MATH 1510 Chapter 4

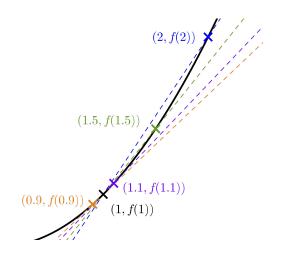
4.1 First principle

Consider the graph of the function $f(x) = x^2$ What is the slope of the **tangent** at the point (1,1)?

A good starting point would be to approximate it by **secant lines**:

Secant line with	Slope
(2, f(2))	$\frac{f(2) - f(1)}{2 - 1} = 3$
(1.5, f(1.5))	$\frac{f(1.5) - f(1)}{1.5 - 1} = 2.5$
(1.1, f(1.1))	$\frac{f(1.1) - f(1)}{1.1 - 1} = 2.1$
(0.9, f(0.9))	$\frac{f(0.9) - f(1)}{0.9 - 1} = 1.9$

Secant Lines



Hence, slope of the tangent of y = f(x) at (1, f(1)) should be:

$$\lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{(1+h)^2 - 1}{h} = 2$$

(The secant lines in Figure 4.1 correspond to h with values 1, 0.5, 0.1, -0.1.)

Definition 4.1. The **derivative** of a function f(x) at a point x = a is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Open in browser

Example 4.2. Find f'(a) if $f(x) = x^2$.

4.2 Differentiability

We say that a function f(x) is **differentiable** at a point x = a if the limit

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

exists. If so, such limit is denoted by f'(a) or $\frac{dy}{dx}\Big|_a$.

Like limit, we also have one-sided derivatives:

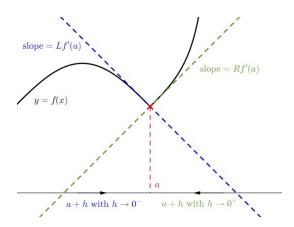
Definition 4.3. • Left hand derivative

$$Lf'(a) = \lim_{h \to 0^-} \frac{f(a+h) - f(a)}{h}$$

· Right hand derivative

$$Rf'(a) = \lim_{h \to 0^+} \frac{f(a+h) - f(a)}{h}$$

Geometrically, they may be viewed as the slopes of the tangents on the left and right, respectively:



Proposition 4.4. A function f is differentiable at a if and only if Lf'(a), Rf'(a) both exist and are equal.

If so, then:

$$f'(a) = Lf'(a) = Rf'(a) =$$
slope of the tangent at a .

Proof of Proposition 4.4. By definitions and the corresponding properties of one-sided limits. \Box

Definition 4.5. • We say that f(x) is differentiable on (a, b) if f(x) is differentiable at c for any $c \in (a, b)$.

- We say that f(x) is differentiable on [a,b) if f(x) is differentiable on (a,b) and at a, in the sense that Rf'(a) exists.
- We say that f(x) is differentiable on (a, b] if f(x) is differentiable on (a, b) and at b, in the sense that Lf'(b) exists.
- We say that f(x) is differentiable on [a,b] if f(x) is differentiable on (a,b) and at both a,b.

Example 4.6. For the function:

$$f(x) = |x|,$$

we have:

$$Lf'(0) = \lim_{h \to 0^{-}} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = -1$$
$$Rf'(0) = \lim_{h \to 0^{+}} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0^{-}} \frac{h}{h} = 1$$

Therefore, the function is not differentiable at 0.

(One can show that f(x) is differentiable on $(-\infty,0) \cup (0,+\infty)$.)

Example 4.7. Is the function:

$$f(x) = \begin{cases} x^3 & \text{if } x < 0\\ x^2 & \text{if } x \ge 0 \end{cases}$$

differentiable at 0?

It's tempting to say that Rf'(0) = 0 for the function $f(x) = x^2$ because f'(x) = 2x. But in general we *cannot* assume that:

$$L'f(a) = \lim_{x \to a^{-}} f'(x)$$
 or $R'f(a) = \lim_{x \to a^{+}} f'(x)$.

Consider the function:

$$f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0\\ 0 & \text{if } x = 0 \end{cases}$$

Then, Rf'(0) = 0, but $\lim_{x\to 0^+} f'(x)$ DNE.

Differentiability is stronger than continuity:

Theorem 4.8. If a function f is differentiable at a, and it is continuous at a.

(The converse does not hold in general: f(x) = |x| is continuous at 0, but not differentiable at 0)

Proof of Theorem 4.8. Since g(x) = x - a is continuous over \mathbb{R} ,

$$\lim_{x \to a} (f(x) - f(a)) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} (x - a)$$

$$= f'(a)g(a)$$

$$= 0$$

$$\implies \lim_{x \to a} f(x) = f(a).$$

4.3 Derivative function and basic rules

By considering the slopes of the tangents at different points (assuming differentiability), we can consider the derivative of a function f(x) as a function:

$$f': x \mapsto f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

The domain of f' consists of those elements in the domain of f where f is differentiable.

We call f'(x) the **derivative** of f(x). It is also denoted by:

$$\frac{dy}{dx}$$
, $\frac{d}{dx}f(x)$, $D_x f(x)$

Example 4.9. Find f'(x) if $f(x) = \sin x$.

Proposition 4.10. • If f, g are differentiable at a, then: $f \pm g$, $f \cdot g$ and $\frac{f}{g}$ (if $g(a) \neq 0$) are all differentiable at a.

• If f is differentiable at a and g is differentiable at f(a), then $g \circ f$ is differentiable at a

(Some elementary functions are not differentiable at some points in their domains, e.g., the domain of $x^{\frac{1}{3}}$ is \mathbb{R} , but it's not differentiable at 0.)

Theorem 4.11. For any differentiable functions f, g and constants $a, b \in \mathbb{R}$,

• (Linearity):

$$(af(x) + bg(x))' = af'(x) + bg'(x)$$

• Product Rule:

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)$$

• Quotient Rule:

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

if
$$g(x) \neq 0$$
.

• Chain Rule:

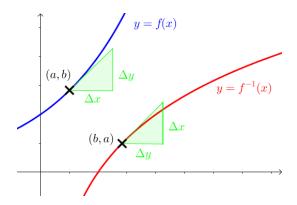
$$\frac{d}{dx}(g \circ f)(x) = g'(f(x)) \cdot f'(x)$$

Proof of Theorem 4.11. See Proposition 3 in Appendix 2.

Theorem 4.12. Suppose f^{-1} exists for a function f around a point a, f(a) = b and f, f^{-1} are differentiable at a, b respectively. Then

$$(f^{-1})'(b) = \frac{1}{f'(a)}$$

Proof of Theorem 4.12. See Theorem 8 in Appendix 2.



By the above rules, we can differentiate any complicated functions as long as we know the derivatives of the elementary functions.

4.4 Derivatives of elementary functions

Theorem 4.13 (Power Rule). For any constant $a \in \mathbb{R}$,

$$\frac{d}{dx}(a) = 0, \frac{d}{dx}(x) = 1, \frac{d}{dx}(x^a) = ax^{a-1}$$

Proof of Power Rule. If a is a positive integer, then:

$$\frac{d}{dx}x^{a} = \lim_{h \to 0} \frac{(x+h)^{a} - x^{a}}{h}$$

$$(\text{Let } t = x+h)$$

$$= \lim_{t \to x} \frac{t^{a} - x^{a}}{t - x}$$

$$= \lim_{t \to x} \frac{(t-x)(t^{a-1} + t^{a-2}x + \dots + tx^{a-2} + x^{a-1})}{t - x}$$

$$= \lim_{t \to x} (t^{a-1} + t^{a-2}x + \dots + tx^{a-2} + x^{a-1})$$

$$= ax^{a-1}$$

If a is a negative integer, then $x^a = \frac{1}{x^{-a}}$, and the theorem follows from an application of the qoutient rule.

If a is any real number, then for x > 0 we have:

$$x^a = e^{a \ln x}.$$

Hence:

$$\frac{d}{dx}(x^a) = \frac{d}{dx}(e^{a \ln x})$$

$$= e^{a \ln x} \cdot \frac{a}{x} \text{ by the Chain Rule}$$

$$= x^a \cdot \frac{a}{x}$$

$$= ax^{a-1}$$

(For derivatives of e^x , $\ln x$, see Propositions 4, 5 in Appendix 3)

Example 4.14. Find the derivative of:

•

$$f(x) = \sqrt[3]{x} + \frac{1}{x}$$

•

$$f(x) = \frac{x^2 + 1}{x + 1}$$

•

$$f(x) = \sqrt{x^2 - 1}$$

Theorem 4.15 (Derivatives of Trigonometric Functions).

$$\frac{d}{dx}(\sin x) = \cos x \qquad \qquad \frac{d}{dx}(\sec x) = \sec x \tan x$$

$$\frac{d}{dx}(\cos x) = -\sin x \qquad \qquad \frac{d}{dx}(\csc x) = -\csc x \cot x$$

$$\frac{d}{dx}(\tan x) = \sec^2 x \qquad \qquad \frac{d}{dx}(\cot x) = -\csc^2 x$$

Proof of Derivatives of Trigonometric Functions. (Sketch) The fact that:

$$\frac{d}{dx}(\sin x) = \cos x$$

was handled in Example Example 4.9 . The derivative of $\cos x$ can be found by considering

$$\cos x = \sin\left(\frac{\pi}{2} - x\right)$$

The other four formulas can then be easily derived.

Theorem 4.16 (Derivatives of Inverse Trigonometric Functions).

$$\frac{d}{dx}(\arcsin x) = \frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx}(\operatorname{arcsec} x) = \frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}(\arccos x) = -\frac{1}{\sqrt{1 - x^2}} \qquad \frac{d}{dx}(\operatorname{arccsc} x) = -\frac{1}{x\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}(\arctan x) = \frac{1}{1 + x^2} \qquad \frac{d}{dx}(\operatorname{arccot} x) = -\frac{1}{1 + x^2}$$

Proof of Derivatives of Inverse Trigonometric Functions.

$$y = \arcsin x$$

$$\sin y = x$$

$$\cos y = \frac{dx}{dy}$$

$$\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}}$$

Other formulas can be proved similarly.

Theorem 4.17 (Derivatives of Exponential and Logarithmic Functions).

$$\frac{d}{dx}(e^x) = e^x \qquad \qquad \frac{d}{dx}(\ln x) = \frac{1}{x}$$
$$\frac{d}{dx}(a^x) = (\ln a)a^x \qquad \qquad \frac{d}{dx}(\log_a x) = \frac{1}{(\ln a)x}$$

Proof of Derivatives of Exponential and Logarithmic Functions. (Sketch) For derivatives of e^x , $\ln x$, see Propositions 4, 5 in Appendix 3. The derivatives of a^x and $\log_a x$ can be derived easily from the facts that

$$a^x = e^{x \ln a}$$
 and $\log_a x = \frac{\ln x}{\ln a}$

Example 4.18. Find the derivative of:

•

$$f(x) = \sec x \tan x$$

•

$$f(x) = \arcsin(\cos x)$$

$$f(x) = \log_2(e^x + \sin x)$$

•

$$f(x) = \begin{cases} \ln x & \text{if } x \ge 1\\ \cos\left(\frac{\pi x}{2}\right) & \text{if } 0 < x < 1\\ 1 - x^2 & \text{if } x \le 0 \end{cases}$$

4.5 Implicit differentiation

Consider the equation

$$x^2 + y^2 = 2.$$

How to find the slope of the tangent at the point (1, 1)? **Method 1**

$$y = \sqrt{2-x^2} \quad \text{(upper half)}$$

$$y' = -x(2-x^2)^{-\frac{1}{2}}$$

$$y'(1) = -1$$

So, the slope of the tangent is -1.

What if we can't solve for y?

Method 2

Consider y as a (differentiable) function of x : y = y(x)

$$x^2 + y(x)^2 = 2$$

$$\frac{d}{dx}(x^2 + y(x)^2) = \frac{d}{dx}(2)$$

$$2x + 2y(x)\frac{d}{dx}y(x) = 0$$
 (by the Chain rule)
$$2x + 2y(x)y'(x) = 0$$

Therefore, $y' = -\frac{x}{y}$ and

$$y'(1) = -\frac{1}{1} = -1$$

This is what we called implicit differentiation.

Example 4.19. • Express y' in terms of x, y if:

$$y^3 + 7y = x^3$$

• Find
$$\frac{dy}{dx}\Big|_{(0,1)}$$
 if:

$$y\sin x = \ln y + x$$

4.6 Logarithmic differentiation

There is a trick called logarithmic differentiation that can sometimes simplify the process of differentiation.

Example 4.20. Find the derivative of

$$y = e^{5x} \sin 2x \cos x$$

Let's take "ln" on both sides and use the properties of logarithm to simplify the expression:

$$ln y = 5x + \ln(\sin 2x) + \ln(\cos x)$$

Then we differentiate both sides with respect to \boldsymbol{x} :

$$\frac{d}{dx}(\ln y) = \frac{d}{dx}(5x + \ln(\sin 2x) + \ln(\cos x))$$
$$\frac{1}{y}y' = 5 + \frac{2\cos 2x}{\sin 2x} + \frac{-\sin x}{\cos x}$$

Hence,

$$y' = y(5 + 2\cot 2x - \tan x) = e^{5x}\sin 2x\cos x(5 + 2\cot 2x - \tan x)$$

Remark. One can also solve this problem by applying the product rule for three terms:

$$(f \cdot g \cdot h)' = f' \cdot g \cdot h + f \cdot g' \cdot h + f \cdot g \cdot h'$$

Example 4.21. Find the derivative of

$$y = x^x + \sin x$$

Applying "ln" directly will not help this time. So, instead, we handle the two terms on the right separately:

$$y_1 = x^x$$

$$\ln y_1 = x \ln x$$

$$\frac{d}{dx}(\ln y_1) = \frac{d}{dx}(x \ln x)$$

$$\frac{1}{y_1}y_1' = \ln x + 1$$

$$y_1' = x^x(\ln x + 1)$$

$$y_2 = \sin x \implies y_2' = \cos x$$

Hence,

$$y' = y_1' + y_2' = x^x(\ln x + 1) + \cos x$$

Remark. One can also rewrite the expression as

$$x^x + \sin x = e^{x \ln x} + \sin x$$

and differentiate it directly.

Example 4.22. Find the derivative of:

•

$$y = \sqrt{\frac{(x+1)(x+2)}{(x-1)(x-2)}}$$

•

$$y = (\cos x)^{\sin x}$$

4.7 Higher Order Derivatives

We can differentiate a function more than once (assuming differentiability):

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = y'' = D_x^2y$$

For any non-negative integer n,

$$\frac{d^n y}{dx^n} = y^{(n)} = D_x^n y$$

Remark. By convention, $\frac{d^0y}{dx^0} = y^{(0)} = y$

Example 4.23. Find $y^{(n)}$ if $y = \sin x$. Notice that

$$y^{(0)} = \sin x$$

$$y^{(1)} = \cos x$$

$$y^{(2)} = -\sin x$$

$$y^{(3)} = -\cos x$$

and $y^{(4)} = \sin x = y^{(0)}$. That is, it repeats every four times. Therefore,

$$y^{(n)} = \begin{cases} \sin x & \text{if } n = 4m \\ \cos x & \text{if } n = 4m + 1 \\ -\sin x & \text{if } n = 4m + 2 \\ -\cos x & \text{if } n = 4m + 3 \end{cases}$$

for any non-negative integer m.

Example 4.24. Find
$$\left.\frac{dy}{dx}\right|_{(1,0)}$$
 and $\left.\frac{d^2y}{dx^2}\right|_{(1,0)}$ if

$$y^3 + y = x^3 - x$$