
MATH 1030 Chapter 8

The lecture is based on Beezer, A first course in Linear algebra. Ver 3.5 Down-
loadable at http://linear.ups.edu/download.html .

The print version can be downloaded at http://linear.ups.edu/download/fcla-
3.50-print.pdf .

Reference.
Beezer, Ver 3.5 Section MISLE, Section MINM (print version p149 - p161)
Exercise.
Exercises with solutions can be downloaded at http://linear.ups.edu/download/fcla-

3.50-solution-manual.pdfSection MISLE (p60-64), all. Section MINM C20, C40,
M10, M11, M15, M80, T25.

8.1 Inverse of a Matrix
Recall the definition of invertibility of a square matrix: Definition 6.29

Recall also that the inverse of a matrix A, if it exists, is unique, and is denoted
by A−1.

Note that not all matrices are invertible.

8.2 Solution Inverse
The inverse of a square matrix, and solutions to linear systems with square coeffi-
cient matrices, are intimately connected.

Example 8.1.

−7x1 − 6x2 − 12x3 = −33
5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

We can represent this system of equations as

Ax = b

1

http://linear.ups.edu/download.html
http://linear.ups.edu/download/fcla-3.50-print.pdf
http://linear.ups.edu/download/fcla-3.50-print.pdf
https://www.math.cuhk.edu.hk/~pschan/cranach/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec6.xml&slide=23&item=6.29


where

A =

−7 −6 −125 5 7
1 0 4

 x =

x1x2
x3

 b =

−3324
5


Observe that if:

B =

−10 −12 −913
2

8 11
2

5
2

3 5
2

 ,
then:

BA =

1 0 0
0 1 0
0 0 1


Now apply this computation to the problem of solving the system of equations,

x = I3x = (BA)x = B(Ax) = Bb

So we have

x = Bb =

−35
2


So with the help and assistance of B we have been able to determine a solution
to the system represented by Ax = b through judicious use of matrix multiplica-
tion. Since the coefficient matrix in this example is nonsingular, there would be a
unique solution, no matter what the choice of b. The derivation above amplifies
this result, since we were forced to conclude that x = Bb and the solution could
not be anything else. You should notice that this argument would hold for any
particular choice of b.

The matrix B of the previous example is called the inverse of A. When A and
B are combined via matrix multiplication, the result is the identity matrix, which
can be inserted in front of x as the first step in finding the solution. This is entirely
analogous to how we might solve a single linear equation like 3x = 12.

x = 1x =

(
1

3
(3)

)
x =

1

3
(3x) =

1

3
(12) = 4

Here we have obtained a solution by employing the multiplicative inverse of 3,
3−1 = 1

3
. This works fine for any scalar multiple of x, except for zero, since
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zero does not have a multiplicative inverse. Consider separately the two linear
equations,

0x = 12 0x = 0

The first has no solutions, while the second has infinitely many solutions. For
matrices, it is all just a little more complicated. Some matrices have inverses, some
do not. And when a matrix does have an inverse, just how would we compute it?
In other words, just where did that matrix B in the last example come from? Are
there other matrices that might have worked just as well?

Example 8.2 (A matrix without an inverse). Consider the matrix:

A =

1 −1 2
2 1 1
1 1 0


Suppose that A is invertible and does have an inverse, say B. Let:

b =

13
2

 ,
and consider the system of equations Ax = b.

Just as in the previous example, this vector equation would have the unique
solution x = Bb.

However, the system Ax = b is inconsistent. Form the augmented matrix
[A|b] and row-reduce to  1 0 1 0

0 1 −1 0

0 0 0 1


which allows us to recognize the inconsistency.

So the assumption of A’s inverse leads to a logical inconsistency (the system
cannot be both consistent and inconsistent), so our assumption is false. A is not
invertible.

Let us look at one more matrix inverse before we embark on a more systematic
study.

Example 8.3 (Matrix Inverse). 1.

A =

[
1 2
2 3

]
, B =

[
−3 2
2 −1

]
,
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Then

AB = BA = I2.

So B is the inverse of A.
2.

A =

 1 1 1
1 0 −1
0 1 1

 , B =

 1 0 −1
−1 1 2
1 −1 −1


Then

AB = BA = I3.

So B is the inverse of A.
3. Consider the matrices,

A =


1 2 1 2 1
−2 −3 0 −5 −1
1 1 0 2 1
−2 −3 −1 −3 −2
−1 −3 −1 −3 1

 B =


−3 3 6 −1 −2
0 −2 −5 −1 1
1 2 4 1 −1
1 0 1 1 0
1 −1 −2 0 1


Then

AB =


1 2 1 2 1
−2 −3 0 −5 −1
1 1 0 2 1
−2 −3 −1 −3 −2
−1 −3 −1 −3 1



−3 3 6 −1 −2
0 −2 −5 −1 1
1 2 4 1 −1
1 0 1 1 0
1 −1 −2 0 1

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



BA =


−3 3 6 −1 −2
0 −2 −5 −1 1
1 2 4 1 −1
1 0 1 1 0
1 −1 −2 0 1




1 2 1 2 1
−2 −3 0 −5 −1
1 1 0 2 1
−2 −3 −1 −3 −2
−1 −3 −1 −3 1

 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


so by the definition of inverse matrix, we can say that A is invertible and write
B = A−1.

We will now concern ourselves less with whether or not an inverse of a matrix
exists, but instead with how you can find one when it does exist. Later we will
have some theorems that allow us to more quickly and easily determine just when
a matrix is invertible.
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Theorem 8.4 (Two-by-Two Matrix Inverse). Suppose:

A =

[
a b
c d

]
Then A is invertible if and only if ad− bc 6= 0. When A is invertible, then

A−1 =
1

ad− bc

[
d −b
−c a

]
Proof of Two-by-Two Matrix Inverse. ⇐ Assume that ad − bc 6= 0. We will use
the definition of the inverse of a matrix to establish that A has an inverse. Note
that if ad − bc 6= 0 then the displayed formula for A−1 is legitimate since we
are not dividing by zero). Using this proposed formula for the inverse of A, we
compute

AA−1 =

[
a b
c d

](
1

ad− bc

[
d −b
−c a

])
=

1

ad− bc

[
ad− bc 0

0 ad− bc

]
=

[
1 0
0 1

]

A−1A =
1

ad− bc

[
d −b
−c a

] [
a b
c d

]
=

1

ad− bc

[
ad− bc 0

0 ad− bc

]
=

[
1 0
0 1

]
This is sufficient to establish that A is invertible, and that the expression for A−1

is correct.
⇒ Assume that A is invertible, and proceed with a proof by contradiction, by

assuming also that ad− bc = 0. This translates to ad = bc. Let

B =

[
e f
g h

]
be a putative inverse of A.

This means that

I2 = AB =

[
a b
c d

] [
e f
g h

]
=

[
ae+ bg af + bh
ce+ dg cf + dh

]
Working on the matrices on two ends of this equation, we will multiply the top
row by c and the bottom row by a.[

c 0
0 a

]
=

[
ace+ bcg acf + bch
ace+ adg acf + adh

]
We are assuming that ad = bc, so we can replace two occurrences of ad by bc in
the bottom row of the right matrix.[

c 0
0 a

]
=

[
ace+ bcg acf + bch
ace+ bcg acf + bch

]
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The matrix on the right now has two rows that are identical, and therefore the
same must be true of the matrix on the left. Identical rows for the matrix on the
left implies that a = 0 and c = 0.

With this information, the product AB becomes[
1 0
0 1

]
= I2 = AB =

[
ae+ bg af + bh
ce+ dg cf + dh

]
=

[
bg bh
dg dh

]
So bg = dh = 1 and thus b, g, d, h are all nonzero. But then bh and dg (the
other corners ) must also be nonzero, so this is (finally) a contradiction. So our
assumption was false and we see that ad− bc 6= 0 whenever A has an inverse.

There are several ways one could try to prove this theorem, but there is a
continual temptation to divide by one of the eight entries involved (a through f ),
but we can never be sure if these numbers are zero or not. This could lead to an
analysis by cases, which is messy, messy, messy. Note how the above proof never
divides, but always multiplies, and how zero/nonzero considerations are handled.
Pay attention to the expression ad− bc, as we will see it again in a while.

This theorem is cute, and it is nice to have a formula for the inverse, and
a condition that tells us when we can use it. However, this approach becomes
impractical for larger matrices, even though it is possible to demonstrate that,
in theory, there is a general formula. (Think for a minute about extending this
result to just 3 × 3 matrices. For starters, we need 18 letters!) Instead, we will
work column-by-column. Let us first work an example that will motivate the main
theorem and remove some of the previous mystery.

8.3 Computing the Inverse of a Matrix
Theorem 8.5 (Computing the Inverse of a Nonsingular Matrix). Suppose A is a
nonsingular square matrix of size n. Create the n × 2n matrix M by placing the
n × n identity matrix In to the right of the matrix A. Let N be a matrix that
is row-equivalent to M and in reduced row-echelon form. Finally, let J be the
matrix formed from the final n columns of N . Then JA = AJ = In. Hence,
A−1 = J .

Remark. Observe this procedure also allows one to see whether a given matrix A
in nonsingular.

Proof of Computing the Inverse of a Nonsingular Matrix. SinceA is nonsingular,
there exist a sequence of row operations R1, R2, . . . Rk such that:

A
R1−→ · · · R2−→ · · · Rk−→ In

6



Recall that each row operation Ri corresponds to multiplcation by an elementary
matrix Ji from the left, that is:

A
R1−→ J1A

R2−→ J2J1A
R3−→ · · · Rk−→ Jk · · · J2J1A = In.

Start with the augmented matrix:

[A|In]

Applying the row operation R1 to the matrix above is equivalent to:

J1[A|In] = [J1A|J1In] = [J1A|J1]

Further applying the row operation R2 gives:

J2[J1A|J1In] = [J2J1A|J2J1]

Applying the rest of the row operations which reduce A to In, we have:

[Jk · · · J2J1A︸ ︷︷ ︸
In

| Jk · · · J2J1︸ ︷︷ ︸
J=A−1

]

Example 8.6 (Computing a matrix inverse). Let

A =

 1 1 1
1 0 −1
0 1 1

 .
Find A−1.

[A|I3] =

 1 1 1 1 0 0
1 0 −1 0 1 0
0 1 1 0 0 1

 −1R1+R2−−−−−→

 1 1 1 1 0 0
0 −1 −2 −1 1 0
0 1 1 0 0 1


R2↔R3−−−−→

 1 1 1 1 0 0
0 1 1 0 0 1
0 −1 −2 −1 1 0

 1R2+R3−−−−→

 1 1 1 1 0 0
0 1 1 0 0 1
0 0 −1 −1 1 1


−1R2+R1−−−−−→

 1 0 0 1 0 −1
0 1 1 0 0 1
0 0 −1 −1 1 1

 1R3+R2,−1R3−−−−−−−−→

 1 0 0 1 0 −1
0 1 0 −1 1 2
0 0 1 1 −1 −1


So

A−1 =

 1 0 −1
−1 1 2
1 −1 −1
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Example 8.7 (Computing a matrix inverse). Let

B =

−7 −6 −125 5 7
1 0 4

 .
Find B−1.

M =

 −7 −6 −12 1 0 0
5 5 7 0 1 0
1 0 4 0 0 1

 .
RREF−−−→

 1 0 0 −10 −12 −9
0 1 0 13

2
8 11

2

0 0 1 5
2

3 5
2


B−1 =

−10 −12 −913
2

8 11
2

5
2

3 5
2

 .
Theorem 8.8 (Solution with Nonsingular Coefficient Matrix). Suppose that A is
nonsingular. Then the unique solution to Ax = b is A−1b.

Proof of Solution with Nonsingular Coefficient Matrix. We can show this by sim-
ply plug A−1b in the solution.

A
(
A−1b

)
=
(
AA−1

)
b

= Inb

= b

Since Ax = b is true when we substitute A−1b for x, A−1b is a (the!) solution to
Ax = b.

Example 8.9. Using the previous theorem, solve

x1 + x2 − x3 + 4x4 = 1

x1 − x2 + 2x3 + 3x4 = 2

2x1 + x2 + x3 + x4 = 0

2x1 + 2x2 + 2x3 − 9x4 = −1

The matrix coefficient is

A =


1 1 −1 4
1 −1 2 3
2 1 1 1
2 2 2 −9

 .
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After some computations,

A−1 =


−33 −22 45 −17
35 23 −47 18
25 17 −34 13
6 4 −8 3

 .
Then the solution of the system of linear equations is

x1
x2
x3
x4

 = A−1


1
2
0
−1

 =


−60
63
46
11

 .

8.4 Properties of Matrix Inverses
Theorem 8.10 (Matrix Inverse is Unique). Suppose the square matrix A has an
inverse. Then A−1 is unique.

Proof of Matrix Inverse is Unique. We will assume that A has two inverses. The
hypothesis tells there is at least one. Suppose then that B and C are both inverses
for A. Then AB = BA = In and AC = CA = In. Then we have,

B = BIn

= B(AC)

= (BA)C

= InC

= C

So we conclude thatB and C are the same, and cannot be different. So any matrix
that acts like an inverse, must be the inverse.

When most of us dress in the morning, we put on our socks first, followed by
our shoes. In the evening we must then first remove our shoes, followed by our
socks. Try to connect the conclusion of the following theorem with this everyday
example.

Theorem 8.11 (Socks and Shoes). Suppose A and B are invertible matrices of
size n. Then AB is an invertible matrix and (AB)−1 = B−1A−1.
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Proof of Socks and Shoes.

(B−1A−1)(AB) = B−1(A−1A)B

= B−1InB

= B−1B

= In

(AB)(B−1A−1) = A(BB−1)A−1

= AInA
−1

= AA−1

= In

So the matrix B−1A−1 has met all of the requirements to be AB’s inverse (date)
and with the ensuing marriage proposal we can announce that (AB)−1 = B−1A−1.

Theorem 8.12 (Matrix Inverse of a Matrix Inverse). Suppose A is an invertible
matrix. Then A−1 is invertible and (A−1)−1 = A.

Proof of Matrix Inverse of a Matrix Inverse. As with the proof of of the previous
example, we examine ifA is a suitable inverse forA−1 (by definition, the opposite
is true).

AA−1 = In

A−1A = In

The matrix A has met all the requirements to be the inverse of A−1, and so is
invertible and we can write A = (A−1)−1.

Theorem 8.13 (Matrix Inverse of a Transpose). SupposeA is an invertible matrix.
Then At is invertible and (At)−1 = (A−1)t.

Proof of Matrix Inverse of a Transpose. As with the proof of Theorem Theorem
8.11 (Socks and Shoes), we see if (A−1)t is a suitable inverse for At.

(A−1)tAt = (AA−1)t

= I tn
= In

At(A−1)t = (A−1A)t

= I tn
= In
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The matrix (A−1)t has met all the requirements to be the inverse of At, and so is
invertible and we can write (At)−1 = (A−1)t.

Theorem 8.14 (Matrix Inverse of a Scalar Multiple). Suppose A is an invertible
matrix and α is a nonzero scalar. Then (αA)−1 = 1

α
A−1 and αA is invertible.

Proof of Matrix Inverse of a Scalar Multiple. As with the proof of Theorem The-
orem 8.11 (Socks and Shoes), we see if 1

α
A−1 is a suitable inverse for αA.(

1

α
A−1

)
(αA) =

(
1

α
α

)(
A−1A

)
= 1In

= In

(αA)

(
1

α
A−1

)
=

(
α
1

α

)(
AA−1

)
= 1In

= In

The matrix 1
α
A−1 has met all the requirements to be the inverse of αA, so we can

write (αA)−1 = 1
α
A−1.

It would be tempting, for example, to think that (A+B)−1 = A−1 +B−1, but
this is false. Can you find a counterexample?
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