
Math 1030 Chapter 4

The lecture is based on Beezer, A first course in Linear algebra. Ver 3.5 Down-
loadable at http://linear.ups.edu/download.htmlPrint version can be downloaded
at http://linear.ups.edu/download/fcla-3.50-print.pdf

Reference.

• Beezer, Ver 3.5 Subsection MVNSE (print version p17 - p21)

• Strang, Sect 1.4

4.1 Introduction
• After solving a few systems of equations, you will recognize that it does not

matter so much what we call our variables.

• A system in the variables x1, x2, x3 would behave the same if we changed
the names of the variables to a, b, c and kept all the constants the same and
in the same places.

• In this section, we will isolate the key bits of information about a system
of equations into something called a matrix, and then use this matrix to
systematically solve the equations. Along the way we will obtain one of our
most important and useful computational tools.

4.2 Matrix and Vector Notation for Systems of Equa-
tions

Definition 4.1 (Matrix). An m×n matrix is a rectangular layout of real numbers
with m rows and n columns.

• Many people use large parentheses instead of brackets – the distinction is
not important.
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• Rows of a matrix are indexed from the top (with the first row at the top la-
beled "row 1"), and columns are indexed from the left (with the first column
on left labeled "column 1").

• For a matrix A, the notation [A]ij , or Aij , Ai,j , refers to the number in row
i and column j of A.

Example 4.2.

B =

−1 2 5 3
1 0 −6 1
−4 2 2 −2


is a matrix with m = 3 rows and n = 4 columns. We can say that [B]2,3 = −6
while [B]3,4 = −2.

When we do equation operations on a system of equations, the names of the
variables really are not very important. Whether we use x1, x2, x3, or a, b, c, or x,
y, z does not matter so much. In this subsection we will describe some notation
that will make it easier to describe linear systems, solve the systems and describe
the solution sets.

Definition 4.3 (Column Vector). • A column vector of size m is an ordered
list of m numbers, which is written in order vertically from top to bottom.
We often refer to a column vector as simply a vector.

• The set of column vectors of size m is denoted by Rm.

• In these notes, a column vector are typically represented by a bold faced,
lower-case Roman letter, e.g. u, v, w, x, y, z, etc.

• Some authors prefer representing vectors with arrows, such as ~u. Writing
by hand, some like to put arrows on top of the symbol, or a tilde underneath
the symbol, as in u

∼
, or a line under the symbol, as u.

• To refer to i-th entry or component of a vector v, we write [v]i or vi.

Definition 4.4 (Zero Column Vector). The zero vector of size m is the column
vector of size m where each entry is the number zero,

0 =


0
0
0
...
0


or defined much more compactly, [0]i = 0 for 1 ≤ i ≤ m.
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4.3 Partition of Matrices
Sometimes we use horizontal or vertical lines to visually divide a matrix into
different areas. (Mathematically it is still the same object.)

Example 4.5. The matrix 
1 2 3 4 3.5
0 −1 1 1.1 1
3 5.8 1 0 −3
1 8 0 0 7


is same as: 

1 2 3 4 3.5
0 −1 1 1.1 1
3 5.8 1 0 −3
1 8 0 0 7

 ,


1 2 3 4 3.5
0 −1 1 1.1 1
3 5.8 1 0 −3
1 8 0 0 7

 ,


1 2 3 4 3.5
0 −1 1 1.1 1
3 5.8 1 0 −3
1 8 0 0 7

 ,


1 2 3 4 3.5
0 −1 1 1.1 1
3 5.8 1 0 −3
1 8 0 0 7

 ,


1 2 3 4 3.5
0 −1 1 1.1 1
3 5.8 1 0 −3
1 8 0 0 7


Example 4.6. One can also form augmented matrices as follows:

A =


1 2
3 4
5 6
7 8

 , u =


9
10
11
12

 v =


13
14
15
16

 ,

[A|u] =


1 2 9
3 4 10
5 6 11
6 8 12

 =


1 2 9
3 4 10
5 6 11
6 8 12

 ,

[A|u|v] =


1 2 9 13
3 4 10 14
5 6 11 15
6 8 12 15

 =


1 2 9 13
3 4 10 14
5 6 11 15
6 8 12 15

 ,
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Example 4.7.

A =

[
1 2
3 4

]
, B =

[
5 6 7
8 9 10

]
,

C =

11 12
13 14
15 16

 , D =

21 22 23
24 25 26
27 28 29

 .
[A|B] =

[
1 2 5 6 7
3 4 8 9 10

]
=

[
1 2 5 6 7
3 4 8 9 10

]
,

[
A B
C D

]
=


1 2 5 6 7
3 4 8 9 10
11 12 21 22 23
13 14 24 25 26
15 16 27 28 29

 =


1 2 5 6 7
3 4 8 9 10
11 12 21 22 23
13 14 24 25 26
15 16 27 28 29


4.4 Matrix Representations of Linear Systems
The following definitions are stated in the context of the following system of linear
equations:

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

a31x1 + a32x2 + a33x3 + · · ·+ a3nxn = b3
...

am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

Definition 4.8 (Coefficient Matrix). The coefficient matrix associated with the
linear system above is the m× n matrix:

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n

...
...

...
...

...
am1 am2 am3 . . . amn


Definition 4.9 (Vector of Constants). The vector of constants associated with the
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linear system is the following column vector of size m:

b =


b1
b2
b3
...
bm


Definition 4.10 (Solution Vector). The solution vector corresponding to a solu-
tion (x1, x2, . . . , xn) to the linear system is the following column vector of size
n:

x =


x1
x2
x3
...
xn


Definition 4.11 (Matrix Representation of a Linear System). IfA is the coefficient
matrix of a system of linear equations and b is the vector of constants, then we
will write LS(A,b) as a shorthand expression for the system of linear equations,
which we will refer to as the matrix representation of the linear system.

Definition 4.12 (Augmented Matrix). Suppose we have a system of m equations
in n variables, with coefficient matrix A and vector of constants b. Then the
augmented matrix of the system of equations is the m × (n + 1) matrix whose
first n columns are the columns of A and whose last column (n+1) is the column
vector b. This matrix will be written as [A|b].

Example 4.13 (Notation for systems of linear equations). The system of linear
equations

2x1 + 4x2 − 3x3 + 5x4 + x5 = 9

3x1 + x2 + x4 − 3x5 = 0

−2x1 + 7x2 − 5x3 + 2x4 + 2x5 = −3

has coefficient matrix:

A =

 2 4 −3 5 1
3 1 0 1 −3
−2 7 −5 2 2


and vector of constants:
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b =

 9
0
−3


and so will be referenced as LS(A,b). The augmented matrix is

[A|b] =

 2 4 −3 5 1 9
3 1 0 1 −3 0
−2 7 −5 2 2 −3


4.5 Row operations
An augmented matrix can be used to represent a system of linear equations and
release us from writing out all the variables. We have seen how certain operations
we can perform on equations will preserve their solutions . The next two defini-
tions and the following theorem carry over these ideas to augmented matrices.

Definition 4.14 (Row Operations). The following three operations will transform
an m× n matrix into a different matrix of the same size, and each is known as an
elementary row operation.

1. Swap the locations of two rows.

Notation : Ri ↔ Rj

(Swap the location of rows i and j.)

2. Multiply each entry of a single row by a nonzero number.

Notation : αRi

(Multiply row i by the nonzero scalar α.)

3. Multiply each entry of one row by some number, and add these values to the
entries in the same columns of a second row. Leave the first row the same
after this operation, but replace the second row by the new values.

Notation : αRi +Rj

(Multiply row i by the scalar α and add to row j.)

Definition 4.15 (Row-Equivalent Matrices). Two matrices, A and B, are row-
equivalent if one can be obtained from the other by a sequence of row operations.

Remark. Notice that each of the three row operations is reversible, so we do not
have to be careful about the distinction between A is row-equivalent to B and B
is row-equivalent to A.
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Example 4.16. The matrices:

A =

2 −1 3 4
5 2 −2 3
1 1 0 6

 B =

1 1 0 6
3 0 −2 −9
2 −1 3 4


are row-equivalent, as can be seen from:

2 −1 3 4
5 2 −2 3
1 1 0 6



R1↔R3−−−−→

1 1 0 6
5 2 −2 3
2 −1 3 4



−2R1+R2−−−−−→

1 1 0 6
3 0 −2 −9
2 −1 3 4


In fact, any pair of these three matrices are row-equivalent.

Theorem 4.17 (Row-Equivalent Matrices represent Equivalent Systems). Sup-
pose that A and B are row-equivalent augmented matrices. Then the systems of
linear equations that they represent are equivalent systems.

Proof. To be shown later.
See also [ Beezer, Theorem REMES (Ver 3.5 print version p.20) ]

With this theorem, we now have a strategy for solving a system of linear equa-
tions:

1. Begin with a system of equations, represent the system by an augmented
matrix.

2. perform row operations (which will preserve solutions for the system) to get
a ”simpler” augmented matrix

3. convert back to a ”simpler” system of equations and then solve that system,
knowing that its solutions are those of the original system.
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Example 4.18. Solve:

x1 + 2x2 + 2x3 = 4

x1 + 3x2 + 3x3 = 5

2x1 + 6x2 + 5x3 = 6

Form the augmented matrix:

A =

 1 2 2 4
1 3 3 5
2 6 5 6


then apply row operations:

−1R1+R2−−−−−→

 1 2 2 4
0 1 1 1
2 6 5 6



−2R1+R3−−−−−→

 1 2 2 4
0 1 1 1
0 2 1 −2



−2R2+R3−−−−−→

 1 2 2 4
0 1 1 1
0 0 −1 −4



−1R3−−−→

 1 2 2 4
0 1 1 1
0 0 1 4


So the matrix  1 2 2 4

0 1 1 1
0 0 1 4


is row equivalent to A. By the previous theorem (Row-Equivalent Matrices rep-
resent Equivalent Systems), the system of equations below has the same solution
set as the original system of equations:

x1 + 2x2 + 2x3 = 4

x2 + x3 = 1

x3 = 4
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The third equation requires that x3 = 4 to be true. Making this substitution into
equation 2 we arrive at x2 = −3, and finally, substituting these values of x2 and
x3 into the first equation, we find that x1 = 2.
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