MATH 1510 Chapter 6

6.1 Indefinite integral

Integration is nothing but the reverse of differentiation.

differentiate

f

) flx)

—
=

integrate

To be more precise,
Definition 6.1. We call F'(x) an antiderivative of f(x) if:

d

%F(x) = f(=).

The collection of all antiderivatives of f(x) is denoted by:

[ f@ds.

also called the indefinite integral of f(x).

(For now, 4AIJdz 4AT would just be part of the notation.)

d(1,\
dx 23C -

1
the function F'(x) = §x2 is an antiderivative of f(x) = x.

Example 6.2. Since:



Notice that we also have:

d (1, d (1, d (1,
dx (23: ) dx (296 + ) dx (2:5 7T> .

Hence, the expressions:

1 1 1
§x2, §x2 +1, §x2 -7

all give antiderivatives of f(z) = z.
In fact, a function is an antiderivative of f(z) = x if and only if it is equal to

1
§x2 + C for some constant C' € R.

Hence, we may represent the collection of all antiderivatives of f(z) = z as

follows:
1,
rdr = 3% +C,

where C'is an arbitrary constant.

Proposition 6.3. For any constants a,b, k € R,

/mﬂ@+wm@ym:a/j@ym+b/g@ﬁm

LR . 1.
/ k+1 1O ifk#£ -1,

/.CE Ydz = In|x| + C,;

/sinxdx = —cosx + C;

cosxdr =sinx + C,

/e”ﬁdas:exjtc;

1
/a de = —a* + C

Ina
/ L4 inz+C
———— dx = arcsinz :
V19— 22
1
/ dx = arctanz + C.
1+ 22




Proof of Proposition 6.3. When x > 0, we have

d d 1
—(Infa]) = - (Inz) = -
On the other hand, if x < 0, we have
d d -1 1
oo (nfz]) = —(In(~2)) = — =~

as desired. The other identities are just direct consequences of differentiation. [

2
/(cosa:—i———?f) dr;
x
4
/ e
1+ 22

6.2 Integration by Substitution

Example 6.4. °

Sometimes, integration can be handled by 4AIJchange of variable4Al:

Theorem 6.5 (Integration by Substitution). Assuming differentiability and inte-
grability, suppose

dy

y=g(z) and f(z)=hly)_.

[ r@yas= [ nt)ay

Proof of Integration by Substitution. Let H (y) be the antiderivative of h(y). Then,

Then,

L H(g(w) = H(9())g () = h{g(e))g'(r) = hy) 22 = f()

Hence,

/ﬂmwzﬂwu»+c:mm+c:/mw@



dx

d
The formula is easier to remember if we use notations like (_y) dx = dy, in

which the part AAIJdz AAI becomes crucial.

/e”" sin(e”) dz,

we let u = e”. By the fact that
=e" = du=-¢e"dx

Example 6.6. To evaluate

du
de
we have

/ ¢” sin(e”) d — / sin(e”) (" dx)

= /sinudu

= —cosu+C
= —cos(e”) + C.
Remember to change everything into w.
Example 6.7. e Evaluate
eV® cos(eV®) .

NI
by the substition u = eV7.
e Evaluate

/ zsin(z?) da.

Example 6.8. Sometimes, if itAAZs not too complicated, it might be preferable
to do the substitution without introducing a new variable:

! = ! dlx—2)
/as—zd"”—/md@—m (because 2 = 1)
=In|z —2[+C.

x _ 1 1, d(32?) B
/$2+1dx—/$2+1d<§x> (because i =)

1 1
— dz? +1
z/ﬁ+1(x+)

1
:§ln|x2+1|+C.
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6.3 Integrating sin™ r cos" x

To evaluate:
/ sin x cos” x dz,

where m, n are non-negative integers, we consider three different cases.
Case 1: mis odd (m = 2p + 1) In this case, we use the substitution © = cos x

/ sin™ z cos" x dxr = / sin?? ™ x cos™ & dx
=— / sin? x cos” x d(cos x)
=— /(1 — cos® )P cos™ x d(cos )

= - /(1 — u?)Pu" du

Case 2: nis odd (n = 2q + 1) In this case, we use the substitution u = sin x :

/ sin™ x cos" x dx = / sin™ z cos® !z dx
= / sin™ x cos® x d(sin )
= /sinm z(1 — sin® x)? d(sin )

- /um(1 —w?)du

Case 3: m,n are both even (m = 2p,n = 2¢) In this case, we use half-angle
formulas to reduce the powers:

/ sin” xcos" xdx = / sin?? x cos®? x dux

= /(Sin2 x)P(cos® r)? dx

_ / (%(1 —cos2:z:))p (%(Hcoszx))q da

1
= e /(1 — cos 22)P(1 + cos 2x)? du.




1
(Notice that the integrand is a polynomial of cos 2x with degree p+q = 3 (m+n).)

/ sin? x dx
/ cos® x dx
/ sin® x dx

6.4 Integration by Trigonometric Substitution

Example 6.9. °

The idea is as follows:
e Use the substitution z = a sin t when 4AIJa? — 22 AAT occurs AdAIAIAIAL
(because 1 — sin?t = cos? t).

e Use the substitution z = a tan t when AAIJa2+22 4Al occurs AZAZAZIAIAL
(because 1 + tan?t = sec? t).

e Use the substitution z = a sec t when AAIJ22—a? AAl occurs AzAZAIAIAR
(because sec’t — 1 = tan?t).

Example 6.10.
/\/2 —a22dr = / \/2 — (V2sint)?d(v/2sint) (by letting - = v/2sint)
= / V2 cost(vV/2 cost dt)

= /QCOSQtdt

:/(0082t+1)dt
L.
:§sm2t+t+0

— Lain (2aresin (2 ) ) + aresin (22 ) + ©
= 9 Sin arcsin \/5 arcsin \/§

1 xT
= éx\/Q — 22 + arcsin (2) + C.




(In this course, when handling indefinite integrals, we usually assume ¢ lies in
an appropriate region so that v/cos? t = cost, etc., for simplicity.)

Example 6.11.

[
($2+(17—|—1)2x

6.5 Integration by Partial Fractions

. . T . . .
Definition 6.12. A rational function —, where r, s are polynomials, is said to be
S

proper if:
degr < degs.
By performing long division of polynomials, any rational function E, where
q
p, q are polynomials, may be expressed in the form:
r
Z_) =g + )
q q

. . r. . .
where g is a polynomial, and — is a proper rational function.
q

r . . c .
Let — be a proper rational function. Factor s as a product of powers of distinct

s
irreducible factors:

S:...(a;'_a/)m...( m2_’_bm+c )TL'._

irreducible i.e. b2 —4c<0
Then:

. . r . .
Fact 6.13. The proper rational function — may be written as a sum of rational
s

functions as follows:

ro_
;_
Ay Ay Am
+x_a+(aj_a)2+...+m+...
le+Cl B2$+CQ an+Cn

x2+bx+c+(:ﬂ2+bx+c)2+' +($2+b$+0)n
_i_...’

where the A;, B;, C; are constants.



3

—x—2

Example 6.14. / $2—x dx
x? — 22

Performing long division for polynomials, we have:

(23 —x —2) 3z — 2
1 -2
:—x2+2x+/ 3 dx

2 x2—2x

3r —2
d
/x2—2x o

we first observe that the integrand is a proper rational function. Moreover, the
denominator factors as follows:

To evaluate:

2% — 27 = (v — 2).
Hence, by Fact 6.13 , we have:
3r—2 A B

2?2 —2r x x—-2

for some constants A and B. Clearing denominators, we see that the equation
above holds if and only if:

3r —2=A(x —2) + Bz. (*)

Letting z = 2, we have:
3-2—-2=H8B"-2,

which implies that B = 2. Similarly, letting = 0 in equation (x) gives:
—2=-2A,
which implies that A = 1. Hence:

3r—2 1 2
/x2—2xdx_/<5+x—2)dx

=In|z|+2n|z —2|+C,

where C' represents an arbitrary constant.
We conclude that:

B g -2 1
wdw = —2> + 2r + Injz| + 2z —-2| + C.
% —2x 2


https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=content/math1510//chap6.xml&slide=14&item=6.13

x
E le 6.15. d
xample / P+ 4)(z—3) x

First we note that the integrand is a proper rational function.

The quadratic factor 22 + 4 has discriminant 0> — 4 - 4 < 0, hence it is irre-
ducible.

By Fact 6.13 , we have:

x _Agr;+B+ C
(z24+4)(z —3) 22+4 2-3

for some constants A, B and C. Clearing denominators, the equation above holds
if and only if:

r = (Az + B)(z — 3) + C(2* + 4) (*)
Letting x = 3, we have:
3=0C-13,
which implies that C' = 3/13.
Letting x = 0, we have:
0=-3B+4C,

which implies that B = (4/3)C = 4/13.
Finally, viewing each side of equation () as polynomials and comparing the
coefficients of 22 on each side, we have:

0=A+0C,

which implies that A = —C' = —3/13.
Hence:

[—
X
(22 + 4)(z — 3)
1 [ —3z+4 3 1
SR i P d
13/ 244 x+13/x—3 o
1 /-3 1 1
_ (= d(z? + 4 - 4
13(2 /x2+4 (=" + )+/(x/2)2+1 v
1
d
+3/x—3 a:)
1

-3
=33 (7111 |2* + 4| + 2 arctan(z/2) 4+ 3In |z — 3|) + D,

where D represents an arbitrary constant.


https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=content/math1510//chap6.xml&slide=14&item=6.13

Example 6.16. To evaluate
/ 23+ 6z +1
dx,
(22 = 1)2(22+ 1)
we apply partial fraction decomposition:

3+ 6x+1 2+ 6x+1 A B C D

Ex+ F

P12 +1]) @12t @11 @-1F r-1 @+1? z+1
for some constants A, B,C, D, E, F'. By some tedious computations,

aer s Do Bl 3 b
8 4 8 4 4

Moreover,

1
=1 +1 !
/xildm njz+ 1|+,

/ﬁdx:/(xil)de:—(xil)1+Cla

1
/ P dx = arctanx + (',
x

z 1 1,\ 1 1 ,
et — = — 1
/x2+10l3'j /x2+1d<2x) 2/x2+1d($+)

1
:§1n|x2+1|+0’.

Hence, we can conclude that

/ 34+ 6x + 1 J
@12+ 1)

241

E
=—A(r—1)""+ Bln|z — 1 —C’(a:+1)_1+Dln|x+1|+§ln|x2+1|+Farctanx+C’.

Example 6.17.

3
x
/Q:Q—Idx

By our procedure, we can integrate any rational function as long as we can
integrate the building blocks:
1 1 T 1 T 1
x—>b (x—=b" 22+cx+d 22+cx+d (2?2+cx+d)m (22+cx+d)™

where n,m > 2. We have handled the first four in the above example (when
¢ =0,d = 1). For general ¢, d, we need to complete the square.

10



Example 6.18.

/ T+ 2 J / T+ 2 p
————dr = [ —————dx
2?2 + 2% + 2 (x+1)2+1

1
:/;g—:_ldu (by letting u = = + 1)

U 1
= d d
/u2+1 u+/u2+1 “

1
= Eln|u2 + 1| + arctanu + C

1
= 51n|(ac+ 1)? + 1| + arctan(z + 1) + C.

Finally, when m > 1, we can still complete the square to force the form
c=0,d=1.

Example 6.19. By trigonometric substitution, evaluate

/ﬁdx

T3

E le 6.20. d
xampre /(mQ—i—x—i—l)(x—S)? v

First, we observe that:

1,3

(2 4+ x4+ 1)(x — 3)2

is a proper rational function. Moreover, since the discriminant of 22 + x + 1 is
12—4 < 0, this quadratic factor is irreducible. So, there exist constants A, B, C, D
such that:

3 Ax + B C D

(x2+x+1)(x—3)2_x2+x+1+x—3+(x—3)2‘

The equation above holds if and only if:

2* = (Az+ B)(z - 3)* + C(2* + 2 + 1)(z — 3)
+ D(2* + 2 +1). *)

Letting = 3, we have:
27 =13D.

So, D = 27/13.

11



To find A, B and C, we view each side of the equation (*) as polynomials,
then compare the coefficients of the 2, 22, x and constant terms respectively:

z3 1=A+C (6.1)
z? 0=—-64+B—2C+27/13 (6.2)
T 0=9A—-6B —2C +27/13 (6.3)
1: 0=9B—3C+27/13 (6.4)

Subtracting equation (6.2)) from equation (6.3]), we have:
0=15A—-T78,
which implies that B = 15A/7. Combining this with equation (6.1]), we have:
B=15(1-C)/7=15/7—15C/7.
It now follows from equation (6.4) that:

0 =135/7 — 135C/7 — 3C + 27/13.

Hence:
162
C=—
169
1
p=1>
169
s
169
2
p=2l
13
We have:

/(x2+x+1)(x—3)2 da

_/ Trtls 162 2 .
~ ) 169 (22w +1)  169(x—3)  13(x —3)?

_/ Tx + 15 dr
) 169 (22 + 2+ 1)
162 [ 1 27 1
= e [ ——d
169 (a:—s)x+13/(x_3)2x

12



Tz+15

To evaluate f T )dx, we first rewrite the integral as follows:

169 +a1T)
/ Tz + 15 dx:i/7x+7/2_7/2+15dx
169 (22 +x + 1) 169 > +ar+1

1 7/ 2r+1 d +23 / 1 p
=— |z | ¥———dr+— x
169 |2 ) a2+x+1 2 ) (z+1/2)24+3/4
I fmd(xuxﬂ) %fmdx |
7 ) 23-2 /3
= %ln |2* +z+ 1| + 17603 5 arctan ((Qx + 1)/\/3) +FE
= Lln |2* + 2+ 1|+ 23 arctan ((Qx + 1)/\/§> + FE,
338 169v/3
where FE represents an arbitrary constant.
It now follows that:
3
/ * dx
(2 4+ 2+ 1)(z — 3)?
— Lln |2* + 2+ 1| + 23 arctan ((Qm + 1)/\/§>
338 169v/3
n 1621 | 3) 27 1 n
169 132-3
8 2
Example 6.21. / . 41 1 dz

6.6 Integration by Rationalization

Example 6.22. To evaluate

we let u = /x. Since

2

U=+ = v=u" = dr = 2udu,

13

E.



NS / u
= 2
/Hldaj g 2udu)

2 2
= / 2/3_ 1 du (which is a rational function now)
U

:2/(1— 21 )du
u? +1

=2u — 2arctanu + C
= 2v/x — 2arctan /z + C.

Example 6.23. To evaluate
/ i dz,
Jr+1

with some thoughts, itAAZs not hard to see that we should use u = 5. Then,
similarly,

6

1
u=x8 = r=u" = dr = 6u’du.

Hence,

8
Vo +1 u? +1

1
:6/ w—ut U -1+ du
u? +1

1 1 1
=6 (—u7 — W+ —u+ arctanu) +C

7 ) 3
1 1 1 1 1
- <?9g5 — ggc% - §:U% — s + arctan(a:G)) +C.

6.7 Integrating Basic Trigonometric Functions

Proposition 6.24.
/sinxdm-—cosx—i—C /secxdx—ln]secx+tanx|+0
/cosmdx:sinx+0 /Cscxdx:—ln|cscx+cotx|+0

/tan:cdx:ln]seca:|+0 /cotxdx:—ln]cscm\+0

14



Proof of Proposition 6.24.

sinx
/tanxdaﬁ :/ dx
cos T

1
= d —
/ - (—cosx)

= —1In|cosz|+C
= In|secz| + C.

cot z can be handled similarly.

/secxdx :/ COSQQC dx
cos? x
1 .
= | T d(sinz)
1
= / du  (by letting u = sin x)
1—wu?

_1/ 1 n 1 g
2 l1—uv 1+4+u Y

ln‘l—i—sinx e

1
2 1 —sinz

1+sinz

+C.

=In

COS T

csc x can be handled similarly.

6.8 Integration by ¢-Substitution

1
/—,dm.
1+sinx

Suppose we want to evaluate

If we let ¢t = tan g, then

. 94 T x 9t r o 2t
sinz = 2sin — cos — = 2tan — cos” — =

o Qx . 2:[;_ 2.%' 9 _1—t2
COS T = COS §—sm §—cos 5(1—1&)_ oy

15




Furthermore,

r =2arctant = dx = dt.

1+¢2

1 1 2
/—. dx:/ 5 dt
1+sinz 1+ 1+ ¢2

1442

=2t+1)"'+C

i
:—2<t z 1)
an2+

Hence,

1
+C.

x
Theorem 6.25 (t-Substitution). By letting t = tan 5 we have

2

dex = —— dt,
Tt
) 2t J 1—¢2
SNy —= —— and COSt — ———.
14 ¢2 14+ ¢2

With ¢-substitution, we can transform any rational functions of trigonometric
functions into an algebraic rational functions, which can then be handled by partial
fractions.

Example 6.26.

/ 1
- dx
sinz +2cosx + 1

6.9 Integration by Parts

Theorem 6.27 (Integration by Parts).

/udv:uv—/vdu.

16



Proof of Integration by Parts. From product rule,

d(uv)—vdu—l— dv
dx - dx udm

d du dv
/%(uv)dx—/v@dx+/u%dx
uv+C’:/vdu+/udv

/udv:uv—/vdu

(C' can be omitted because of the remained indefinite integrals) ]

/xer dx,
we let ©w = 2 and v = €®. Then, dv = e* dx and we have
/:Eex dx = /xd(ex)
= zxe’ — /ez dz

=zxe® — e+ C.

/ 22 cos z dr,

we let u = 22 and v = sin z. Then, dv = cos x dz and we have

/x2 dr = /x2 d( )
_ sing — / d(?)
=2’ — / 2z de.

So, to apply integration by parts once, we practically integrate cos x once and
differentiate > once. ThatdAZs how to determine which function to be u and

Example 6.28. To evaluate

Example 6.29. To evaluate:

17



which function to be v. We then proceed to apply integration by parts one more
time:

/a:2cosxdx:xQSinx—/stinxdx
:xQSinx—i-Q/a:d(cosm)

= 2%sinz 4 2x cosx — 2/cosccd:c

= z2sinx + 2xcosx — 2sinx + C.

/ arcsin x dx?

We donaAZt know how to integrate arcsin x, but we know how to differentiate it.
So,

Example 6.30. How about

/arcsinx dxr = xrarcsinz — /xd(arcsin x)

, T
=garcsing — | ———dzx
V1—22

sin @ d(
V1 —sin?6

= garcsinz — /sin9d0

= rarcsinx — sinf) (by letting = sin 6)

= garesinx + cosf + C

=garcsinz + V1 —22+C.

Example 6.31. °
/ Inzdx
/ e®sinx dx

18



6.10 Reduction Formula

/x4ex dx ?

Instead of applying integration by parts four times, we could set up a reduction

formula as follows.
I, = / x"e" dx,

Let
where n is a non-negative integer. By integration by parts,

[arerar= [ ae)
=z"e” — /e”‘" d(z™)

=z"e" — n/x”_lew dx

Example 6.32. How to evaluate:

provided that n > 1. In other words,

I, =a2"e* —nl,_; foralln > 1.

All we need now would be the initial result:

Ioz/xoexdx:/exdx:6x+0.

We can then easily generate [,, up to any n using our reduction formula:

I =zxte® — Iy =xe® — e+ C

I, = 2%e® — 21, = 2%e® — 226" + 2e* + C

I3 = 23e® — 31, = 23e® — 322" + 62e” — 6 + C

I = zte® — 41, = 2%e® — dae® + 1222 — 24xe® 4 24e” + C.

Example 6.33. Let:

L= [ o e
z"(x + 1)

19



where n is a non-negative integer. This problem can be solved by partial fraction
decomposition if n is given. Interestingly, we can also set up a reduction formula
as follows. Forn > 1,

:/(xni;fn - x"(xx—i- 1)) de

1 1
- —dw—/—dx
" anHx+1)

In|z| — Iy itn=1;

= 1
" 1x*"+1 — I, ifn>2.
-n

For n = 0, we have:

1
10:/ de =In|z+ 1|+ C.
r+1

6.11 Definite Integral and Riemann Sum

For a continuous function f(x), how to find the area of the region under the curve
y = f(x) over the interval [a, b]?

height = f(a + 2d)
\ y=f(z)

If we cut the interval [a, b] into n parts, then the width of each would be d. The
right end-points of the sub-intervals will then be:

a+d,a+2d,a+3d,...,a+nd=>0.
So, the heights of the rectangles in the above graph are

fla+d), fla+2d), f(a+3d),..., fla+nd).

20



Therefore, Z f(a + kd)d is the total area of the rectangles. When n goes to
k=1
infinity, this value will be exactly the (signed) area under the curve y = f(z) over

the interval [a, b].
Open in browser

Definition 6.34. The definite integral of a piecewise continuous function f(z)
over an interval [a, b] is

b—a

n

n—-+o00

b n
/ f(z)dr = lim Z fla+ kd)d whered =
“ k=1

Proof of Definition 6.34. For its well-definedness, see Definition 1 and Theorem
1 in Appendix 5. O

It will be convenient to extend our definition to arbitrary a, b :

a b a
/ f(z)dr =0 and / f(z)d:c:—/ f(z)dx ifa>b.
a a b
Notice that if we let z;, = a + kd be the right end-points of the sub-intervals, then

AZL‘k =T — -1 = d

small change of x

l l
/ flx) dz = limz flzx) Azy,

T ?

infinite sum

That explains why we keep AAIJdz AAT as part of the notation.

2

Example 6.35. Consider the function f(x) = x* over the interval |a, b]. By defi-

21
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nition,

—a

n—-+4oo n

b n
/ f(l’) dr = lim Zf(a + kd)d where d — b
¢ 1

=(b—a) lim 1((a—l—d)2—|—(a+2d)2—|—---—k(a—l—nd)2)

n—-+o0o n

= (b—a) lim —((a +2ad + d*) + (a® + 4ad + 4d*) + - - - + (a® + 2and + n*d?))
)

n—+oo 1
— (b—a) lim _(m - oag M+ n+1) d2n(n+1(2n+1))
6

b—a n(n+1) (b—a)*n(n+1)(2n+1)
2 i n? 6 )

na’ + 2a

=(b—a) lim —
n—-+oo N,

— (b—a) (CLQ + 2ab - a% - a>2§)

1
= g(bg — CL3).

Proposition 6.36. For any constants a,b,c,a, 3 € R,

/a:f<x>dx/baf<x>dx |
/af(x)dx:/cf(m)dx—F/ () do
/ab(af()Jrﬁg x—a/f dx+ﬁ/

f(x) < g(x) on [a,b] :>/f da:</g()d;c.

a

Proof of Proposition 6.36. See Proposition 2 in Appendix 5. [l

6.12 Fundamental Theorem of Calculus

For a continuous function f(t¢), we may define a function:

:/:f(t)dt

, where a is any element in the domain of f(x).
We are now ready to state and prove the following fundamental results in Cal-
culus, which basically mean

22



¢ AAlJIntegration and differentiation are reverse of each other.AAl
e 4AIJDefinite integrals can be computed by indefinite integrals.AAI

Theorem 6.37 (Fundamental theorem of calculus FTC). o Part I: If f(z) is
a continuous function on [a,b), then the function F(x) = [ f(t)dt is dif-
ferentiable on |a, b and:

d d [*
P =5 [ foa = @
forall x € [a,b).

e PartII: If F(z) is a differentiable function on |a,b] and F'(x) is continuous
on [a,b], then:

b
/ F'(x)dx = F(b) — F(a).

Proof of Fundamental theorem of calculus (FTC). First: For any x € (a,b) and
small h > 0, by EVT, we can define m(h) and M (h) such that f attains its
minimum and maximum within [z, x + h] respectively. Then,

RF'(@) = tim, F(z+ h;)l G g, L) dth— Ju (8 dt i,
Since

z+h z+h z+h
oy = L L O@ LIOU0)E_

and, by continuity,

lim f(m(h)) = f(z) = lim f(M(h)),

h—0t h—0+

we can conclude that REF'(z) = f(z) (squeeze theorem). Similarly,

oy o Fleth)—Fl) . F(x) — F(z —[h])
LF(@) = I = e i

By applying the same arguments over [z — |h|,x], we can also conclude that
LF'(x) = f(x). Therefore, F' is differentiable and

- </jf(t) dt) — F'(x) = f(z) forallz € (a,b).
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At x = a, by continuity and squeeze theorem, we also have
a+h
_ Fla+h)—F(a) . [T f(t)dt
/ . _ a —
RE'(a) = e, h = h = /)

Obviously, LF'(b) = f(b) as well. Second: Suppose g(x) is differentiable and
¢'(x) = 0 on [a, b]. By LagrangedAAZs MVT, for any z € (a, b),

g(x) —g(a)

=g'(c) =0 forsomec = g(z) = g(a)
r—a

Therefore, g(x) must be a constant function on [a, b].
Now, by the first part of FTC,

(o~ [ Fow)=rw- 2 [ Foa-o

for all z € [a, b]. So,

must be a constant function on [a, b]. Hence,

mw—/fwwwzwmzmwzF@

and the result follows. ]

By the second part of FTC, for any continuous function f(z) and a,b € R, we
have:

b

/f@Mx=ﬂ®L=F@—Fm%

where F'(z) is an antiderivative of f(x).

Remark. Replacing F'(x) with F'(x)+C for any constant C' would have no effect,
as:

(F(b)+C)—(F(a)+C)=F(b) — F(a).
Example 6.38. Let us redo Example 6.35 by FTC:

b b 1
/f(x)dx:/x2dx:§x3
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Example 6.39. When applying integration by substitution on definite integrals,

thereAAZs no need to substitute  back in at the end as long as we adjust the
bounds accordingly:

1 3 1
/ (2x + 1)% dx = / u (Edu) (by letting u = 2z + 1)
0 1

1 7 1
= -« —Uurv
2 10

—1
1
/ —dx;
9 X

~|w

3

1 10
AT

Example 6.40. °

0
/ |z* + 3z + 2| dx;
-3

iy
/ 2% sin x dx.
0

HeredAZs a surprising application of FTC.

Proposition 6.41. If f(x) is a continuous function over [0, 1], then:

! _ "1 . [k
| rayda =t 352 (5)

k=1
Example 6.42.
| n n n
im
n—too \n24+1 n2+4 n? + n?
1 L L + L + + !
= lim —
e\ @ I )
"1 1
= lim —
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h =
where f(z) e
Hence,
. n n n T n / | p v
1m [N — T = —.
n—too \n2+1 n?2+44 n? +n? o 1422 4
Example 6.43. Given that F(z) = [ f(t)dt AdAiAsAiAiwhere
2
21
y= 1)
1 4
0
1 0 1 2 3 4
-14
Find F'(2), F'(4) and F'(0).
Example 6.44. Given that F'(z) = [ f(t) dt AdAsAsAiAiwhere
0
3 4
21 y=f(t)
l 4
0 T
-1 0 1 2 4 5

Among z € [0,4],

e When is F'(x) maximum?
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e When is F'(z) minimum?
e When is F’(z) maximum?
We may also generalize the first part of FTC a little bit:
Proposition 6.45. If f(x) is a continuous on |a,b| and h(z) is differentiable on
[e, d] such that h([c,d]) C |a, b], then
d (M=
d_/ f@)dt = f(h(x)) W' (x) forall x € [c,d]
X a

Proof of Proposition 6.45. Let F(z) = / f(t)dt. Then, by FTC, F(x) is dif-

ferentiable over [a, b]. Moreover, for any e e, d],

d M d
p f(t)dt = — F(h(z)) = F'(h(2))l' () = f(h(z))l ()
as desired. L]

Example 6.46. Find ¢'(z) if

6.13 Improper Integrals

Sometimes, we are interested in computing the definite integral of a function over
[a, +00) or (—o0, b].
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Definition 6.47. If f(z) is a continuous function over [a, +00) such that the limit

b

bligi-noo/aj f(iE) du
exists, we define

+oo
a f( d$ - bllfl-noo/ f
Similarly, if f(z) is a continuous function over (—oo, b] such that the limit
b
Jm [ e

a

exists, we define

y= f(x)

N\

C~———

Signed area

= / flx)dx

Occasionally, we may also consider one-sided improper integrals.
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Definition 6.48. If f(x) is a continuous function over (a, b] such that the limit

b
lim / f(z)dx

exists, we define

b b
| 1@ o= 1 [ f@)aa

c~>a

Similarly, if f(z) is a continuous function over [a, b) such that the limit

i [y
[ e =i [ s

exists, we define

& a \ L A /l
Area —/ flx)dx
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Signed area —/ [(x)dx

xr a ‘ M 1/

In all four cases above, we say that the improper integral converges if the
corresponding limit exists. Otherwise, we say that it diverges .

Example 6.49. Since
* 1 b 1]
/ — dr = lim / —dr= lim ——| =1,
1 T b—-+4o00 1 €T b—-+4o00 X 1
we can conclude that / — dx converges to 1. On the other hand, since:
LT

> 1 "1
/ —dr = lim —dz= lim In|z||>=+oco (DNE),
1

X b—+o00 1 €T b—+4o00

oo
we can conclude that / — dz diverges to +o00.
LT

x 1 \
Area = / f(x)de =1
1
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Area = / f(x)dr = +0o0 (DNE)
1

Example 6.50. Since:

21 . 21 . 2
/O%dx:clg& c %dx:clir&2ﬁ|c:2\/§,

2
1
we can conclude that / 7 dx converges to 24/2.0n the other hand, since
0 T

2 . 2 ' ,
—dx = lim —dz = lim In|z||, = 400 (DNE),
0 T

xT c—0t /. c—0t

2
1 .
we can conclude that / — dx diverges to +o0.
0 T
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Area — / f(z) dz = +o0 (DNE)

0
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