MATH 1030 Chapter 3

The lecture is based on Beezer, A first course in Linear algebra. Ver 3.5 Downloadable at http://linear.ups.edu/download.html.

The print version can be downloaded at http://linear.ups.edu/download/fcla-3.50-print.pdf.

Reference.

Beezer, Ver 3.5 Sect SSLE (print version p7-p14)

3.1 Introduction

Definition 3.1 (System of Linear Equations). A system of linear equations is a collection of m equations in the variables $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ of the form:

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n}=b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\cdots+a_{3 n} x_{n}=b_{3} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

where $a_{i j}, b_{i}$ and $x_{j}, 1 \leq i \leq m, 1 \leq j \leq n$, are real numbers.
Definition 3.2. $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is a solution of a system of linear equations in n variables if every equation in the system is valid for $x_{1}=s_{1}, x_{2}=s_{2}, \ldots, x_{n}=$ s_{n}. The solution set of a linear system of equations is the set consisting of all solutions to the system, and nothing more.

Example 3.3. The following system of linear equations

$$
\begin{aligned}
x_{1}+2 x_{2}+x_{4} & =7 \\
x_{1}+x_{2}+x_{3}-x_{4} & =3 \\
3 x_{1}+x_{2}+5 x_{3}-7 x_{4} & =1
\end{aligned}
$$

can be rewritten as:

$$
\begin{aligned}
& 1 x_{1}+2 x_{2}+0 x_{3}+1 x_{4}=7 \\
& 1 x_{1}+1 x_{2}+1 x_{3}-1 x_{4}=3 \\
& 3 x_{1}+1 x_{2}+5 x_{3}-7 x_{4}=1
\end{aligned}
$$

So it is a system of linear equations, with $n=4$ variables and $m=3$ equations. Also,

$$
\begin{array}{lllll}
a_{11}=1 & a_{12}=2 & a_{13}=0 & a_{14}=1 & b_{1}=7 \\
a_{21}=1 & a_{22}=1 & a_{23}=1 & a_{24}=-1 & b_{2}=3 \\
a_{31}=3 & a_{32}=1 & a_{33}=5 & a_{34}=-7 & b_{3}=1
\end{array}
$$

One solution is given by $x_{1}=-2, x_{2}=4, x_{3}=2, x_{4}=1$. In fact, from the previous lecture this system of equations has infinitely many solutions.

The solution set may be described as follows:

$$
\{(-1-2 a+3 b, 4+a-2 b, a, b) \mid a, b \in \mathbb{R}\}
$$

3.2 Possibilities for Solution Sets

Definition 3.4. A system of linear equations is consistent if it has at least one solution. Otherwise, the system is called inconsistent.

Example 3.5. 1. The following system of linear equations has only one solution.

$$
\begin{aligned}
2 x_{1}+3 x_{2} & =3 \\
x_{1}-x_{2} & =4
\end{aligned}
$$

The solution set is $\left(x_{1}, x_{2}\right)=(3,-1)$.
Since the solution set is nonempty, the system is consistent.
2. The following system of linear equations has infinite many solutions.

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}=3 \\
& 4 x_{1}+6 x_{2}=6
\end{aligned}
$$

The solution set is $\left\{\left(x_{1}, x_{2}\right)=\left(t, \frac{3-2 t}{3}\right)\right\}$, where t is any real number. Since the solution set is nonempty, the system is consistent.
3. The following system of linear equations has no solutions.

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}=3 \\
& 4 x_{1}+6 x_{2}=10
\end{aligned}
$$

The solution set is empty.
So, the system is inconsistent.
Theorem 3.6. A system of linear equations can have (1) a unique solution or (2) infinitely many solutions or (3) no solutions.

Remark. For example it is impossible for a system of linear equation to have exactly 2 solutions.

3.3 Equivalent Systems and Equation Operations

Definition 3.7 (Equivalent Systems). Two systems of linear equations are equivalent if their solution sets are equal.

Definition 3.8 (Equation Operations). Given a system of linear equations, the following three operations will transform the system into a different one, and each operation is known as an equation operation:

1. Swap the locations of two equations in the list of equations.
2. Multiply each term of an equation by a nonzero number.
3. Multiply each term of one equation by some number, and add these terms to a second equation, on both sides of the equality.

Theorem 3.9 (Equation Operations Preserve Solution Sets). If we apply one of the three equation operations of Definition Definition 3.8 (Equation Operations) to a system of linear equations, then the original system and the transformed system are equivalent.

Proof of Equation Operations Preserve Solution Sets. This will be clear after we have established Theorem Theorem 4.17 (Row-Equivalent Matrices represent Equivalent Systems) in a later chapter.

Example 3.10. The following two systems equations are equivalent:

$$
\left\{\begin{array}{l}
2 x_{1}+3 x_{2}=3 \\
x_{1}-x_{2}=4
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
5 x_{2}=-5 \\
x_{1}-x_{2}=4
\end{array}\right.
$$

In fact, the second system of linear equations is obtained by applying operation 3 on equation 1 (namley, replace equation 1 with [equation 1] $-2 \times$ [equation 2]).

