MATH 1030 Chapter 14

The lecture is based on Beezer, A first course in Linear algebra. Ver 3.5 Downloadable at http://linear.ups.edu/download.html.

The print version can be downloaded at http://linear.ups.edu/download/fcla-3.50-print.pdf.

14.1 Dimension

Definition 14.1 (Dimension). Let V be a vector space.
Suppose a finite set of vectors $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{t}\right\}$ is a basis for V.
Then, we say that V is a finite dimensional vector space.
The number t (namely the number of vectors in the basis) is called the dimension of V.

The dimension of the zero vector space $\{0\}$ is defined to be 0 .
Remark. It is a non-trivial fact that the dimension is well-defined, i.e., If both $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{t}\right\}$ and $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{s}\right\}$ are bases for V, then $s=t$.

Theorem 14.2. Suppose that $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{t}\right\}$ is a finite set of vectors which spans the vector space V. Then any set of $t+1$ or more vectors from V is linearly dependent.

Proof of Theorem 14.2. Let $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}$ be m vectors in V, where $m \geq t+1$. Let $A=\left[\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \cdots \mid \mathbf{v}_{t}\right]$. Since S spans V, for every $\mathbf{u}_{i}(1 \leq i \leq m)$ there exists $\mathbf{w}_{i} \in \mathbb{R}^{t}$ such that:

$$
A \mathbf{w}_{i}=\mathbf{u}_{i} .
$$

Now, consider the matrix:

$$
B=\left[\mathbf{w}_{1}\left|\mathbf{w}_{2}\right| \cdots \mid \mathbf{w}_{m}\right] .
$$

This is a $t \times m$ matrix. In particular, it has more columns than rows, due to the assumption that $m>t$.

Hence, the homogeneous linear system $\mathcal{L S}(B, \mathbf{0})$ has a non-trivial solution $\mathrm{x} \in \mathbb{R}^{m}$. That is:

$$
B \mathbf{x}=\mathbf{0}
$$

The above equation implies that:

$$
A(B \mathbf{x})=A \mathbf{0}=\mathbf{0} .
$$

By the associativity of matrix multiplication, we have:

$$
A(B \mathbf{x})=(A B) \mathbf{x}
$$

On the other hand:

$$
\begin{aligned}
& A B=A\left[\mathbf{w}_{1}\left|\mathbf{w}_{2}\right| \cdots \mid \mathbf{w}_{m}\right] \\
& \quad=\left[A \mathbf{w}_{1}\left|A \mathbf{w}_{2}\right| \cdots \mid A \mathbf{w}_{m}\right] \\
& \quad=\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \cdots \mid \mathbf{u}_{m}\right]
\end{aligned}
$$

Hence,

$$
(A B) \mathbf{x}=\mathbf{0}
$$

is equivalent to:

$$
\left[\mathbf{u}_{1}\left|\mathbf{u}_{2}\right| \cdots \mid \mathbf{u}_{m}\right] \mathbf{x}=\mathbf{0}
$$

which is in turn equivalent to:

$$
x_{1} \mathbf{u}_{1}+x_{2} \mathbf{u}_{2}+\cdots x_{m} \mathbf{u}_{m}=\mathbf{0}
$$

Since, \mathbf{x} is not the zero vector, not all the x_{i} 's are equal to zero. We conclude that the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}$ are linearly dependent.

Theorem 14.3. Suppose that V is a vector space with a finite basis B and a second basis C.

Then B and C have the same size.
Proof of Theorem 14.3. Denote the size of B by t. If C has $\geq t+1$ vectors, then by the previous theorem, C is linearly dependent, in contradiction to the condition that C is a basis.

By the same reasoning, the linearly independent set B must also not have more vectors than C.

So, B and C have the same number of vectors.
Remark. The above theorem shows that the dimension is well-defined. No matter which basis we choose, the size is always the same.

Proposition 14.4. Let $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\} \subseteq \mathbb{R}^{m}$. Then

$$
\operatorname{dim} \operatorname{Span} S \leq n
$$

Proof of Proposition 14.4. By Theorem 13.22, there exists a subset T of S such that T is a basis for Span S.
$\operatorname{dim} \operatorname{Span} S=$ number of vectors in $T \leq$ number of vectors in $S=n$.

Remark. Theorem 13.22 is valid if we replace \mathbb{R}^{m} by $P_{n}, M_{m n}$ or any finite dimensional vector space.

Example 14.5.

$$
\operatorname{dim} \mathbb{R}^{m}=m
$$

Corollary 14.6. Any set of n vectors in \mathbb{R}^{m} are linearly dependent if $n>m$.
Proof of Corollary 14.6. This follows from Theorem 14.2 and the fact that \mathbb{R}^{m} is spanned by m vectors.
Example 14.7. Math major only
$\operatorname{dim} M_{m n}=m n$. See example 3.

Example 14.8. Math major only

$\operatorname{dim} P_{n}=n+1$. See example 4.

Example 14.9. Math major only

Let S_{2} be the set of 2×2 symmetric matrices. For $A \in S_{2}$,

$$
A=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+c\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]
$$

We can show that:

$$
T=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\right\}
$$

is a basis for S_{2}. Hence $\operatorname{dim} S_{2}=3$.
Example 14.10. Math major only
Let P be the set of all real polynomials. As $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ is linearly independent, so $\operatorname{dim} P$ does not exists (or we can write $\operatorname{dim} P=\infty$).

We have seen that every column space of a matrix has a basis. Does every subspace of \mathbb{R}^{m} have a basis?

Lemma 14.11. Let V be a vector space and $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{u} \in V$.
Suppose $S=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent and $\mathbf{u} \notin \operatorname{Span} S$. Then $S^{\prime}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}, \mathbf{u}\right\}$ is linearly independent.

Proof of Lemma 14.11. Let the relation of linear dependence of S^{\prime} be

$$
\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{k} \mathbf{v}_{k}+\alpha \mathbf{u}=\mathbf{0}
$$

Suppose $\alpha \neq 0$, then

$$
\mathbf{u}=-\frac{\alpha_{1}}{\alpha} \mathbf{v}_{1}-\cdots-\frac{\alpha_{k}}{\alpha} \mathbf{v}_{k} \in \operatorname{Span} S .
$$

Contradiction.
So $\alpha=0$, then

$$
\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{k} \mathbf{v}_{k}=\mathbf{0}
$$

By the linear independence of $S, \alpha_{i}=0$ for all i. Hence the above relation of dependence of S^{\prime} is trivial.

Theorem 14.12. Let V be a nonzero (i.e. contains nonzero vectors) subspace of \mathbb{R}^{m}. (That is, $V \neq\{\mathbf{0}\}$.)

Then, there exists a basis for V.
Proof of Theorem 14.12. Consider all nonempty linearly independent subsets S of vectors in V. By Corollary 14.6, the size of any such S is an integer between 1 and m.

Let n be the largest possible size of such sets, and let:

$$
B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}
$$

be a nonempty linearly independent set of V with size n. We claim that $\operatorname{Span} B=$ V:

If not, then there exists $\mathbf{u} \in V$ which does not belong to $\operatorname{Span} B$, and by Lemma 14.11 the set:

$$
B \cup \mathbf{u}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}, \mathbf{u}\right\}
$$

is an linearly indepedent set of size $n+1$, which contradicts the assumpion that n is the maximum size of linearly independent subsets in V.

Hence, the linearly independent set B spans V, and it follows that B is a basis of V.

Alternatively,
Proof of Theorem 14.12. Let V be a nonzero vector space. Let \mathbf{v}_{1} be a nonzero vector in V. If $V=$ Span $\left\{\mathbf{v}_{1}\right\}$, we can take $S=\left\{\mathbf{v}_{1}\right\}$. Then obviously $\left\{\mathbf{v}_{1}\right\}$ is linearly independent and hence S is a basis for V.

Otherwise, let $\mathbf{v}_{2} \in V$ but not in $\operatorname{Span}\left\{\mathbf{v}_{1}\right\}$.
By the previous lemma, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is linearly independent. If $V=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, we can take $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.

So S is a basis for V.
Otherwise, let $\mathbf{v}_{3} \in V$ but not in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
By the previous lemma, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is linearly independent. Repeat the above process, inductive we can define \mathbf{v}_{k+1} as following: If $V=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$, we can take $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$.

Because $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent, S is a basis for V.
Otherwise defined $\mathbf{v}_{k+1} \notin \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$.
By the previous lemma, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k+1}\right\}$ is linearly independent.
If the process stops, say at step k, i.e., $V=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$.
Then we can take $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$.
Because $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is linearly independent, it is a basis for V.
This completes the proof.
Otherwise, the process continues infinitely, in particular, we can take $k=$ $m+1$ and $V \neq \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m+1}\right\}$ and $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m+1}\right\}$ is linearly independent.

Since $\left\langle\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}\right\}\right\rangle=\mathbb{R}^{m}$, by Theorem 14.2 the vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m+1}\right\}$ are linearly dependent. Contradiction.

Theorem 14.13. Suppose a vector space V has dimension n. Then, any linearly independent set with n vectors in V is a basis for V.

Theorem 14.14. Suppose a vector space V has dimension n. Suppose S is a set of n vectors in V which spans V (That is, $\langle S\rangle=V$).

Then, S is a basis for V.

14.2 Rank and nullity of a matrix

Definition 14.15 (Nullity of a matrix). Suppose that $A \in M_{m n}$. Then the nullity of A is the dimension of the null space of $A, n(A)=\operatorname{dim}(\mathcal{N}(A))$.

Definition 14.16 (Rank of a matrix). Suppose that $A \in M_{m n}$. Then the rank of A is the dimension of the column space of $A, r(A)=\operatorname{dim}(\mathcal{C}(A))$.

Example 14.17. Rank and nullity of a matrix

Let us compute the rank and nullity of

$$
A=\left[\begin{array}{ccccccc}
2 & -4 & -1 & 3 & 2 & 1 & -4 \\
1 & -2 & 0 & 0 & 4 & 0 & 1 \\
-2 & 4 & 1 & 0 & -5 & -4 & -8 \\
1 & -2 & 1 & 1 & 6 & 1 & -3 \\
2 & -4 & -1 & 1 & 4 & -2 & -1 \\
-1 & 2 & 3 & -1 & 6 & 3 & -1
\end{array}\right]
$$

To do this, we will first row-reduce the matrix since that will help us determine bases for the null space and column space.

$$
\left[\begin{array}{ccccccc}
\boxed{1} & -2 & 0 & 0 & 4 & 0 & 1 \\
0 & 0 & \boxed{1} & 0 & 3 & 0 & -2 \\
0 & 0 & 0 & \boxed{1} & -1 & 0 & -3 \\
0 & 0 & 0 & 0 & 0 & \boxed{1} & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

From this row-equivalent matrix in reduced row-echelon form we record $D=$ $\{1,3,4,6\}$ and $F=\{2,5,7\}$.

By Theorem 13.10 (Basis of the Column Space), for each index in D, we can create a single basis vector. In fact $T=\left\{\mathbf{A}_{1}, \mathbf{A}_{3}, \mathbf{A}_{4}, \mathbf{A}_{6}\right\}$ is a basis for $\mathcal{C}(A)$. In total the basis will have 4 vectors, so the column space of A will have dimension 4 and we write $r(A)=4$.

By Theorem 11.12, for each index in F, we can create a single basis vector. In total the basis will have 3 vectors, so the null space of A will have dimension 3 and we write $n(A)=3$. In fact:

$$
R=\left\{\left[\begin{array}{l}
2 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-4 \\
0 \\
-3 \\
1 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
2 \\
3 \\
0 \\
-1 \\
1
\end{array}\right]\right\}
$$

is a basis for $\mathcal{N}(A)$.

Theorem 14.18 (Computing rank and nullity). Suppose $A \in M_{m n}$ and $A \xrightarrow{\text { RREF }} B$. Let r denote the number of pivot columns ($=$ number of nonzero rows). Then $r(A)=r$ and $n(A)=n-r$.

Proof of Computing rank and nullity. Let $D=\left\{d_{1}, \ldots, d_{r}\right\}$ be the indexes of the pivot columns of B. By Theorem 13.10 (Basis of the Column Space), $\left\{\mathbf{A}_{d_{1}}, \ldots, \mathbf{A}_{d_{r}}\right\}$ is a basis for $\mathcal{C}(A)$. So $r(A)=r$.

By Theorem 11.12, each free variable corresponding to a single basis vector for the null space. So $n(A)$ is the number of free variables $=n-r$.

Corollary 14.19 (Dimension Formula). Suppose $A \in M_{m n}$, then

$$
r(A)+n(A)=n .
$$

Theorem 14.20. Let A be a $m \times n$ matrix. Then

$$
r(A)=r\left(A^{t}\right) .
$$

Equivalently

$$
\operatorname{dim} \mathcal{C}(A)=\operatorname{dim} \mathcal{R}(A) .
$$

Proof of Theorem 14.20. Let $A \xrightarrow{\text { RREF }} B$.
Let r denote the number of pivot columns (= number of nonzero rows).
Then by the above discussion $r=r(A)$. By Theorem 13.19 (Basis for the Row Space), the first r columns of B^{t} form a basis for $\mathcal{R}(A)=\mathcal{C}\left(A^{t}\right)$. Hence $r=r\left(A^{t}\right)$. This completes the proof.

Let us take a look at the rank and nullity of a square matrix.
Example 14.21. The matrix

$$
E=\left[\begin{array}{ccccccc}
0 & 4 & -1 & 2 & 2 & 3 & 1 \\
2 & -2 & 1 & -1 & 0 & -4 & -3 \\
-2 & -3 & 9 & -3 & 9 & -1 & 9 \\
-3 & -4 & 9 & 4 & -1 & 6 & -2 \\
-3 & -4 & 6 & -2 & 5 & 9 & -4 \\
9 & -3 & 8 & -2 & -4 & 2 & 4 \\
8 & 2 & 2 & 9 & 3 & 0 & 9
\end{array}\right]
$$

is row-equivalent to the matrix in reduced row-echelon form,

$$
\left[\begin{array}{ccccccc}
{\left[\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 \\
0
\end{array}\right]}
\end{array}\right]
$$

With $n=7$ columns and $r=7$ nonzero rows tells us the rank is $r(E)=7$ and the nullity is $n(E)=7-7=0$.

The value of either the nullity or the rank are enough to characterize a nonsingular matrix.

Theorem 14.22 (Rank and Nullity of a Nonsingular Matrix). Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. The rank of A is $n, r(A)=n$.
3. The nullity of A is zero, $n(A)=0$.

Proof of Rank and Nullity of a Nonsingular Matrix. $(1 \Rightarrow 2)$ If A is nonsingular then $\mathcal{C}(A)=\mathbb{R}^{n}$.

If $\mathcal{C}(A)=\mathbb{R}^{n}$, then the column space has dimension n, so the rank of A is n.
$(2 \Rightarrow 3)$ Suppose $r(A)=n$. Then the dimension formula gives

$$
\begin{aligned}
n(A) & =n-r(A) \\
& =n-n \\
& =0
\end{aligned}
$$

($3 \Rightarrow 1$) Suppose $n(A)=0$, so a basis for the null space of A is the empty set. This implies that $\mathcal{N}(A)=\{\mathbf{0}\}$ and hence A is nonsingular.

With a new equivalence for a nonsingular matrix, we can update our list of equivalences which now becomes a list requiring double digits to number.

Theorem 14.23. Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. A row-reduces to the identity matrix.
3. The null space of A contains only the zero vector, $\mathcal{N}(A)=\{0\}$.
4. The linear system $\mathcal{L S}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b}.
5. The columns of A are a linearly independent set.
6. A is invertible.
7. The column space of A is $\mathbb{R}^{n}, \mathcal{C}(A)=\mathbb{R}^{n}$.
8. The columns of A are a basis for \mathbb{R}^{n}.
9. The rank of A is $n, r(A)=n$.
10. The nullity of A is zero, $n(A)=0$.
