pi (f(x) - L)^2 \Delta x$
= $\int_a^b \pi (f(x) - L)^2 dx$

Example 7.10. Find the volume of the solid obtained by revolving the curve $y = f(x) = x^2$ over [0, 2] about the line y = 1. Express it as the integral of a function (You do not need to evaluate the integrals).

If a region is rotated about a line to form a solid of revolution, it's possible to have hole(s). Consider the region bounded by the curves f(x) = x + 1, $g(x) = \frac{1}{x}$ over the interval [1, 2]:



If it's rotated about the x -axis to form a solid, its cross section will look like:



and its volume will then be:

$$V = \int_{1}^{2} (\pi f(x)^{2} - \pi g(x)^{2}) \, dx = \int_{1}^{2} \left(\pi (x+1)^{2} - \pi \left(\frac{1}{x}\right)^{2} \right) \, dx = \frac{35}{6} \pi.$$

Example 7.11. Consider the region bounded by the curve $y = x^3$ and the line y = 1 over the interval [0, 1]. Find the volume of the solid defined by rotating it about:

- the line y = 1;
- *x* -axis;
- *y* -axis.

Express it as the integral of a function (You do not need to evaluate the integrals).