
MATH 1030 Chapter 5

The lecture is based on Beezer, A first course in Linear algebra. Ver 3.5 Down-
loadable at http://linear.ups.edu/download.html .

The print version can be downloaded at http://linear.ups.edu/download/fcla-
3.50-print.pdf .

Reference.
Beezer, Ver 3.5 Subsection RREF (print version p21 - p33) You can skip the

proof of Thm REMEF on p.22 and Thm RREFU on p.24-27
Exercise.
Exercises with solutions can be downloaded at http://linear.ups.edu/download/fcla-

3.50-solution-manual.pdf Section SSLE (p.1-6) C30-34, C50, M30, T20. Sect
RREF (p.6-13) C10-19, C31-33, M40 Part 1, T10, T11, T12.

5.1 Reduced Row Echelon Form
Terminology :

• Zero row: A row consisting only of 0’s.

• Leftmost nonzero entry of a row: The first nonzero entry of a row.

• Index of the leftmost nonzero entry of a row: The column index of the
first nonzero entry in the row.

Notation : Denote by di the index of leftmost nonzero entry of row i.

Example 5.1. The underlined entries are the leftmost nonzero entry for each row.
0 1 1 0 2
0 0 0 0 1
0 0 0 1 3
0 0 0 0 0


The index of the leftmost nonzero entry of row 1 is d1 = 2. The index of the
leftmost nonzero entry of row 2 is d2 = 5. The index of the leftmost nonzero
entry of row 3 is d3 = 4. row 4 is a zero row.
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Example 5.2. The underlined entries are the leftmost nonzero entry for each row.
2 0 1 2 3 4
0 1 1 −1 0 3
0 0 0 0 1 0
0 −1 0 0 0 1


The index of the leftmost nonzero entry of row 1 is d1 = 1. The index of the
leftmost nonzero entry of row 2 is d2 = 2. The index of the leftmost nonzero
entry of row 3 is d3 = 5. The index of the leftmost nonzero entry of row 3 is
d4 = 2.

A matrix is said to be in reduced row echelon form if it looks like this ( ∗
means an arbitary number)

1 ∗ · · · 0 ∗ · · · 0 ∗ · · ·
0 0 · · · 1 ∗ · · · 0 ∗ · · ·
0 0 · · · 0 0 · · · 1 ∗ · · ·
...

...
...

...
...

...
...

...
...


More precisely:

1. It looks like an inverted staircase.

2. Each new step down (i.e. up) gives a leading ”1”. Above it are 0’s.

3. The column that is at the edge a new step is call a pivot column.

Definition 5.3 (Reduced Row-Echelon Form). A matrix is in reduced row-echelon
form if it meets all of the following conditions:

1. If there is a row where every entry is zero, then this row lies below any other
row that contains a nonzero entry.

2. The leftmost nonzero entry of a nonzero row is equal to 1.

3. The leftmost nonzero entry of a nonzero row is the only nonzero entry in its
column.

4. If i < j and both row i and row j are not zero rows, then di < dj , i.e.
d1, d2, . . . are in ascending order.

In particular, all matrix entries below a leftmost nonzero entry must be equal
to zero.
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Terminology. A row of only zero entries is called a zero row.
In the case of a matrix in reduced row-echelon form, the leftmost nonzero

entry of a nonzero row is a leading 1.
A column containing a leading 1 will be called a pivot column.
The number of nonzero rows will be denoted by r, which is also equal to the

number of leading 1’s and the number of pivot columns.
The set of column indices for the pivot columns will be denoted by:

D = {d1, d2, d3, . . . , dr},

where:
d1 < d2 < d3 < · · · < dr.

The columns that are not pivot columns will be denoted as:

F = {f1, f2, f3, . . . , fn−r},

where:
f1 < f2 < f3 < · · · < fn−r.

Example 5.4. The matrix below are in reduced row echelon from

1. 
1 3 0 0 1 0
0 0 1 3 4 0
0 0 0 0 0 1
0 0 0 0 0 0


Definition 5.3 (Reduced Row-Echelon Form)

Column 1, 3, 6 are pivot columns, r = 3, D = {1, 3, 6}, d1 = 1, d2 =
3, d3 = 6, F = {2, 4, 5}, f1 = 2, f2 = 4, f3 = 5.

2. 
1 0 5 3 0 0 5
0 1 3 6 0 0 6
0 0 0 0 1 0 7
0 0 0 0 0 1 3


Definition 5.3 (Reduced Row-Echelon Form)

Column 1, 2, 5, 6 are pivot columns, r = 4, D = {1, 2, 5, 6}, d1 = 1, d2 =
2, d3 = 5, d4 = 6, F = {3, 4, 7}, f1 = 3, f2 = 4, f3 = 7.
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3. 1 0 0
0 1 0
0 0 1


Definition 5.3 (Reduced Row-Echelon Form)

Column 1, 2, 3 are pivot columns, r = 3, D = {1, 2, 3}, d1 = 1, d2 =
2, d3 = 3, F = ∅ (an empty set).

4. 
0 1 1 0 0 1 0 9 6
0 0 0 0 1 1 0 8 8
0 0 0 0 0 0 1 3 4
0 0 0 0 0 0 0 0 0


Definition 5.3 (Reduced Row-Echelon Form)

Column 2, 5, 7 are pivot columns. Note that column 3 is not a pivot column.
r = 3, D = {2, 5, 7}, d1 = 2, d2 = 5, d3 = 7, F = {1, 3, 4, 6, 8, 9},
f1 = 1, f2 = 3, f3 = 4, f4 = 6, f5 = 8, f6 = 9.

5. The matrix C is in reduced row-echelon form.

C =


1 −3 0 6 0 0 −5 9
0 0 0 0 1 0 3 −7
0 0 0 0 0 1 7 3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


Definition 5.3 (Reduced Row-Echelon Form)

This matrix has two zero rows and three pivot columns. So r = 3. Columns
1, 5, and 6 are the pivot columns, so D = {1, 5, 6}, d1 = 1, d2 = 5, d3 = 6,
F = {2, 3, 4, 7, 8}, f1 = 2, f2 = 3, f3 = 4, f4 = 7, f5 = 8.

Example 5.5. The following matrices are not RREF, explain why.

1. 
1 0 1 0 1 0
0 1 0 1 0 2
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0


It fails condition 1: row 3 is a zero row but row 4, which is under row 3, is
not a zero row.
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2. The underline entries are the leftmost nonzero entry for each row.
1 0 2 0
0 1 3 0
0 0 0 3
0 0 0 0
0 0 0 0


It fails condition 2: the leftmost nonzero entry of row 3 is not 1.

3. The underline entries are the leftmost nonzero entry for each row.
0 1 0 0 1 2
0 0 1 0 0 1
0 0 0 0 1 3
0 0 0 0 0 0


It fails condition 3: For row 3, the column consists the left most nonzero
entry (i.e. column 5) has more than 1 nonzero entries.

4. The underline entries are the leftmost nonzero entry for each row.
1 0 0 1 2
0 0 1 0 1
0 1 0 0 3
0 0 0 0 0
0 0 0 0 0


It fails condition 4: The index of the leftmost nonzero entry of row 1 is
d1 = 1. The index of the leftmost nonzero entry of row 2 is d2 = 3. The
index of the leftmost nonzero entry of row 3 is d2 = 2. 2 < 3 but d2 > d3.

Theorem 5.6 (Row-Equivalent Matrix in Echelon Form). Suppose A is a matrix.
Then there is a matrix B such that:

1. A and B are row-equivalent.

2. B is in reduced row-echelon form.

Proof of Row-Equivalent Matrix in Echelon Form. Suppose that A has m rows
and n columns. We will describe a process for converting A into B via row op-
erations. This procedure is known as Gaussian elimination or sometimes called
Gauss-Jordan elimination. Tracing through this procedure will be easier if you
recognize that i refers to a row that is being converted, j refers to a column that is
being converted, and r keeps track of the number of nonzero rows.
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1. Set j = 0 and r = 0.

2. Increase j by 1. If j now equals n+ 1, then stop.

3. Examine the entries of A in column j located in rows r + 1 through m. If
all of these entries are zero, then go to Step 2.

4. Choose a row from rows r + 1 through m with a nonzero entry in column
j. Let i denote the index for this row.

5. Increase r by 1.

6. Use the first row operation to swap rows i and r.

7. Use the second row operation to convert the entry in row r and column j to
a 1.

8. Use the third row operation with row r to convert every other entry of col-
umn j to zero.

9. Go to Step 2.

The result of this procedure is that the matrix A is converted to a matrix in re-
duced row-echelon form, which we will refer to as B. he matrix is only converted
through row operations (Steps 6, 7, 8), soA andB are row-equivalent. We need to
now prove this claim by showing that the converted matrix has the requisite prop-
erties of Definition 5.3 (Reduced Row-Echelon Form). We will skip the proof for
now. See Beezer, Ver 3.5 (print version p23).

We will now run through some examples of using these definitions and theo-
rems to solve some systems of equations. From now on, when we have a matrix
in reduced row-echelon form, we will mark the leading 1’s with a small box.

Example 5.7. Using the Gaussian elimination, find the RREF of

A =


0 0 1 1 4
0 0 1 1 3
1 1 2 4 8
2 2 5 9 19


Set r = 0. Consider column 1 (set j = 1), find a nonzero entry (underline below)
in the column. 

0 0 1 1 4
0 0 1 1 3
1 1 2 4 8
2 2 5 9 19
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Move the nonzero entry to row 1 by swapping rows R1 ↔ Ri.
If the entry at row 1, column 1 is nonzero, you don’t have to swap rows. But

you can consider swap it with entry = 1 or −1.
In this example, for column 1, 3rd entry and 4th entry are nonzero, so we can

use R1 ↔ R3 or R1 ↔ R4.
There is nothing wrong about R1 ↔ R4 but it is better to swap with the row

with leading entry equal to 1 or −1.
So we use R1 ↔ R3.

R1↔R3−−−−→


1 1 2 4 8
0 0 1 1 3
0 0 1 1 4
2 2 5 9 19


Also, at this point we increase r to r = 1, since we now know we have at least
one nonzero row.

If the boxed number is 1, we are good to go.
If the boxed number is not equal to 1, say it is a, use 1

a
R1 to convert it to 1.

Then use the boxed number to eliminate the nonzero entries above and below
it by αR1 +Ri.

In our example, the boxed number is 1, so we don’t have to do anything. Use
−2R1 +R4 and to remove the nonzero entries below it and above it. Since we are
at the first row, so there is nothing above it).

−2R1+R4−−−−−→


1 1 2 4 8
0 0 1 1 3
0 0 1 1 4
0 0 1 1 3


Now we go back to Step 1 in the proof of Theorem 5.6 (Row-Equivalent Matrix
in Echelon Form), with column index j increased to 2 and r = 1.

In fact, we may as well ignore row 1 and column 1, and essentially apply the
previous steps to the remaining 3× 4 matrix:

∗ ∗ ∗ ∗ ∗
∗ 0 1 1 3
∗ 0 1 1 4
∗ 0 1 1 3


The entries of column 2 are underlined.

None of them are nonzero, so we move to next column.
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∗ ∗ ∗ ∗ ∗
∗ 0 1 1 3
∗ 0 1 1 4
∗ 0 1 1 3


Consider column 3. That is, set j = 3. (Note that the number of nonzero rows is
still r = 1.)

All the entries of column 3 are equal to 1. So, we don’t need to do any swap-
ping. 

1 1 2 4 8

0 0 1 1 3
0 0 1 1 4
0 0 1 1 3


Also, now we know there are at least 2 nonzero rows, so r = 2. Use the boxed
number (the pivot) to eliminate the nonzero entries above and below it by αR2 +
Ri.

−2R2 +R1,

−1R2 +R3,

−1R2 +R4
−−−−−−−−−→


1 1 0 2 2

0 0 1 1 3
0 0 0 0 1
0 0 0 0 0


Now, we may ignore rows 2 and 3, and columns 1 through 3. With r = 2, and the
column index increased to j = 4, we repeat the whole process.

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 1
∗ ∗ ∗ 0 0


All the underlined entries are zeros, so we move to the next row.

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 1
∗ ∗ ∗ 0 0


We can then use the boxed number to eliminate all the nonzero entries above it
and below it and get the RREF.

1 1 0 2 2
0 0 1 1 3

0 0 0 0 1
0 0 0 0 0
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−2R3+R1, −3R3+R2−−−−−−−−−−−−→


1 1 0 2 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0


Example 5.8. Using the Gaussian elimination, find the RREF of

A =


0 0 2 2 6 2 3
2 4 1 3 7 3 −1
1 2 2 3 8 2 1
1 2 −1 0 −1 2 −1


Set r = 0. We first consider column 1 (set j = 1).

Find a nonzero entry (underline below) in the column.
0 0 2 2 6 2 3
2 4 1 3 7 3 −1
1 2 2 3 8 2 1
1 2 −1 0 −1 2 −1


Move the nonzero entry to row 1 by swapping rows R1 ↔ Ri.

If the entry at row 1, column 1 is nonzero, you don’t have to swap rows. But
you can consider swap it with entry = 1 or −1.

In this example, for column 1, 2nd entry, 3rd entry and 4th entry are nonzeros,
so we can use R1 ↔ R2, R1 ↔ R3 or R1 ↔ R4.

There is nothing wrong about R1 ↔ R2 but it is better to swap with the row
with entry equal to 1 or −1.

So we use R1 ↔ R3.

R1↔R3−−−−→


1 2 2 3 8 2 1
2 4 1 3 7 3 −1
0 0 2 2 6 2 3
1 2 −1 0 −1 2 −1


If the boxed number is 1, we are good to go.

If the boxed number is not equal to 1, say it is a, use 1
a
R1 to convert it to 1.

Then use the boxed number to eliminate the nonzero entries above and below
it by αR1 +Ri.

In our example, the boxed number is 1, so we don’t have to do anything. Use
−2R1 + R2 and −1R1 + R4 to remove the nonzero entries below it and above it.
Since we are at the first row, so there is nothing above it.

−2R1+R2, −1R1+R4−−−−−−−−−−−−→


1 2 2 3 8 2 1
0 0 −3 −3 −9 −1 −3
0 0 2 2 6 2 3
0 0 −3 −3 −9 0 −2
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Ignore the row 1 and col 1. Consider column 2:
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ 0 −3 −3 −9 −1 −3
∗ 0 2 2 6 2 3
∗ 0 −3 −3 −9 0 −2


None of the entries of column 2 are nonzero.

So, we consider the next column (j = 3, r = 1).
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ 0 −3 −3 −9 −1 −3
∗ 0 2 2 6 2 3
∗ 0 −3 −3 −9 0 −2


Find a nonzero entry in column 3. In this case, all the entries are nonzero, so

we may increase the number of nonzero rows to r = 2.
There is no entry equal to 1 or −1. We don’t need to so any swapping.

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ 0 −3 −3 −9 −1 −3
∗ 0 2 2 6 2 3
∗ 0 −3 −3 −9 0 −2


Turn the boxed number into 1 by −1

3
R2.

− 1
3
R2−−−→


1 2 2 3 8 2 1

0 0 1 1 3 1
3

1
0 0 2 2 6 2 3
0 0 −3 −3 −9 0 −2


We then use the boxed number to remove the nonzero entries about it and below
it.

−2R2+R1, −2R2+R3, 3R2+R4−−−−−−−−−−−−−−−−−→


1 2 0 1 2 4

3
−1

0 0 1 1 3 1
3

1
0 0 0 0 0 4

3
1

0 0 0 0 0 1 1


Now, ignore the first 2 rows and the first 3 columns.

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 0 4

3
1

∗ ∗ ∗ 0 0 1 1
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Consider the column with index j = 4.
All the entries in column 4 (underlined) are equal to zero. So, we move to the

next column, with index j = 5.
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 0 4

3
1

∗ ∗ ∗ 0 0 1 1


Again, all the entries in column 5 (underlined) are equal to zero. So, we move to
the next column, with index j = 6.

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ 0 0 4

3
1

∗ ∗ ∗ 0 0 1 1


We continue the process without detailed explanations:

R3↔R4−−−−→


1 2 0 1 2 4

3
−1

0 0 1 1 3 1
3

1
0 0 0 0 0 1 1
0 0 0 0 0 4

3
1


−4

3
R3 +R1,

−1

3
R3 +R2,

−4

3
R3 +R4

−−−−−−−−−→


1 2 0 1 2 0 −7

3

0 0 1 1 3 0 2
3

0 0 0 0 0 1 1
0 0 0 0 0 0 −1

3


−3R4−−−→


1 2 0 1 2 0 −7

3

0 0 1 1 3 0 2
3

0 0 0 0 0 1 1
0 0 0 0 0 0 1
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3
R4 +R1,

−2

3
R4 +R2,

−1R4 +R3
−−−−−−−−−→


1 2 0 1 2 0 0
0 0 1 1 3 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 = B
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The matrix B is the reduced row echelon form of A. We write:

A
RREF−−−→ B.

Theorem 5.9 (Reduced Row-Echelon Form is Unique). Suppose that A is an
m× n matrix and that B and C are m× n matrices that are row-equivalent to A
and in reduced row-echelon form. Then B = C.

Proof of Reduced Row-Echelon Form is Unique. See Beezer, Ver 3.5 (print ver-
sion p24). We will prove it later. You can skip the proof for now.

Example 5.10. Find the solutions to the following system of equations,

−7x1 − 6x2 − 12x3 = −33
5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

First, form the augmented matrix, is −7 −6 −12 −335 5 7 24
1 0 4 5


and work to reduced row-echelon form, first with j = 1,

R1↔R3−−−−→

 1 0 4 5
5 5 7 24
−7 −6 −12 −33

 −5R1+R2−−−−−→

 1 0 4 5
0 5 −13 −1
−7 −6 −12 −33


7R1+R3−−−−→

 1 0 4 5
0 5 −13 −1
0 −6 16 2


Now, with j = 2,

1
5
R2−−→

 1 0 4 5
0 1 −13

5
−1
5

0 −6 16 2

 6R2+R3−−−−→

 1 0 4 5

0 1 −13
5

−1
5

0 0 2
5

4
5


And finally, with j = 3,

5
2
R3−−→

 1 0 4 5

0 1 −13
5

−1
5

0 0 1 2

 13
5
R3+R2−−−−−→

 1 0 4 5

0 1 0 5
0 0 1 2
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−4R3+R1−−−−−→

 1 0 0 −3
0 1 0 5

0 0 1 2


This is now the augmented matrix of a very simple system of equations, namely
x1 = −3, x2 = 5, x3 = 2, which has an obvious solution. Furthermore, we can
see that this is the only solution to this system, so we have determined the entire
solution set,

S =


−35

2


Example 5.11. Let us find the solutions to the following system of equations,

x1 − x2 + 2x3 = 1

2x1 + x2 + x3 = 8

x1 + x2 = 5

First, form the augmented matrix, 1 −1 2 1
2 1 1 8
1 1 0 5


−2R1+R2−−−−−→

 1 −1 2 1
0 3 −3 6
1 1 0 5

 −1R1+R3−−−−−→

 1 −1 2 1
0 3 −3 6
0 2 −2 4


Now, with j = 2,

1
3
R2−−→

 1 −1 2 1
0 1 −1 2
0 2 −2 4

 1R2+R1−−−−→

 1 0 1 3
0 1 −1 2
0 2 −2 4


−2R2+R3−−−−−→

 1 0 1 3

0 1 −1 2
0 0 0 0


The system of equations represented by this augmented matrix needs to be con-
sidered a bit differently than the previous case. First, the last row of the matrix
is the equation 0 = 0, which is always true, so it imposes no restrictions on our
possible solutions and therefore we can safely ignore it as we analyze the other
two equations. These equations are:
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x1 + x3 = 3

x2 − x3 = 2.

While this system is fairly easy to solve, it also appears to have a multitude of
solutions. For example, choose x3 = 1 and see that then x1 = 2 and x2 = 3
will together form a solution. Or choose x3 = 0, and then discover that x1 = 3
and x2 = 2 lead to a solution. Try it yourself: pick any value of x3 you please,
and figure out what x1 and x2 should be to make the first and second equations
(respectively) true. We’ll wait while you do that. Because of this behavior, we
say that x3 is a free or independent variable. But why do we vary x3 and not
some other variable? For now, notice that the third column of the augmented
matrix is not a pivot column. With this idea, we can rearrange the two equations,
solving each for the variable whose index is the same as the column index of a
pivot column.

x1 = 3− x3
x2 = 2 + x3

To write the set of solution vectors in set notation, we have:

S =


3− x32 + x3

x3

 ∣∣∣∣∣∣ x3 ∈ R

 =


32
0

+ x3

−11
1

 ∣∣∣∣∣∣ x3 ∈ R


We will learn more in the next lecture about systems with infinitely many solutions
and how to express their solution sets.

Example 5.12. Let us find the solutions to the following system of equations,

2x1 + x2 + 7x3 − 7x4 = 2

−3x1 + 4x2 − 5x3 − 6x4 = 3

x1 + x2 + 4x3 − 5x4 = 2

First, form the augmented matrix, 2 1 7 −7 2
−3 4 −5 −6 3
1 1 4 −5 2


and work to reduced row-echelon form, first with j = 1,

R1↔R3−−−−→

 1 1 4 −5 2
−3 4 −5 −6 3
2 1 7 −7 2

 3R1+R2−−−−→

 1 1 4 −5 2
0 7 7 −21 9
2 1 7 −7 2
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−2R1+R3−−−−−→

 1 1 4 −5 2
0 7 7 −21 9
0 −1 −1 3 −2


Now, with j = 2,

R2↔R3−−−−→

 1 1 4 −5 2
0 −1 −1 3 −2
0 7 7 −21 9

 −1R2−−−→

 1 1 4 −5 2
0 1 1 −3 2
0 7 7 −21 9


−1R2+R1−−−−−→

 1 0 3 −2 0
0 1 1 −3 2
0 7 7 −21 9

 −7R2+R3−−−−−→

 1 0 3 −2 0

0 1 1 −3 2
0 0 0 0 −5


And finally, with j = 4,

− 1
5
R3−−−→

 1 0 3 −2 0

0 1 1 −3 2
0 0 0 0 1

 −2R3+R2−−−−−→

 1 0 3 −2 0

0 1 1 −3 0

0 0 0 0 1


The third equation will read 0 = 1. This is patently false, all the time. No choice
of values for our variables will ever make it true. We are done. Since we cannot
even make the last equation true, we have no hope of making all of the equations
simultaneously true. So this system has no solutions, and its solution set is the
empty set, ∅ = { } Notice that we could have reached this conclusion sooner.
After performing the row operation−7R2+R3, we can see that the third equation
reads 0 = −5, a false statement. Since the system represented by this matrix has
no solutions, none of the systems represented has any solutions. However, for this
example, we have chosen to bring the matrix all the way to reduced row-echelon
form as practice. The above three examples illustrate the full range of possibilities
for a system of linear equations – no solutions, one solution, or infinitely many
solutions. In the next lecture we will examine these three scenarios more closely.

5.2 Consistent Systems
A system of linear equations is consistent if it has at least one solution. Otherwise,
the system is called inconsistent.

Example 5.13. 1. The system of linear equations

2x1 + 3x2 = 3

x1 − x2 = 4

is consistent because it has solution (x1, x2) = (1,−3).
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2. The system of linear equations

2x1 + 3x2 = 3

4x1 + 6x2 = 6

is consistent because has infinite many solutions: {(t, 3−2t
3

) | t real number}.

3. The system of linear equations

2x1 + 3x2 = 3

4x1 + 6x2 = 10

is inconsistent because it has no solution.

Notation: Let A be a reduced row echelon form.

1. The number of non-zero rows is called the rank of A and is denoted by r.

2. The set of the column indexes for the pivot columns is denoted by

D = {d1, d2, d3, . . . , dr},

where d1 < d2 < d3 < · · · < dr.

3. The set of column indexes that are not pivot columns is denoted by

F = {f1, f2, f3, . . . , fn−r},

where f1 < f2 < f3 < · · · < fn−r.

Example 5.14 (Reduced row-echelon form notation). For the 5× 9 matrix

B =


1 5 0 0 2 8 0 5 −1
0 0 1 0 4 7 0 2 0

0 0 0 1 3 9 0 3 −6
0 0 0 0 0 0 1 4 2
0 0 0 0 0 0 0 0 0


in reduced row-echelon form we have:

r = 4

d1 = 1 d2 = 3 d3 = 4 d4 = 7

f1 = 2 f2 = 5 f3 = 6 f4 = 8 f5 = 9

Notice that the sets

D = {d1, d2, d3, d4} = {1, 3, 4, 7},

F = {2, 5, 6, 8, 9}
have nothing in common and together account for all of the columns of B.

16



5.3 Free variables
Definition 5.15 (Independent and Dependent Variables). Suppose A is the aug-
mented matrix of a consistent system of linear equations andB is a row-equivalent
matrix in reduced row-echelon form. Suppose j is the index of a pivot column of
B. Then the variable xj is dependent . A variable that is not dependent is called
independent or free .

Example 5.16. Describe the infinite solution set of the following system of linear
equations with m = 4 equations in n = 7 variables.

x1 + 4x2 − x4 + 7x6 − 9x7 = 3

2x1 + 8x2 − x3 + 3x4 + 9x5 − 13x6 + 7x7 = 9

2x3 − 3x4 − 4x5 + 12x6 − 8x7 = 1

−x1 − 4x2 + 2x3 + 4x4 + 8x5 − 31x6 + 37x7 = 4

This system has a 4× 8 augmented matrix
1 4 0 −1 0 7 −9 3
2 8 −1 3 9 −13 7 9
0 0 2 −3 −4 12 −8 1
−1 −4 2 4 8 −31 37 4


The matrix is row-equivalent to the following matrix reduced row-echelon form
(exercise : check this)

1 4 0 0 2 1 −3 4

0 0 1 0 1 −3 5 2

0 0 0 1 2 −6 6 1
0 0 0 0 0 0 0 0


So we find that r = 3 and

D = {d1, d2, d3} = {1, 3, 4}

Let i denote any one of the r = 3 nonzero rows. Then the index di is a pivot
column. It will be easy in this case to use the equation represented by row i to
write an expression for the variable xdi . It will be a linear function of the variables
xf1 , xf2 , xf3 , xf4

(i = 1) xd1 = x1 = 4− 4x2 − 2x5 − x6 + 3x7

(i = 2) xd2 = x3 = 2− x5 + 3x6 − 5x7

(i = 3) xd3 = x4 = 1− 2x5 + 6x6 − 6x7
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Each element of the set F = {f1, f2, f3, f4, f5} = {2, 5, 6, 7, 8} is the index
of a variable, except for f5 = 8. We refer to xf1 = x2, xf2 = x5, xf3 = x6 and
xf4 = x7 as free (or independent) variables since they are allowed to assume any
possible combination of values that we can imagine and we can continue on to
build a solution to the system by solving individual equations for the values of the
other (dependent) variables.

Each element of the set D = {d1, d2, d3} = {1, 3, 4} is the index of a vari-
able. We refer to the variables xd1 = x1, xd2 = x3 and xd3 = x4 as dependent
variables since they depend on the independent variables. More precisely, for each
possible choice of values for the independent variables we get exactly one set of
values for the dependent variables that combine to form a solution of the system.

To express the solutions as a set, we write



4− 4x2 − 2x5 − x6 + 3x7
x2

2− x5 + 3x6 − 5x7
1− 2x5 + 6x6 − 6x7

x5
x6
x7



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x2, x5, x6, x7 ∈ R


(5.1)

or equivalently:



4
0
2
1
0
0
0


+ x2



−4
1
0
0
0
0
0


+ x5



−2
0
−1
−2
1
0
0


+ x6



−1
0
3
6
0
1
0


+ x7



3
0
−5
−6
0
0
1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x2, x5, x6, x7 ∈ R


The condition that x2, x5, x6, x7 are real numbers is how we specify that the
variables x2, x5, x6, x7 are free to assume any possible values.

This systematic approach to solving a system of equations will allow us to
create a precise description of the solution set for any consistent system once we
have found the reduced row-echelon form of the augmented matrix. It will work
just as well when the set of free variables is empty and we get just a single solution.
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Example 5.17. Consider the system of five equations in five variables,

x1 − x2 − 2x3 + x4 + 11x5 = 13

x1 − x2 + x3 + x4 + 5x5 = 16

2x1 − 2x2 + x4 + 10x5 = 21

2x1 − 2x2 − x3 + 3x4 + 20x5 = 38

2x1 − 2x2 + x3 + x4 + 8x5 = 22

whose augmented matrix row-reduces to:
1 −1 0 0 3 6

0 0 1 0 −2 1

0 0 0 1 4 9
0 0 0 0 0 0
0 0 0 0 0 0

 (5.2)

Columns 1, 3 and 4 are pivot columns, so D = {1, 3, 4}. From this we know
that the variables x1, x3 and x4 will be dependent variables, and each of the r = 3
nonzero rows of the row-reduced matrix will yield an expression for one of these
three variables. The set F is all the remaining column indices, F = {2, 5, 6}.
The column index 6 in F means that the final column is not a pivot column,
and thus the system is consistent (see the next theorem). The remaining indices
in F indicate free variables, so x2 and x5 (the remaining variables) are our free
variables. The resulting three equations that describe our solution set are then,

(xd1 = x1) x1 = 6 + x2 − 3x5

(xd2 = x3) x3 = 1 + 2x5

(xd3 = x4) x4 = 9− 4x5

Make sure you understand where these three equations came from, and notice how
the location of the pivot columns determined the variables on the left-hand side of
each equation. We can compactly describe the solution set as,

S =




6 + x2 − 3x5

x2
1 + 2x5
9− 4x5
x5


∣∣∣∣∣∣∣∣∣∣
x2, x5 real numbers

 (5.3)

Notice how we express the freedom for x2 and x5: x2, x5 real numbers.
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Theorem 5.18 (Recognizing Consistency of a Linear System). Suppose A is the
augmented matrix of a system of linear equations with n variables. Suppose also
that B is a row-equivalent matrix in reduced row-echelon form with r nonzero
rows.

• Then the system of equations is inconsistent if and only if column n + 1
(i.e., the last column) of B is a pivot column.

• Equivalently a system is consistent if and only if column n+1 is not a pivot
column of B.

• Another way of expressing the theorem is to say that a system of linear equa-
tions is consistent if and only if the last non-zero row is not (0, 0, . . . , 0, 1).

Proof of Recognizing Consistency of a Linear System. (sketch, for details, see Beezer,
Ver 3.5 print version p.38, proof of theorem RCLS, you can skip the proof in the
textbook) If the last column vector of B is a pivot column, then B is in the form
of: 

1 · · · 0 · · · 0 · · · ∗ 0
1 · · · 0 · · · ∗ 0

1 · · · ∗ 0
...

...
...

...
...

...
...

...
0 · · · 0 · · · 0 · · · 0 1
0 · · · 0 · · · 0 · · · 0 0


For the system of linear equations with the above augmented matrix, the r + 1-st
equation (i.e. the last non-zero equation) is

0 = 1.

So the system of linear equations has no solution. Conversely, if the last column
vector is not a pivot column vector, then B is in the form of:

1 · · · 0 · · · 0 · · · 0 · · ·
1 · · · 0 · · · 0 · · ·

1 · · · 0 · · ·
...

...
...

...
...

...
...

...
0 · · · 0 · · · 0 · · · 1 · · ·
0 · · · 0 · · · 0 · · · 0 0
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For the system of equations with the above augmented matrix, we can move the
variables corresponding to the non-pivot columns (i.e., xf1 , xf2 , . . .) to the right
hand side of the equations and therefore solve the equations. Hence it is consistent.
Note that xf1 , xf2 , . . . are free variables.

Example 5.19. Determine if the following system of linear equation is consistent.

x1 + x2 + 2x3 + 3x4 + 2x5 + 5x6 = 1

2x1 + 2x2 + 3x3 − x4 = 1

3x1 + 3x2 + 5x3 + x4 + x5 − 2x6 = 3

x4 + x5 + 7x6 = 0

The augmented matrix is
1 1 2 3 2 5 1
2 2 3 −1 0 0 1
3 3 5 1 1 −2 3
0 0 0 1 1 7 −1


The reduced row echelon form is

1 1 0 0 5 62 0
0 0 1 0 −3 −39 0
0 0 0 1 1 7 0
0 0 0 0 0 0 1


The last column is a pivot column. So the system is inconsistent.

Example 5.20. Determine if the following system of linear equation is consistent.

x1 + x2 + 2x3 + 3x4 + 2x5 + 5x6 = 1

2x1 + 2x2 + 3x3 − x4 = 1

3x1 + 3x2 + 5x3 + x4 + x5 − 2x6 = 3

x4 + x5 + 7x6 = −1

The augmented matrix is
1 1 2 3 2 5 1
2 2 3 −1 0 0 1
3 3 5 1 1 −2 3
0 0 0 1 1 7 −1
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The reduced row echelon form is
1 1 0 0 5 62 −12
0 0 1 0 −3 −39 8
0 0 0 1 1 7 −1
0 0 0 0 0 0 0


The last column is not a pivot column. So the system is consistent.

Theorem 5.21 (Consistent Systems r and n). Suppose A is the augmented matrix
of a consistent system of linear equations with n variables. Suppose also that B is
a row-equivalent matrix in reduced row-echelon form with r pivot columns. Then
r ≤ n. If r = n, then the system has a unique solution, and if r < n, then the
system has infinitely many solutions.

Proof of Consistent Systems, r and n. This theorem contains three implications
that we must establish. Notice first that B has n + 1 columns, so there can be
at most n+1 pivot columns, i.e., r ≤ n+1. If r = n+1, then every column of B
is a pivot column, and in particular, the last column is a pivot column. So the pre-
vious theorem tells us that the system is inconsistent, contrary to our hypothesis.
We are left with r ≤ n.

When r = n, we find n−r = 0 free variables (i.e., F = {n+1}) and the only
solution is given by setting the n variables to the the first n entries of column n+1
of B. When r < n, we have n − r > 0 free variables. Choose one free variable
and set all the other free variables to zero. Now, set the chosen free variable to any
fixed value. It is possible to then determine the values of the dependent variables
to create a solution to the system. By setting the chosen free variable to different
values, in this manner we can create infinitely many solutions.

Theorem 5.22 (Free Variables for Consistent Systems). Suppose A is the aug-
mented matrix of a consistent system of linear equations with n variables. Sup-
pose also that B is a row-equivalent matrix in reduced row-echelon form with r
rows that are not completely zeros. Then the solution set can be described with
n− r free variables.

Example 5.23. 1. System of linear equations with n = 3, m = 3.

x1 − x2 + 2x3 = 1

2x1 + x2 + x3 = 8

x1 + x2 = 5
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Augmented matrix  1 −1 2 1
2 1 1 8
1 1 0 5


The reduced row echelon form of the augmented matrix. 1 0 1 3

0 1 −1 2
0 0 0 0


The last column is not a pivot column. So the system of linear equations
is consistent. r = 2, there are 3 − 2 free variables. In fact D = {1, 2},
F = {3}. x1, x2 are dependent variables, x3 is a free variables.

x1 = 3− x3
x2 = 2 + x3

2. System of linear equations with n = 3,m = 3.

−7x1 − 6x2 − 12x3 = −33
5x1 + 5x2 + 7x3 = 24

x1 + 4x3 = 5

Augmented matrix  −7 −6 −12 −335 5 7 24
1 0 4 5


The reduced row echelon form of the augmented matrix. 1 0 0 −3

0 1 0 5

0 0 1 2


The last column is not a pivot column. So the system of linear equations
is consistent. r = 3, there are 3 − 3 = 0 free variables. So the solution is
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unique. In fact In fact

x1 = −3
x2 = 5

x3 = 2

3. System of linear equations with n = 2, m = 5.

2x1 + 3x2 = 6

−x1 + 4x2 = −14
3x1 + 10x2 = −2
3x1 − x2 = 20

6x1 + 9x2 = 18

Augmented matrix 
2 3 6
−1 4 −14
3 10 −2
3 −1 20
6 9 18


The reduced row echelon form of the augmented matrix.

1 0 6

0 1 −2
0 0 0
0 0 0
0 0 0


The last column is not a pivot column. So the system of linear equations
is consistent. r = 2, there are 2 − 2 = 0 free variables. So the solution is
unique. In fact

x1 = 6

x2 = −2
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4. System of linear equations with n = 4,m = 3.

2x1 + x2 + 7x3 − 7x4 = 2

−3x1 + 4x2 − 5x3 − 6x4 = 3

x1 + x2 + 4x3 − 5x4 = 2

Augmented matrix  2 1 7 −7 2
−3 4 −5 −6 3
1 1 4 −5 2


The reduced row echelon form of the augmented matrix. 1 0 3 −2 0

0 1 1 −3 0

0 0 0 0 1


The last column is a pivot column. Hence the system of linear equations is
inconsistent. It has no solution.

Theorem 5.24 (Possible Solution Sets for Linear Systems). A system of linear
equations has no solutions, a unique solution or infinitely many solutions.

Proof of Possible Solution Sets for Linear Systems. • If the system is incon-
sistent, that it has no solutions.

• Suppose the system is consistent.

– If it has 0 free variable, it has a unique solution.

– If it has ≥ 1 free variables, it has infinite many solutions.

Theorem 5.25 (Consistent More Variables than Equations Infinite solutions). Sup-
pose a consistent system of linear equations has m equations in n variables. If
n > m, then the system has infinitely many solutions.

Proof of Consistent, More Variables than Equations, Infinite solutions. Suppose that
the augmented matrix of the system of equations is row-equivalent to B, a matrix
in reduced row-echelon form with r nonzero rows. Because B has m rows in to-
tal, the number of nonzero rows is less than or equal to m. In other words, r ≤ m.
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Follow this with the hypothesis that n > m and we find that the system has a
solution set described by at least one free variable because

n− r ≥ n−m > 0.

A consistent system with free variables will have an infinite number of solutions,
as given by Theorem 5.21 (Consistent Systems, r and n).

These theorems give us the procedures and implications that allow us to com-
pletely solve any system of linear equations. The main computational tool is using
row operations to convert an augmented matrix into reduced row-echelon form.
Here is a broad outline of how we would instruct a computer to solve a system of
linear equations.

Steps of Solving a System of Linear Equations.

1. Represent a system of linear equations in n variables by an augmented ma-
trix.

2. Convert the matrix to a row-equivalent matrix in reduced row-echelon form
using the Gaussian Elimination procedure given in the proof of Theorem
5.6 (Row-Equivalent Matrix in Echelon Form). Identify the location of the
pivot columns, and the rank r.

3. If column n+ 1 is a pivot column, then the system is inconsistent.

4. If column n+ 1 is not a pivot column, there are two possibilities:

(a) r = n and the solution is unique. It can be read off directly from the
entries in rows 1 through n of column n+ 1.

(b) r < n and there are infinitely many solutions. we can describe the
solution sets by the free variables.
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