Math 1510 Chapter 1

1.1 Sets

A set is a collection of elements:

• Order does not matter:

$$\{1,2,3\} = \{3,2,1\}$$

• Representation does not matter:

$${x : x^2 = 1} = {-1, 1} = {x | x^2 = 1} = {-1, 1}$$

Here, ":" and "|" mean "such that".

Notation	Meaning			
$x \in A$	x is an element of A			
$x \notin A$	x is not an element of A			
$A \subseteq B$	A is a subset of B , i.e., $x \in A \Rightarrow x \in B$			
\Rightarrow	implies			
$A \cap B$	$\{x \mid x \in A \text{ and } x \in B\}$ intersection			
$A \cup B$	$\{x \mid x \in A \text{ or } x \in B\}$ union			
$A \setminus B$	$\{x \in A \mid x \notin B\}$ difference			

The followings are some symbols we will use to represent some of the standard sets:

$\varnothing = \{\}$	empty set (no element)					
N	the set of natural numbers , i.e.,					
	$\{1,2,3,4\ldots\}$					
\mathbb{Z}	the set of integers , i.e.,					
	$\{\ldots, -2, -1, 0, 1, 2, 3, \ldots\}$					
\mathbb{Q}	the set of rational numbers , i.e.,					
	$\left\{\frac{a}{b}: a, b \in \mathbb{Z} \text{ and } b \neq 0\right\}$					
\mathbb{R}	the set of real numbers					

Clearly, we have:

$$\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}$$

1.1.1 Intervals

(a,b)	= $\{x \in \mathbb{R} \mid a < x < b\}$ open interval
(a,b]	$= \{x \in \mathbb{R} \mid a < x \le b\}$ half-open interval
[a,b)	$= \{x \in \mathbb{R} \mid a \le x < b\}$ half-open interval
[a,b]	$= \{x \in \mathbb{R} \mid a \le x \le b\}$ closed interval
$(a, +\infty)$	= $\{x \in \mathbb{R} \mid x > a\}$ open interval
$(-\infty,a)$	= $\{x \in \mathbb{R} \mid x < a\}$ open interval
$(-\infty, +\infty)$	= \mathbb{R} open interval

1.2 Functions

Definition 1.1. A function:

$$f:A\longrightarrow B$$

is a rule of correspondence from one set A (called the **domain**) to another set B (called the **codomain**).

Under this rule of correspondence, each element $x \in A$ corresponds to *exactly one* element $f(x) \in B$, called the **value** of f at x.

In the context of this course, the domain A is usually some subset (intervals, union of intervals) of \mathbb{R} , while the codomain B is often presumed to be \mathbb{R} .

Sometimes, the domain of a function is not explicitly given, and a function is simply defined by an expression in terms of an independent variable.

For example,

$$f(x) = \sqrt{\frac{x+1}{x-2}}$$

In this case, the domain of f is assumed to be the **implied domain** (or **natural domain**, **maximal domain**, **domain of definition**), namely the largest subset of \mathbb{R} on which the expression defining f is well-defined.

Example 1.2. For the function:

$$f(x) = \sqrt{\frac{x+1}{x-2}},$$

the natural domain is:

Domain
$$(f)$$
 = $\left\{ x \in \mathbb{R} \mid \frac{x+1}{x-2} \ge 0 \right\}$
= $(-\infty, -1] \cup (2, \infty)$.

1.2.1 Algebraic Operations on Functions

Definition 1.3. Given two functions:

$$f, q: A \longrightarrow \mathbb{R},$$

• Their **sum/difference** is:

$$f\pm g:A\longrightarrow \mathbb{R},$$

$$(f+g)(a):=f(a)+g(a),\quad \text{ for all }a\in A;$$

$$(f-g)(a):=f(a)-g(a),\quad \text{ for all }a\in A;$$

• Their **product** is:

$$fg:A\longrightarrow \mathbb{R},$$

$$fg(a):=f(a)g(a),\quad \text{ for all }a\in A;$$

• The quotient function $\frac{f}{g}$ is:

$$\frac{f}{g}:A'\longrightarrow\mathbb{R},$$

$$\frac{f}{g}(a):=\frac{f(a)}{g(a)}\,,\quad \text{ for all }a\in A',$$

where

$$A' = \{ a \in A : g(a) \neq 0 \}.$$

More generally, For:

$$f: A \longrightarrow \mathbb{R},$$

 $g: B \longrightarrow \mathbb{R},$

we define $f \pm g$ and fg as follows:

$$f \pm g : A \cap B \longrightarrow \mathbb{R},$$

 $f \pm g(x) := f(x) \pm g(x), \quad x \in A \cap B.$

$$fg: A \cap B \longrightarrow \mathbb{R},$$

 $fg(x) := f(x)g(x), \quad x \in A \cap B.$

Similary, we define:

$$\frac{f}{g}: A \cap B' \longrightarrow \mathbb{R},$$

$$\frac{f}{g}(x) = \frac{f(x)}{g(x)}, \quad x \in A \cap B',$$

where $B' = \{ b \in B : g(b) \neq 0 \}.$

1.2.2 Composition of Functions

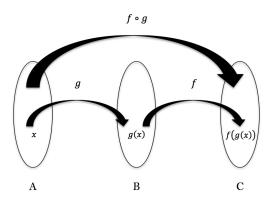
Given two functions:

$$g: A \longrightarrow B, \quad f: B \longrightarrow C,$$

the **composite function** $f \circ g$ is defined as follows:

$$f\circ g:A\longrightarrow C,$$

$$(f\circ g)(a):=f(g(a)),\quad \text{ for all }a\in A.$$



When the codomain of g is not the same as the domain of f, the domain of $f \circ g$ is defined to be:

$$Domain(f \circ g) = \{ a \in Domain(g) : g(a) \in Domain(f) \}.$$

Example 1.4. Find the implied domains of $f \circ g$ and $g \circ f$, where:

$$f(x) = x^2$$
, $g(x) = \sqrt{x}$.

1.2.3 Inverse of a Function

The **range** or **image** of a function $f:A\longrightarrow B$ is the set of all $b\in B$ such that b=f(a) for some $a\in A$.

Notation.

$$\operatorname{Image}(f) = \operatorname{Range}(f) := \{ b \in B : b = f(a) \text{ for some } a \in A \}.$$

Note that the range of f is not necessarily equal to the codomain B.

Definition 1.5. If Range(f) = B, we say that f is surjective or onto .

Definition 1.6. If $f(a) \neq f(a')$ for all $a, a' \in Domain(f)$ such that $a \neq a'$, we say that f is **injective** or **one-to-one**.

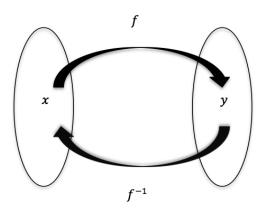
If $f: A \longrightarrow B$ is injective, then there exists an **inverse function**:

$$f^{-1}: \operatorname{Range}(f) \longrightarrow A$$

such that $f^{-1} \circ f$ is the **identity function** on A, and $f \circ f^{-1}$ is the identity function on Range(f), that is:

 $f^{-1}(f(a)) = a$, for all $a \in A$,

 $f(f^{-1}(b)) = b$, for all $b \in \text{Range}(f)$.



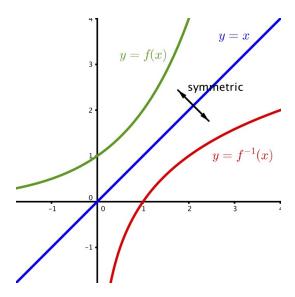
It may be shown that:

Proposition 1.7. If f has an inverse f^{-1} , then:

$$Domain(f^{-1}) = Range(f)$$

$$Range(f^{-1}) = Domain(f)$$

Geometrically, the graph of f^{-1} is the reflection of the graph of f over the diagonal line y=x:



Example 1.8. Find the inverse of:

•

$$f(x) = \frac{2x - 1}{1 - x}$$

•

$$f(x) = x^2 + x$$
 with domain $D = [0, +\infty)$

1.3 Piecewise Defined Functions

Example 1.9.

$$f(x) = \begin{cases} -x+1 & \text{if } -2 \le x < 0\\ 3x & \text{if } 0 \le x \le 5 \end{cases}$$

• The absolute value function

$$|x| = \begin{cases} -x & \text{if } x < 0\\ x & \text{if } x \ge 0 \end{cases}$$

Example 1.10. Consider,

$$f(x) = \begin{cases} x^2 & \text{if } x < 1\\ |x - 2| - 1 & \text{if } x \ge 1 \end{cases}$$

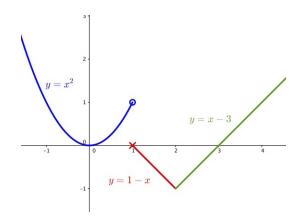
Then, for example,

$$f(-1) =$$
 $(-1)^2 = 1$
 $f(0) =$ $0^2 = 0$
 $f(1) =$ $|1-2|-1=0$
 $f(2) =$ $|2-2|-1=-1$

We can rewrite f as:

$$f(x) = \begin{cases} x^2 & \text{if } x < 1\\ 1 - x & \text{if } 1 \le x < 2\\ x - 3 & \text{if } x \ge 2 \end{cases}$$

The graph y = f(x) of f is as follows:



Exercise 1.11. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by:

$$f(x) = -3x + 4 - |x+1| - |x-1|$$

for any $x \in \mathbb{R}$.

- 1. Express the 'explicit formula' of the function f as that of a piecewise defined function, with one 'piece' for each of $(-\infty, -1)$, [-1, 1), $[1, +\infty)$.
- 2. Sketch the graph of the function f.
- 3. Is f an injective function on \mathbb{R} ? Justify your answer.
- 4. What is the image of \mathbb{R} under the function f?

Solution.

1.

$$f(x) = \begin{cases} -x+4 & \text{if } x < -1\\ -3x+2 & \text{if } -1 \le x < 1\\ -5x+4 & \text{if } x \ge 1 \end{cases}$$

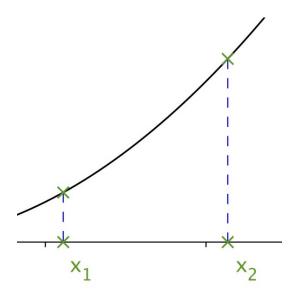
2. Open in browser

- 3. f is strictly decreasing on \mathbb{R} . Hence, f is injective on \mathbb{R} .
- 4. The image of \mathbb{R} under f is \mathbb{R} .

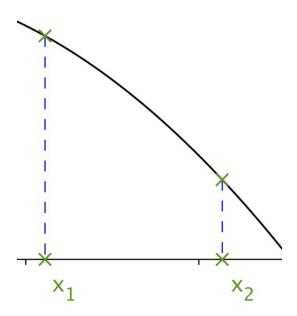
1.4 Properties of Functions

For a function f, we say that: f is **increasing** (\nearrow) if $f(x_1) \leq f(x_2)$ whenever $x_1 < x_2$

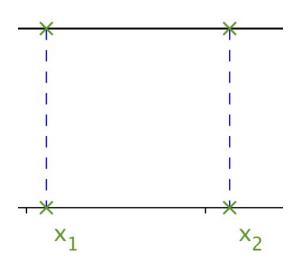
f is **strictly increasing** (\nearrow) if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$



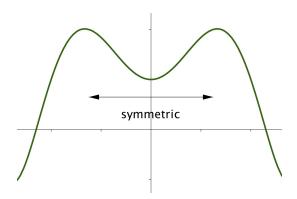
f is **decreasing** (\searrow) if $f(x_1) \ge f(x_2)$ whenever $x_1 < x_2$ f is **strictly decreasing** (\searrow) if $f(x_1) > f(x_2)$ whenever $x_1 < x_2$



f is **constant** if $f(x_1) = f(x_2)$ for all x_1, x_2

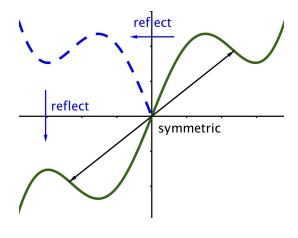


We say that f is an **even** function if f(-x) = f(x) for all $x \in \operatorname{Domain}(f)$



symmetric about the y -axis

We say that f is an **odd** function if f(-x) = -f(x) for all $x \in Domain(f)$



symmetric about the origin. (It is possible for a function to be neither even nor odd.)

Example 1.12. Determine if the following function is even, odd or neither:

•

$$f(x) = x^2 - x^{2/3}$$

•

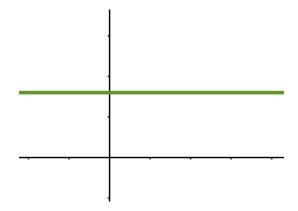
$$g(x) = \sin x - \tan x$$

•

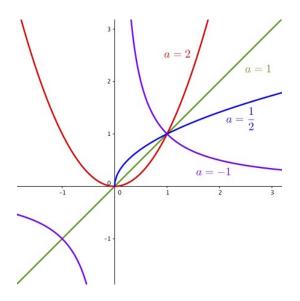
$$h(x) = x - 1$$

1.5 Elementary functions

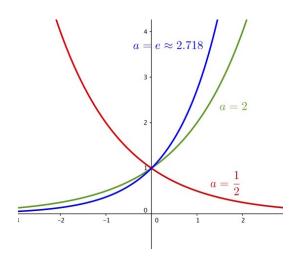
• Constant: f(x) = c



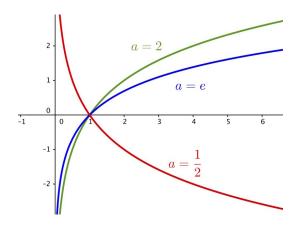
• Power: $f(x) = x^a$



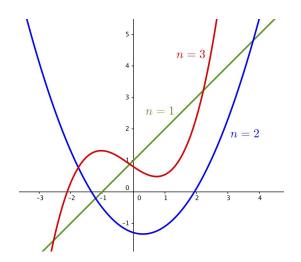
• Exponential: $f(x) = a^x$ where a>0 increasing if a>1 decreasing if 0 < a < 1



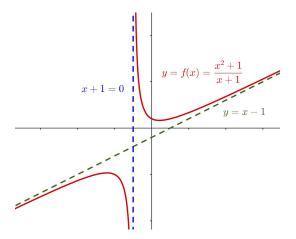
• Logarithmic: $f(x) = \log_a x$ where a > 0 " \log ": a = 10 " \ln ": $a = e \approx 2.718...$



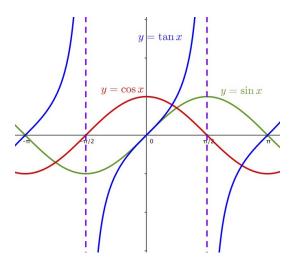
• Polynomial: $f(x) = a_0 + a_1 x + \dots + a_n x^n$ where $a_i \in \mathbb{R}$ are the coefficients and $n \geq 0$ (integer) is the degree (provided that $a_n \neq 0$)



• Rational: $f(x) = \frac{P(x)}{Q(x)}$ where P,Q are polynomials and $Q \neq 0$



• Trigonometric: $f(x) = \sin x, \cos x, \tan x, \sec x, \csc x$ or $\cot x$



1.6 Parametric Equations

Sometimes, it's preferable to express the coordinates of points (x, y) in 2D (or (x, y, z) in 3D) in terms of an independent variable t. That is,

$$(x,y) = (f(t),g(t))$$

where f(t),g(t) are both functions of t . The equation displayed above in fact consists of two equations:

$$x = f(t)$$

$$y = g(t)$$

They are called **parametric equations**, and t is called a **parameter**.

Example 1.13. Suppose the coordinates of an object at time t is given by:

$$\begin{cases} x = f(t) = \cos(36^{\circ}t) \\ y = g(t) = \sin(36^{\circ}t) \end{cases}$$

Then its coordinates at different times t are:

t	0	1	2	2.5	5	10
(x,y)	(1,0)	$(\cos 36^\circ, \sin 36^\circ)$	$\cos 72^{\circ}, \sin 72^{\circ})$	(0,1)	(-1,0)	(1,0)

To represent this object geometrically, it's often useful to consider an equation in x, y which is satisfied by all points (x, y) which satisfy x = f(t), y = g(t) for some t. (The set of all such points is called the **locus** of the equation).

In this example, we have:

$$x^{2} + y^{2} = \cos^{2}(36^{\circ}t) + \sin^{2}(36^{\circ}t)$$
$$x^{2} + y^{2} = 1,$$

which is a circle. Then, by finding out the coordinates of the object at a few different times, we can draw some arrows to indicate the movement of the object along its locus:

