MATH 1030 Chapter 14

The lecture is based on Beezer, A first course in Linear algebra. Ver 3.5 Down-loadable at http://linear.ups.edu/download.html .

The print version can be downloaded at http://linear.ups.edu/download/fcla-3.50-print.pdf.

14.1 Dimension

Definition 14.1 (Dimension). Let V be a vector space.

Suppose a finite set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_t\}$ is a basis for V.

Then, we say that V is a **finite dimensional vector space**.

The number t (namely the number of vectors in the basis) is called the **dimension** of V.

The dimension of the zero vector space $\{0\}$ is defined to be 0.

Remark. It is a non-trivial fact that the dimension is well-defined, i.e., If both $\{\mathbf{v}_1, \ldots, \mathbf{v}_t\}$ and $\{\mathbf{u}_1, \ldots, \mathbf{u}_s\}$ are bases for V, then s = t.

Theorem 14.2. Suppose that $S = {\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_t}$ is a finite set of vectors which spans the vector space V. Then any set of t + 1 or more vectors from V is linearly dependent.

Proof of Theorem 14.2. Let $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$ be m vectors in V, where $m \ge t + 1$. Let $A = [\mathbf{v}_1 | \mathbf{v}_2 | \cdots | \mathbf{v}_t]$. Since S spans V, for every \mathbf{u}_i $(1 \le i \le m)$ there exists $\mathbf{w}_i \in \mathbb{R}^t$ such that:

$$A\mathbf{w}_i = \mathbf{u}_i.$$

Now, consider the matrix:

$$B = [\mathbf{w}_1 | \mathbf{w}_2 | \cdots | \mathbf{w}_m].$$

This is a $t \times m$ matrix. In particular, it has more columns than rows, due to the assumption that m > t.

Hence, the homogeneous linear system $\mathcal{LS}(B, \mathbf{0})$ has a non-trivial solution $\mathbf{x} \in \mathbb{R}^m$. That is:

$$B\mathbf{x} = \mathbf{0}.$$

The above equation implies that:

$$A\left(B\mathbf{x}\right) = A\mathbf{0} = \mathbf{0}.$$

By the associativity of matrix multiplication, we have:

$$A\left(B\mathbf{x}\right) = \left(AB\right)\mathbf{x}.$$

On the other hand:

$$AB = A[\mathbf{w}_1 | \mathbf{w}_2 | \cdots | \mathbf{w}_m]$$

= $[A\mathbf{w}_1 | A\mathbf{w}_2 | \cdots | A\mathbf{w}_m]$
= $[\mathbf{u}_1 | \mathbf{u}_2 | \cdots | \mathbf{u}_m]$

Hence,

 $(AB)\mathbf{x} = \mathbf{0}$

is equivalent to:

$$[\mathbf{u}_1|\mathbf{u}_2|\cdots|\mathbf{u}_m]\mathbf{x}=\mathbf{0}$$

which is in turn equivalent to:

$$x_1\mathbf{u}_1 + x_2\mathbf{u}_2 + \cdots + x_m\mathbf{u}_m = \mathbf{0}.$$

Since, x is not the zero vector, not all the x_i 's are equal to zero. We conclude that the vectors $\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_m$ are linearly dependent.

Theorem 14.3. Suppose that V is a vector space with a finite basis B and a second basis C.

Then B and C have the same size.

Proof of Theorem 14.3. Denote the size of B by t. If C has $\geq t + 1$ vectors, then by the previous theorem, C is linearly dependent, in contradiction to the condition that C is a basis.

By the same reasoning, the linearly independent set B must also not have more vectors than C.

So, B and C have the same number of vectors.

Remark. The above theorem shows that the dimension is well-defined. No matter which basis we choose, the size is always the same.

Proposition 14.4. Let $S = {\mathbf{v}_1, \ldots, \mathbf{v}_n} \subseteq \mathbb{R}^m$. Then

 $\dim \operatorname{Span} S \leq n.$

Proof of Proposition 14.4. By Theorem 13.22, there exists a subset T of S such that T is a basis for Span S.

dim Span S = number of vectors in $T \leq$ number of vectors in S = n.

Remark. Theorem 13.22 is valid if we replace \mathbb{R}^m by P_n , M_{mn} or any finite dimensional vector space.

Example 14.5.

$$\dim \mathbb{R}^m = m$$

Corollary 14.6. Any set of n vectors in \mathbb{R}^m are linearly dependent if n > m.

Proof of Corollary 14.6. This follows from Theorem 14.2 and the fact that \mathbb{R}^m is spanned by *m* vectors.

Example 14.7. Math major only

dim $M_{mn} = mn$. See example 3.

Example 14.8. Math major only dim $P_n = n + 1$. See example 4.

Example 14.9. Math major only

Let S_2 be the set of 2×2 symmetric matrices. For $A \in S_2$,

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

We can show that:

$$T = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

is a basis for S_2 . Hence dim $S_2 = 3$.

Example 14.10. Math major only

Let P be the set of all real polynomials. As $\{1, x, x^2, x^3, ...\}$ is linearly independent, so dim P does not exists (or we can write dim $P = \infty$).

We have seen that every column space of a matrix has a basis. Does every subspace of \mathbb{R}^m have a basis?

Lemma 14.11. Let V be a vector space and $\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{u} \in V$.

Suppose $S = {\mathbf{v}_1, \dots, \mathbf{v}_k}$ is linearly independent and $\mathbf{u} \notin \text{Span } S$. Then $S' = {\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{u}}$ is linearly independent.

Proof of Lemma 14.11. Let the relation of linear dependence of S' be

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_k \mathbf{v}_k + \alpha \mathbf{u} = \mathbf{0}.$$

Suppose $\alpha \neq 0$, then

$$\mathbf{u} = -\frac{\alpha_1}{\alpha} \mathbf{v}_1 - \dots - \frac{\alpha_k}{\alpha} \mathbf{v}_k \in \operatorname{Span} S.$$

Contradiction.

So $\alpha = 0$, then

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_k \mathbf{v}_k = \mathbf{0}.$$

By the linear independence of S, $\alpha_i = 0$ for all i. Hence the above relation of dependence of S' is trivial.

Theorem 14.12. Let V be a nonzero (i.e. contains nonzero vectors) subspace of \mathbb{R}^m . (That is, $V \neq \{0\}$.)

Then, there exists a basis for V.

Proof of Theorem 14.12. Consider all nonempty linearly independent subsets S of vectors in V. By Corollary 14.6, the size of any such S is an integer between 1 and m.

Let n be the largest possible size of such sets, and let:

$$B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$$

be a nonempty linearly independent set of V with size n. We claim that $\operatorname{Span} B = V$:

If not, then there exists $\mathbf{u} \in V$ which does not belong to Span *B*, and by Lemma 14.11 the set:

$$B \cup \mathbf{u} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n, \mathbf{u}\}$$

is an linearly independent set of size n + 1, which contradicts the assumption that n is the maximum size of linearly independent subsets in V.

Hence, the linearly independent set B spans V, and it follows that B is a basis of V. \Box

Alternatively,

Proof of Theorem 14.12. Let V be a nonzero vector space. Let \mathbf{v}_1 be a nonzero vector in V. If $V = \text{Span} \{\mathbf{v}_1\}$, we can take $S = \{\mathbf{v}_1\}$. Then obviously $\{\mathbf{v}_1\}$ is linearly independent and hence S is a basis for V.

Otherwise, let $\mathbf{v}_2 \in V$ but not in Span $\{\mathbf{v}_1\}$.

By the previous lemma, $\{\mathbf{v}_1, \mathbf{v}_2\}$ is linearly independent. If $V = \text{Span } \{\mathbf{v}_1, \mathbf{v}_2\}$, we can take $S = \{\mathbf{v}_1, \mathbf{v}_2\}$.

So S is a basis for V.

Otherwise, let $\mathbf{v}_3 \in V$ but not in Span $\{\mathbf{v}_1, \mathbf{v}_2\}$.

By the previous lemma, $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent. Repeat the above process, inductive we can define \mathbf{v}_{k+1} as following: If $V = \text{Span } \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$, we can take $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$.

Because $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is linearly independent, S is a basis for V.

Otherwise defined $\mathbf{v}_{k+1} \notin \text{Span} \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}.$

By the previous lemma, $\{v_1, v_2, \dots, v_{k+1}\}$ is linearly independent.

If the process stops, say at step k, i.e., $V = \text{Span} \{ \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \}$.

Then we can take $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k}.$

Because $\{v_1, v_2, \dots, v_k\}$ is linearly independent, it is a basis for V. This completes the proof.

Otherwise, the process continues infinitely, in particular, we can take k = m + 1 and $V \neq \text{Span} \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{m+1}\}$ and $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{m+1}\}$ is linearly independent.

Since $\langle \{\mathbf{e}_1, \dots, \mathbf{e}_m\} \rangle = \mathbb{R}^m$, by Theorem 14.2 the vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{m+1}\}$ are linearly dependent. Contradiction.

Theorem 14.13. Suppose a vector space V has dimension n. Then, any linearly independent set with n vectors in V is a basis for V.

Theorem 14.14. Suppose a vector space V has dimension n. Suppose S is a set of n vectors in V which spans V (That is, $\langle S \rangle = V$). Then, S is a basis for V.

14.2 Rank and nullity of a matrix

Definition 14.15 (Nullity of a matrix). Suppose that $A \in M_{mn}$. Then the **nullity** of A is the dimension of the null space of A, $n(A) = \dim(\mathcal{N}(A))$.

Definition 14.16 (Rank of a matrix). Suppose that $A \in M_{mn}$. Then the **rank** of A is the dimension of the column space of A, $r(A) = \dim(\mathcal{C}(A))$.

Example 14.17. Rank and nullity of a matrix

Let us compute the rank and nullity of

	2	-4	-1	3	2	1	-4
A =	1	-2	0	0	4	0	1
	-2	4	1	0	-5	-4	-8
	1	-2	1	1	6	1	-3
	2	-4	-1	1	4	-2	-1
	-1	2	3	-1	6	3	-1

To do this, we will first row-reduce the matrix since that will help us determine bases for the null space and column space.

1	$ \begin{array}{c} -2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	0	0	4	0	$ \begin{array}{c} 1 \\ -2 \\ -3 \end{array} $
0	0	1	0		0	-2
0	0	0	1	-1	0	-3
0	0	0	0	0	1	$\begin{array}{c} 1\\ 0 \end{array}$
0	0	0	0	0	0	0
0	0	0	0	0	0	0

From this row-equivalent matrix in reduced row-echelon form we record $D = \{1, 3, 4, 6\}$ and $F = \{2, 5, 7\}$.

By Theorem 13.10 (Basis of the Column Space), for each index in D, we can create a single basis vector. In fact $T = {\mathbf{A}_1, \mathbf{A}_3, \mathbf{A}_4, \mathbf{A}_6}$ is a basis for $\mathcal{C}(A)$. In total the basis will have 4 vectors, so the column space of A will have dimension 4 and we write r(A) = 4.

By Theorem 11.12, for each index in F, we can create a single basis vector. In total the basis will have 3 vectors, so the null space of A will have dimension 3 and we write n(A) = 3. In fact:

$$R = \left\{ \begin{bmatrix} 2\\1\\0\\0\\0\\0\\0\\0\end{bmatrix}, \begin{bmatrix} -4\\0\\-3\\1\\1\\1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} -1\\0\\2\\3\\0\\-1\\1\\1\end{bmatrix} \right\}$$

is a basis for $\mathcal{N}(A)$.

Theorem 14.18 (Computing rank and nullity). Suppose $A \in M_{mn}$ and $A \xrightarrow{\text{RREF}} B$. Let r denote the number of pivot columns (= number of nonzero rows). Then r(A) = r and n(A) = n - r.

Proof of Computing rank and nullity. Let $D = \{d_1, \ldots, d_r\}$ be the indexes of the pivot columns of B. By Theorem 13.10 (Basis of the Column Space), $\{\mathbf{A}_{d_1}, \ldots, \mathbf{A}_{d_r}\}$ is a basis for $\mathcal{C}(A)$. So r(A) = r.

By Theorem 11.12, each free variable corresponding to a single basis vector for the null space. So n(A) is the number of free variables = n - r.

Corollary 14.19 (Dimension Formula). Suppose $A \in M_{mn}$, then

$$r\left(A\right) + n\left(A\right) = n.$$

Theorem 14.20. Let A be a $m \times n$ matrix. Then

$$r\left(A\right) = r\left(A^{t}\right).$$

Equivalently

$$\dim \mathcal{C}(A) = \dim \mathcal{R}(A) \,.$$

Proof of Theorem 14.20. Let $A \xrightarrow{\text{RREF}} B$.

Let r denote the number of pivot columns (= number of nonzero rows).

Then by the above discussion r = r(A). By Theorem 13.19 (Basis for the Row Space), the first r columns of B^t form a basis for $\mathcal{R}(A) = \mathcal{C}(A^t)$. Hence $r = r(A^t)$. This completes the proof.

Let us take a look at the rank and nullity of a square matrix.

Example 14.21. The matrix

$$E = \begin{bmatrix} 0 & 4 & -1 & 2 & 2 & 3 & 1 \\ 2 & -2 & 1 & -1 & 0 & -4 & -3 \\ -2 & -3 & 9 & -3 & 9 & -1 & 9 \\ -3 & -4 & 9 & 4 & -1 & 6 & -2 \\ -3 & -4 & 6 & -2 & 5 & 9 & -4 \\ 9 & -3 & 8 & -2 & -4 & 2 & 4 \\ 8 & 2 & 2 & 9 & 3 & 0 & 9 \end{bmatrix}$$

is row-equivalent to the matrix in reduced row-echelon form,

1	0	0	0	0	0	0]
0	1	0	0	0	0	0
00	0	1	0	0	0	0
0	0	0	1	0	0	0
0	0	0	0	1	$\begin{array}{c} 0 \\ \hline 1 \end{array}$	0
$\begin{vmatrix} 0\\0 \end{vmatrix}$	0	0	0	0	1	0
0	0	0	0	0	0	1

With n = 7 columns and r = 7 nonzero rows tells us the rank is r(E) = 7 and the nullity is n(E) = 7 - 7 = 0.

The value of either the nullity or the rank are enough to characterize a nonsingular matrix.

Theorem 14.22 (Rank and Nullity of a Nonsingular Matrix). Suppose that A is a square matrix of size n. The following are equivalent.

- 1. A is nonsingular.
- 2. The rank of A is n, r(A) = n.
- 3. The nullity of A is zero, n(A) = 0.

Proof of Rank and Nullity of a Nonsingular Matrix. $(1 \Rightarrow 2)$ If A is nonsingular then $C(A) = \mathbb{R}^n$.

If $C(A) = \mathbb{R}^n$, then the column space has dimension n, so the rank of A is n. (2 \Rightarrow 3) Suppose r(A) = n. Then the dimension formula gives

$$n(A) = n - r(A)$$
$$= n - n$$
$$= 0$$

 $(3 \Rightarrow 1)$ Suppose n(A) = 0, so a basis for the null space of A is the empty set. This implies that $\mathcal{N}(A) = \{\mathbf{0}\}$ and hence A is nonsingular.

With a new equivalence for a nonsingular matrix, we can update our list of equivalences which now becomes a list requiring double digits to number.

Theorem 14.23. Suppose that A is a square matrix of size n. The following are equivalent.

1. A is nonsingular.

- 2. A row-reduces to the identity matrix.
- 3. The null space of A contains only the zero vector, $\mathcal{N}(A) = \{\mathbf{0}\}$.
- 4. The linear system $\mathcal{LS}(A, \mathbf{b})$ has a unique solution for every possible choice of \mathbf{b} .
- 5. The columns of A are a linearly independent set.
- 6. A is invertible.
- 7. The column space of A is \mathbb{R}^n , $\mathcal{C}(A) = \mathbb{R}^n$.
- 8. The columns of A are a basis for \mathbb{R}^n .
- 9. The rank of A is n, r(A) = n.
- 10. The nullity of A is zero, n(A) = 0.