
Math 1030 Chapter 15

Reference.
Beezer, Ver 3.5 Section B (print version p233-238), Section D (print version

p245-253)
Exercise.

• Exercises with solutions can be downloaded at http://linear.ups.edu/download/fcla-
3.50-solution-manual.pdf (Replace C by R)

Section B p.88-92 C10, C11, C12, M20 Section D p.92-96 C21, C23, C30,
C31, C35, C36, C37, M20, M21.

15.1 Basis
Definition 15.1. Let V be a vector space. Then a subset S of V is said to be a
basis for V if

1. S is linearly independent.

2. 〈S〉 = V , i.e. S spans V .

Remark. Most of the time V is a subspace of Rm. Occasionally V is assumed to
be a subspace of Mmn or Pn. It does not hurt to assume V is a subspace of Rm.

Example 15.2. Let V = Rm, then B = {e1, . . . , em} is a basis for V . (recall all
the entries of ei is zero, except the i-th entry being 1).

It is called the standard basis: ObviouslyB is linearly independent. Also, for
any v ∈ V , v = [v]1e1 + · · ·+ [v]mem ∈ 〈B〉. So 〈B〉 = V .

Example 15.3. Math major only
Consider V =M22. Let:

B11 =

[
1 0
0 0

]
, B12 =

[
0 1
0 0

]
,
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B21 =

[
0 0
1 0

]
, B22 =

[
0 0
0 1

]
,

Then B = {B11, B12, B21, B22} is a basis for V .
Check: Obviously B is linearly independent (exercise). Also for any A ∈ V ,

A =

[
a b
c d

]
= aB11 + bB12 + cB21 + dB22.

So 〈B〉 =M22.

Exercise 15.4. Math major only
Let V =Mmn.
For 1 ≤ i ≤ m, 1 ≤ j ≤ n, let Bij be the m × n matrix with (i, j)-th entry

equal to 1 and all other entries equal to 0.
Then {Bij|1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis for V .

Example 15.5. Math major only
Let V = Pn. Then 1, x, x2, . . . , xn is a basis. It is easy to show that S =

{1, x, x2, . . . , xn} is linearly independent. Also any polynomial

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

is a linear combinations of S.

Example 15.6. A vector space can have different bases.
Consider the vector space V = R2.
Then,

S = {e1, e2}
is a basis for V , and:

S ′ =

{[
1
0

]
,

[
1
1

]}
is also a basis.

15.2 Bases for spans of column vectors
Let S = {v1, . . . ,vn} be a subset of Rm Recall from lecture 14, that there are
several methods to find a subset T ⊆ {S}.

Such that (i) T is linearly independent (ii) 〈T 〉 = 〈S〉. (In other words T is a
basis for 〈S〉.)
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Method 1 Let A = [v1| · · · |vn]
RREF−−−→ B.

Suppose D = {d1, . . . , dr} be the indexes of the pivot columns of B.
Let T = {vd1 , . . . ,vdr}. Then T is a basis for 〈S〉 = C (A)
Method 2 Let A = [v1| · · · |vn]. Suppose At RREF−−−→ B.
Let T be the nonzero columns of Bt. Then T is a basis for 〈S〉 = C (A)
This is an example from Lecture 14.

Example 15.7. Column space from row operations
Let

S =

v1 =


1
2
0
−1

 ,v2 =


4
8
0
−4

 ,v3 =


0
−1
2
2

 ,v4 =


−1
3
−3
4

 ,v5 =


0
9
−4
8

 ,v6 =


7
−13
12
−31

 ,v7 =


−9
7
−8
37


 .

Find a basis for 〈S〉.

A = [v1| · · · |v7] =


1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37

 .
Method 1

A
RREF−−−→


1 4 0 0 2 1 −3
0 0 1 0 1 −3 5

0 0 0 1 2 −6 6
0 0 0 0 0 0 0


Let

T = {v1,v3,v4} =




1
2
0
−1

 ,


0
−1
2
2

 ,

−1
3
−3
4


 .

Then T is a basis for 〈S〉 = C (A).
Method 2 The transpose of A is

1 2 0 −1
4 8 0 −4
0 −1 2 2
−1 3 −3 4
0 9 −4 8
7 −13 12 −31
−9 7 −8 37


.
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Row-reduced this becomes,

D =



1 0 0 −31
7

0 1 0 12
7

0 0 1 13
7

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

Then we can take

T =




1
0
0
−31

7

 ,

0
1
0
12
7

 ,

0
0
1
13
7


 .

T is a basis for C (A) = 〈S〉.

Theorem 15.8. Let S be a finite subset of Rm. Then, a basis for 〈S〉 exists.
In fact, there exists a subset T of S such that T is a basis for 〈S〉 (see Basis of

the Column Space).

15.3 Bases and nonsingular matrices
Theorem 15.9. Suppose that A is a square matrix of size m.

Then, the columns of A is a basis for Rm if and only if A is nonsingular.

Proof. This is a direct consequence of the theorem Nonsingular Matrix Equiva-
lences, Round 2:

If columns of A form a basis, then in particular they are linearly independent.
So, item 5 of the theorem holds.

It now follows from the theorem that item 1, namely that A is nonsingular,
also holds.

Conversely, suppose A is nonsingular.
Then, by Item 5 of Nonsingular Matrix Equivalences, Round 2 the columns of

A are linearly independent, and by Item 4 they span Rm. Hence, the columns of
A is a basis for Rm.

In fact, we may further extend Nonsingular Matrix Equivalences, Round 2 as
follows:
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Theorem 15.10 (Nonsingular Matrix Equivalences). Suppose that A is an m×m
square matrix. The following are equivalent:

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A,b) has a unique solution for every possible choice
of b.

5. The columns of A form a linearly independent set.

6. The columns of A form a basis for Rm.

Example 15.11. Consider S ′ =

{
v1 =

[
1
0

]
,v2 =

[
1
1

]}
.

Let

A = [v1|v2] =

[
1 1
0 1

]
Exercise. The matrix A is nonsingular.

Hence, S ′ is a basis for R2.

Example 15.12.

A =

−7 −6 −125 5 7
1 0 4

 .
It may be shown that A is row equivalent to the 3× 3 identity matrix.

Hence A is nonsingular, so the columns of A form a basis for R3.

15.4 Dimension
Definition 15.13 (Dimension). Let V be a vector space.

Suppose a finite set of vectors {v1, . . . ,vt} is a basis for V .
Then, we say that V is a finite dimensional vector space.
The number t (namely the number of vectors in the basis) is called the dimen-

sion of V .
The dimension of the zero vector space {0} is defined to be 0.
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Remark. It is a non-trivial fact that the dimension is well-defined, i.e., If both
{v1, . . . ,vt} and {u1, . . . ,us} are bases for V , then s = t.

Theorem 15.14. Suppose that S = {v1, v2, v3, . . . , vt} is a finite set of vectors
which spans the vector space V . Then any set of t + 1 or more vectors from V is
linearly dependent.

Proof. Let u1,u2, . . . ,um be m vectors in V , where m ≥ t + 1. Let A =
[v1|v2| · · · |vt]. Since S spans V , for every ui (1 ≤ i ≤ m) there exists wi ∈ Rt

such that:
Awi = ui.

Now, consider the matrix:

B = [w1|w2| · · · |wm].

This is a t × m matrix. In particular, it has more columns than rows, due to the
assumption that m > t.

Hence, the homogeneous linear system LS(B,0) has a non-trivial solution
x ∈ Rm. That is:

Bx = 0.

The above equation implies that:

A (Bx) = A0 = 0.

By the associativity of matrix multiplication, we have:

A (Bx) = (AB)x.

On the other hand:

AB = A[w1|w2| · · · |wm]

= [Aw1|Aw2| · · · |Awm]

= [u1|u2| · · · |um]

Hence,
(AB)x = 0

is equivalent to:
[u1|u2| · · · |um]x = 0

which is in turn equivalent to:

x1u1 + x2u2 + · · ·xmum = 0.

Since, x is not the zero vector, not all the xi’s are equal to zero. We conclude that
the vectors u1,u2, . . . ,um are linearly dependent.
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Theorem 15.15. Suppose that V is a vector space with a finite basis B and a
second basis C.

Then B and C have the same size.

Proof. Denote the size of B by t. If C has ≥ t + 1 vectors, then by the previous
theorem, C is linearly dependent, in contradiction to the condition that C is a
basis.

By the same reasoning, the linearly independent setB must also not have more
vectors than C.

So, B and C have the same number of vectors.

Remark. The above theorem shows that the dimension is well-defined. No matter
which basis we choose, the size is always the same.

Example 15.16. It follows from Example 15.2 that:

dimRm = m.

Example 15.17. Math major only
dimMmn = mn. See example 3.

Example 15.18. Math major only
dimPn = n+ 1. See example 4.

Example 15.19. Math major only
Let S2 be the set of 2× 2 symmetric matrices. For A ∈ S2,

A =

[
a b
b c

]
= a

[
1 0
0 0

]
+ b

[
0 1
1 0

]
+ c

[
0 0
0 1

]
We can show that:

T =

{[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]}
is a basis for S2. Hence dimS2 = 3.

Example 15.20. Math major only
Let P be the set of all real polynomials. As {1, x, x2, x3, . . .} is linearly inde-

pendent, so dimP does not exists (or we can write dimP =∞).

Lemma 15.21. Let V be a vector space and v1, . . . ,vk,u ∈ V .
Suppose S = {v1, . . . ,vk} is linearly independent and u /∈ 〈S〉. Then S ′ =

{v1, . . . ,vk,u} is linearly independent.
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Proof. Let the relation of linear dependence of S ′ be

α1v1 + · · ·+ αkvk + αu = 0.

Suppose α 6= 0, then

u = −α1

α
v1 − · · · −

αk

α
vk ∈ 〈S〉 .

Contradiction.
So α = 0, then

α1v1 + · · ·+ αkvk = 0.

By the linear independence of S, αi = 0 for all i. Hence the above relation of
dependence of S ′ is trivial.

Theorem 15.22. Let V be a nonzero subspace of Rm. (That is, V 6= {0}.)
Then, there exists a basis for V .

Proof. Let V be a nonzero vector space. Let v1 be a nonzero vector in V . If
V = 〈{v1}〉, we can take S = {v1}. Then obviously {v1} is linearly independent
and hence S is a basis for V .

Otherwise, let v2 ∈ V but not in 〈{v1}〉.
By the previous lemma, {v1,v2} is linearly independent. If V = 〈{v1,v2}〉,

we can take S = {v1,v2}.
So S is a basis for V .
Otherwise, let v3 ∈ V but not in 〈{v1,v2}〉.
By the previous lemma, {v1,v2,v3} is linearly independent. Repeat the above

process, inductive we can define vk+1 as following: If V = 〈{v1,v2, . . . ,vk}〉,
we can take S = {v1,v2, . . . ,vk}.

Because {v1,v2, . . . ,vk} is linearly independent, S is a basis for V .
Otherwise defined vk+1 6∈ 〈{v1,v2, . . . ,vk}〉.
By the previous lemma, {v1,v2, . . . ,vk+1} is linearly independent.
If the process stops, say at step k, i.e., V = 〈{v1,v2, . . . ,vk}〉.
Then we can take S = {v1,v2, . . . ,vk}.
Because {v1,v2, . . . ,vk} is linearly independent, it is a basis for V .
This completes the proof.
Otherwise, the process continues infinitely, in particular, we can take k = m+

1 and V 6= 〈{v1,v2, . . . ,vm+1}〉 and {v1,v2, . . . ,vm+1} is linearly independent.
Since 〈{e1, . . . , em}〉 = Rm, by Theorem 15.14 the vectors {v1,v2, . . . ,vm+1}

are linearly dependent. Contradiction.
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Proposition 15.23. Let S = {v1, . . . ,vn} ⊆ Rm. Then

dim 〈S〉 ≤ n.

Proof. By Theorem Theorem 15.8, there exists a subset T of S such that T is a
basis for 〈S〉.

dim 〈S〉 = number of vectors in T ≤ number of vectors in S = n.

Remark. Both Theorem 15.8 and Proposition 15.23 is valid if we replace Rm by
Pn, Mmn or any finite dimensional vector space.

Theorem 15.24. Suppose a vector space V has dimension n. Then, any linearly
independent set with n vectors in V is a basis for V .

Theorem 15.25. Suppose a vector space V has dimension n. Suppose S is a set
of n vectors in V which spans V (That is, 〈S〉 = V ).

Then, S is a basis for V .

15.5 Rank and nullity of a matrix
Definition 15.26 (Nullity of a matrix). Suppose that A ∈ Mmn. Then the nullity
of A is the dimension of the null space of A, n (A) = dim(N (A)).

Definition 15.27 (Rank of a matrix). Suppose that A ∈ Mmn. Then the rank of
A is the dimension of the column space of A, r (A) = dim(C(A)).
Example 15.28. Rank and nullity of a matrix

Let us compute the rank and nullity of

A =


2 −4 −1 3 2 1 −4
1 −2 0 0 4 0 1
−2 4 1 0 −5 −4 −8
1 −2 1 1 6 1 −3
2 −4 −1 1 4 −2 −1
−1 2 3 −1 6 3 −1


To do this, we will first row-reduce the matrix since that will help us determine
bases for the null space and column space.

1 −2 0 0 4 0 1

0 0 1 0 3 0 −2
0 0 0 1 −1 0 −3
0 0 0 0 0 1 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
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From this row-equivalent matrix in reduced row-echelon form we record D =
{1, 3, 4, 6} and F = {2, 5, 7}.

By Basis of the Column Space, for each index in D, we can create a single
basis vector. In fact T = {A1,A3,A4,A6} is a basis for C(A). In total the basis
will have 4 vectors, so the column space of A will have dimension 4 and we write
r (A) = 4.

By Theorem 11.10, for each index in F , we can create a single basis vector.
In total the basis will have 3 vectors, so the null space of A will have dimension 3
and we write n (A) = 3. In fact:

R =





2
1
0
0
0
0
0


,



−4
0
−3
1
1
0
0


,



−1
0
2
3
0
−1
1




is a basis for N (A).

Theorem 15.29 (Computing rank and nullity). Suppose A ∈Mmn and A RREF−−−→B.
Let r denote the number of pivot columns (= number of nonzero rows). Then
r (A) = r and n (A) = n− r.

Proof. Let D = {d1, . . . , dr} be the indexes of the pivot columns of B. By Basis
of the Column Space, {Ad1 , . . . ,Adr} is a basis for C(A). So r (A) = r.

By Theorem 11.10, each free variable corresponding to a single basis vector
for the null space. So n (A) is the number of free variables = n− r.

Corollary 15.30 (Dimension formula). Suppose A ∈Mmn, then

r (A) + n (A) = n.

Theorem 15.31. Let A be a m× n matrix. Then

r (A) = r
(
At
)
.

Equivalently

dim C (A) = dimR(A) .

Proof. Let A RREF−−−→ B.
Let r denote the number of pivot columns (= number of nonzero rows).
Then by the above discussion r = r (A). By Basis for the Row Space, the

first r columns of Bt form a basis for R(A) = C(At). Hence r = r (At). This
completes the proof.
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Let us take a look at the rank and nullity of a square matrix.

Example 15.32. The matrix

E =



0 4 −1 2 2 3 1
2 −2 1 −1 0 −4 −3
−2 −3 9 −3 9 −1 9
−3 −4 9 4 −1 6 −2
−3 −4 6 −2 5 9 −4
9 −3 8 −2 −4 2 4
8 2 2 9 3 0 9


is row-equivalent to the matrix in reduced row-echelon form,

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


With n = 7 columns and r = 7 nonzero rows tells us the rank is r (E) = 7 and
the nullity is n (E) = 7− 7 = 0.

The value of either the nullity or the rank are enough to characterize a nonsin-
gular matrix.

Theorem 15.33 (Rank and Nullity of a Nonsingular Matrix). Suppose that A is a
square matrix of size n. The following are equivalent.

1. A is nonsingular.

2. The rank of A is n, r (A) = n.

3. The nullity of A is zero, n (A) = 0.

Proof. (1⇒ 2) If A is nonsingular then C (A) = Rn.
If C (A) = Rn, then the column space has dimension n, so the rank of A is n.
(2⇒ 3) Suppose r (A) = n. Then the dimension formula gives

n (A) = n− r (A)
= n− n
= 0

(3⇒ 1) Suppose n (A) = 0, so a basis for the null space of A is the empty set.
This implies that N (A) = {0} and hence A is nonsingular.
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With a new equivalence for a nonsingular matrix, we can update our list of
equivalences which now becomes a list requiring double digits to number.

Theorem 15.34. Suppose that A is a square matrix of size n. The following are
equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A,b) has a unique solution for every possible choice
of b.

5. The columns of A are a linearly independent set.

6. A is invertible.

7. The column space of A is Rn, C (A) = Rn.

8. The columns of A are a basis for Rn.

9. The rank of A is n, r (A) = n.

10. The nullity of A is zero, n (A) = 0.

15.6 Linear relation of Pn and Mmn

You can skip this section. It is for math major only
In this section, we discuss the linear relation of Pn or Mmn by using the tech-

niques used for the vector space Rk.
Let V = Pn and f1, . . . , fm, g ∈ Pn.
Write

fi(x) = ai0 + ai1x+ · · ·+ ainx
n,

g(x) = b0 + b1x+ · · ·+ bnx
n.

By comparing coefficients,

g(x) = α1f1(x) + α2f2(x) + · · ·+ αmfm(x)
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if and only if

α1a10 + α2a20 + · · ·+ αmam0 = b0,

α1a11 + α2a21 + · · ·+ αmam1 = b1,

...

α1a1n + α2a2n + · · ·+ αmamn = bn

if and only if

α1


a10
a11

...
a1n

+ α2


a20
a21

...
a2n

+ · · ·+ αm


am0

am1
...

amn

 =


b0
b1
...
bn

 .
The above motivates us to define

v1 =


a10
a11

...
a1n

 ,v2 =


a20
a21

...
a2n

 , · · · ,vm =


am0

am1
...

amn

 ,u =


b0
b1
...
bn

 .
The entries of vi are the coefficients of fi.

We then have the following theorem:

Theorem 15.35. 1. {f1, . . . , fm} is linearly independent if and only if {v1, . . . ,vm}
is linearly independent.

2. g is a linearly combination of f1, . . . , fm if and only if u is a linear combi-
nation of v1, . . . ,vm

Problems regarding polynomials can therefore be transformed to problems re-
garding column vectors.

Similarly given m× n matrices A1, . . . , Ak, B. Let

v1 =


[A1]1
[A1]2

...
[A1]n

 ,v2 =


[A2]1
[A2]2

...
[A2]n

 , · · · ,u =


[B]1
[B]2

...
[B]n

 .
We have the following:
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Theorem 15.36. 1. {A1, . . . , Ak} is linearly independent if and only if {v1, . . . ,vk}
is linearly independent.

2. B is a linearly combination of A1, . . . , Ak if and only if u is a linear com-
bination of v1, . . . ,vk

Again, problems regarding polynomials can be transformed to problems re-
garding column vectors.

Example 15.37. 1. Determine if

A1 =

[
1 2
3 4

]
, A2 =

[
1 −1
5 6

]
, A3 =

[
−2 0
−3 −4

]
is linearly independent or not.

2. Express

B =

[
−3 0
4 1

]
as a linear combination of A1, A2, A3.

Solution. 1. Let

v1 =


1
3
2
4

 ,v2 =


1
5
−1
6

 ,v3 =


−2
−3
0
−4

 ,u =


−3
4
0
1

 .

[v1|v2|v3] =


1 1 −2
3 5 −3
2 −1 0
4 6 −4

 RREF−−−→


1 0 0
0 1 0
0 0 1
0 0 0

 .
Obviously the columns of the RREF is linearly independent, hence {v1,v2,v3}
is linearly independent. Therefore {A1, A2, A3} is linearly independent.

2. Next

[v1|v2|v3|b] =


1 1 −2 −3
3 5 −3 4
2 −1 0 0
4 6 −5 1

 RREF−−−→


1 0 0 1
0 1 0 2
0 0 1 3
0 0 0 0

 .
Then u = v1 + 2v2 + 3v3. Hence B = A1 + 2A2 + 3A3.
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Example 15.38. Let f1(x) = 1 + x+ x3, f2(x) = 2 + x+ x2, f3(x) = 4 + 3x+
x2 + 2x3, f4(x) = 2x2 + x3, f5(x) = 3 + 2x+ 3x2 + 2x3.

Find a basis for 〈{f1, f2, f3, f4, f5}〉.

Solution. Let

v1 =


1
1
0
1

 ,v2 =


2
1
1
0

 ,v3 =


4
3
1
2

 ,v4 =


0
0
2
1

 ,v5 =


3
2
3
2

 .
Then

A = [v1|v2|v3|v4|v5] =


1 2 4 0 3
1 1 3 0 2
0 1 1 2 3
1 0 2 1 2

 RREF−−−→


1 0 2 0 1
0 1 1 0 1
0 0 0 1 1
0 0 0 0 0

 .
Therefore {v1,v2,v4} is a basis for 〈{v1,v2,v3,v4,v5}〉.

So {f1, f2, f4} is a basis for 〈{f1, f2, f3, f4, f5}〉.
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