
Math 1030 Chapter 14

Reference.

• Beezer, Ver 3.5 Section CRS (print version p167-178)

Exercise.
Exercises with solutions can be downloaded at http://linear.ups.edu/download/fcla-

3.50-solution-manual.pdf (Replace C by R) Section CRS p.66-71 C20, C30-C35,
M10, M20, M21, T40, T41, T45.

14.1 Column Spaces and Systems of Equations
Definition 14.1 (Column Space of a Matrix). Suppose that A is an m× n matrix
with columns A1, A2, A3, . . . , An. Then the column space of A, written C (A),
is the subset of Rm containing all linear combinations of the columns of A,

C (A) = 〈{A1, A2, A3, . . . , An}〉

Theorem 14.2 (Column Spaces and Consistent Systems). Suppose A is an m×n
matrix and b is a vector of size m. Then b ∈ C (A) if and only if LS(A,b) is
consistent.

Proof. Column Spaces and Consistent Systems (⇒) Suppose b ∈ C (A). Then
we can write b as some linear combination of the columns of A. Then by Rec-
ognizing Consistency of a Linear System we can use the scalars from this linear
combination to form a solution to LS(A,b), so this system is consistent.

(⇐) If LS(A,b) is consistent, there is a solution that may be used with Rec-
ognizing Consistency of a Linear System to write b as a linear combination of the
columns of A. This qualifies b for membership in C (A).

This theorem tells us that asking if the systemLS(A,b) is consistent is exactly
the same question as asking if b is in the column space of A. Or equivalently,
it tells us that the column space of the matrix A is precisely those vectors of
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constants, b, that can be paired with A to create a system of linear equations
LS(A,b) that is consistent.

We can form the chain of equivalences

b ∈ C (A) ⇐⇒ LS(A,b) is consistent ⇐⇒ Ax = b for some x

Thus, an alternative (and popular) definition of the column space of an m × n
matrix A is

C (A) = {y ∈ Rm | y = Ax for some x ∈ Rn} = {Ax | x ∈ Rn} ⊆ Rm

Example 14.3. Consider the column space of the 3× 4 matrix A,

A =

 3 2 1 −4
−1 1 −2 3
2 −4 6 −8



Show that v =

18−6
12

 is in the column space of A, v ∈ C (A). The above theorem

says that we need to check the consistency of LS(A, v). From the augmented
matrix and row-reduce, 3 2 1 −4 18

−1 1 −2 3 −6
2 −4 6 −8 12

 RREF−−−→

 1 0 1 −2 6

0 1 −1 1 0
0 0 0 0 0


Since the last column is not a pivot column, so the system is consistent and hence
v ∈ C (A). In fact, we have

v = 6A1.

Next we show that w =

 2
1
−3

 is not in the column space of A, w 6∈ C (A). The

above theorem says that we need to check the consistency of LS(A, v). From the
augmented matrix and row-reduce, 3 2 1 −4 2

−1 1 −2 3 1
2 −4 6 −8 −3

 RREF−−−→

 1 0 1 −2 0

0 1 −1 1 0

0 0 0 0 1


Since the final column is a pivot column, the system is inconsistent and therefore
w 6∈ C (A).
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The next two examples illustrate the main idea of describing C (A).

Example 14.4. Describe C (A) as a null space
Let

A =


1 2 7 1 −1
1 1 3 1 0
3 2 5 −1 9
1 −1 −5 2 0

 .

Find C (A). Let’s determine if v =

v1...
v4

 ∈ 〈S〉.
Applying Gauss-Jordan elimination to the augmented matrix

1 2 7 1 −1 v1
1 1 3 1 0 v2
3 2 5 −1 9 v3
1 −1 −5 2 0 v4

 ,
we obtain 

1 0 −1 0 3 −3v1 + 5v2 − v4
0 1 4 0 −1 v1 − v2
0 0 0 1 −2 2v1 − 3v2 + v4
0 0 0 0 0 9v1 − 16v2 + v3 + 4v4


If 9v1 − 16v2 + v3 + 4v4 = 0, the above is a RREF. The last column is not a pivot
columns. So v ∈ 〈S〉. If 9v1 − 16v2 + v3 + 4v4 6= 0, the equation corresponding
to the last row is

9v1 − 16v2 + v3 + 4v4 = 0.

So the corresponding system of linear equations is inconsistent. So v ∈ 〈S〉.
Hence v ∈ 〈S〉 if and only if 9v1 − 16v2 + v3 + 4v4 = 0. Therefore

C (A) = N ([9 − 16 1 4]) .

Example 14.5. Describe C (A) by basis
Let

A =


1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37

 ,
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find C (A).

A
RREF−−−→ B =


1 4 0 0 2 1 −3
0 0 1 0 1 −3 5

0 0 0 1 2 −6 6
0 0 0 0 0 0 0

 .
The indexes of the pivot columns are D = {1, 3, 4}. Hence C (A) = 〈A〉 =
〈{A1,A3,A4}〉.

14.2 Column Space Spanned by Original Columns
So we have a foolproof, automated procedure for determining membership in
C (A). While this works just fine a vector at a time, we would like to have a more
useful description of the set C (A) as a whole. The next example will preview the
first of two fundamental results about the column space of a matrix.

Example 14.6. Consider the 5× 7 matrix A,
2 4 1 −1 1 4 4
1 2 1 0 2 4 7
0 0 1 4 1 8 7
1 2 −1 2 1 9 6
−2 −4 1 3 −1 −2 −2


The column space of A is

C (A) =

〈


2
1
0
1
−2

 ,


4
2
0
2
−4

 ,


1
1
1
−1
1

 ,

−1
0
4
2
3

 ,


1
2
1
1
−1

 ,


4
4
8
9
−2

 ,


4
7
7
6
−2



〉

While this is a concise description of an infinite set, we might be able to describe
the span with fewer than seven vectors. Now we row-reduce,

2 4 1 −1 1 4 4
1 2 1 0 2 4 7
0 0 1 4 1 8 7
1 2 −1 2 1 9 6
−2 −4 1 3 −1 −2 −2

 RREF−−−→


1 2 0 0 0 3 1

0 0 1 0 0 −1 0

0 0 0 1 0 2 1

0 0 0 0 1 1 3
0 0 0 0 0 0 0
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The pivot columns are D = {1, 3, 4, 5}, so we can create the set

T =




2
1
0
1
−2

 ,


1
1
1
−1
1

 ,

−1
0
4
2
3

 ,


1
2
1
1
−1




and know that C (A) = 〈T 〉 and T is a linearly independent set of columns from
the set of columns of A.

The following theorem is a direct consequence of Basis of a Span:

Theorem 14.7 (Basis of the Column Space). Suppose that A is an m× n matrix
with columns A1, A2, A3, . . . , An, and B is a row-equivalent matrix in reduced
row-echelon form with r pivot columns. Let D = {d1, d2, d3, . . . , dr} be the set
of indices for the pivot columns of B. Let T = {Ad1 , Ad2 , Ad3 , . . . , Adr}. Then

1. T is a linearly independent set.

2. C (A) = 〈T 〉.

14.3 Column Space of a Nonsingular Matrix
Theorem 14.8 (Column Space of a Nonsingular Matrix). Suppose A is a square
matrix of size n. Then A is nonsingular if and only if C (A) = Rn.

Proof. Column Space of a Nonsingular Matrix See Theorem 11.9.

Example 14.9. Let

A =


0 1 2 3
−1 1 2 1
0 1 0 2
1 1 1 4

 .
We can show that A is nonsingular as A RREF−−−→ I4. So C (A) = R4.

14.4 Row Space of a Matrix
Definition 14.10 (Row Space of a Matrix). Suppose A is an m × n matrix. The
row space of A,R(A) is column space C (At) of At.
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Informally, the row space is the set of all linear combinations of the rows of
A. However, we write the rows as column vectors, thus the necessity of using
the transpose to make the rows into columns. Additionally, with the row space
defined in terms of the column space, all of the previous results of this section can
be applied to row spaces.

Notice that if A is a rectangular m × n matrix, then C (A) ⊆ Rm, while
R(A) ⊆ Rn and the two sets are not comparable since they do not even hold
objects of the same type. However, when A is square of size n, both C (A) and
R(A) are subsets of Rn, though usually the sets will not be equal.

Example 14.11. FindR(A) for

A =


1 4 0 −1 0 7 −9
2 8 −1 3 9 −13 7
0 0 2 −3 −4 12 −8
−1 −4 2 4 8 −31 37

 .
To build the row space, we transpose the matrix,

At =



1 2 0 −1
4 8 0 −4
0 −1 2 2
−1 3 −3 4
0 9 −4 8
7 −13 12 −31
−9 7 −8 37


Then the columns of this matrix are used in a span to build the row space,

R(A) = C
(
At
)
=

〈




1
4
0
−1
0
7
−9


,



2
8
−1
3
9
−13
7


,



0
0
2
−3
−4
12
−8


,



−1
−4
2
4
8
−31
37





〉
.

First, row-reduce At, 

1 0 0 −31
7

0 1 0 12
7

0 0 1 13
7

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

6



Since the pivot columns have indices D = {1, 2, 3}, the column space of At can
be spanned by just the first three columns of At,

R(A) = C
(
At
)
=

〈




1
4
0
−1
0
7
−9


,



2
8
−1
3
9
−13
7


,



0
0
2
−3
−4
12
−8





〉
.

Theorem 14.12 (Row-Equivalent Matrices have Equal Row Spaces). Suppose A
and B are row-equivalent matrices. ThenR(A) = R(B).

Proof. Row-Equivalent Matrices have Equal Row Spaces Observe that if B is
obtained from A via a row operation of the type Ri ↔ Rj , then the rows of B are
the same as the rows of A, and hence the columns of Bt are still the same as the
columns of At, only with the order changed. Hence,

R(B) = C
(
Bt
)
= C

(
At
)
= R(A).

If B is obtained from A via a row operation of the type αRi (α 6= 0), then the
i-th column of Bt is equal to α times the i-th column of At, and the other columns
remain the same as those of At with the corresponding indices.

In paricular, the i-th column of Bt is a linear combination of the columns of
At.

Hence, the columns of Bt all lie in C(At), which in turn implies that:

R(B) = C
(
Bt
)
⊆ C

(
At
)
= R(A).

On the other hand, if B is obtained from A via αRi, then A is obtained from B
via
(
1
α

)
Ri. So, by the same argument as before we have:

R(A) = C
(
At
)
⊆ C

(
Bt
)
= R(B).

Hence,R(B) = R(A).
If B is obtained from A via a row operation of the type αRi +Rj , then:[

Bt
]
j
= α

[
At
]
i
+
[
At
]
j
,

and the other columns ofBt remain the same as those ofAt with the corresponding
indices.

In paricular, the i-th column of Bt is a linear combination of the columns of
At.
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Hence, the columns of Bt all lie in C(At), which in turn implies that:

R(B) = C
(
Bt
)
⊆ C

(
At
)
= R(A).

On the other hand, if B is obtained from A via αRi+Rj , then A is obtained from
B via (−α)Ri +Rj . So, by the same argument as before we have:

R(A) = C
(
At
)
⊆ C(Bt) = R(B).

Hence,R(B) = R(A).
We now see that the row space of a matrix remains unchanged after any appli-

cation of a row operation.
Hence, R(B) = R(A) if B is row-equivalent to A, since by the definition

of row-equivalence (Row-Equivalent Matrices) B is obtained by A via a series of
row operations.

Example 14.13. Row spaces of two row-equivalent matrices
The matrices

A =

2 −1 3 4
5 2 −2 3
1 1 0 6

 B =

1 1 0 6
3 0 −2 −9
2 −1 3 4


are row-equivalent via a sequence of two row operations.

Hence by the above theorem

R(A) =

〈


2
−1
3
4

 ,


5
2
−2
3

 ,

1
1
0
6



〉

=

〈

1
1
0
6

 ,


3
0
−2
−9

 ,


2
−1
3
4



〉

= R(B)

Theorem 14.14 (Basis for the Row Space). Suppose that A is a matrix and B is
a row-equivalent matrix in reduced row-echelon form. Let S be the set of nonzero
columns of Bt. Then

1. R(A) = 〈S〉.

2. S is a linearly independent set.

Proof. Basis for the Row Space From Theorem Row-Equivalent Matrices have
Equal Row Spaces. we know that R(A) = R(B). If B has any zero rows, these
are columns of Bt that are the zero vector. We can safely toss out the zero vector
in the span construction, since it can be recreated from the nonzero vectors by a
linear combination where all the scalars are zero. SoR(A) = 〈S〉.
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Suppose B has r nonzero rows and let D = {d1, d2, d3, . . . , dr} denote the
indices of the pivot columns of B. Denote the r column vectors of Bt, the vectors
in S, as B1, B2, B3, . . . , Br. To show that S is linearly independent, start with a
relation of linear dependence

α1B1 + α2B2 + α3B3 + · · ·+ αrBr = 0

Now consider this vector equality in location di. Since B is in reduced row-
echelon form, the entries of column di of B are all zero, except for a leading 1
in row i. Thus, in Bt, row di is all zeros, excepting a 1 in column i. So, for
1 ≤ i ≤ r,

0 = [0]di
= [α1B1 + α2B2 + α3B3 + · · ·+ αrBr]di
= [α1B1]di + [α2B2]di + [α3B3]di + · · ·+ [αrBr]di
= α1 [B1]di + α2 [B2]di + α3 [B3]di + · · ·+ αr [Br]di
= α1(0) + α2(0) + α3(0) + · · ·+ αi(1) + · · ·+ αr(0)

= αi

So we conclude that αi = 0 for all 1 ≤ i ≤ r, establishing the linear independence
of S.

Example 14.15. Improving a span
Suppose in the course of analyzing a matrix (its column space, its null space,

its ...) we encounter the following set of vectors, described by a span

X =

〈


1
2
1
6
6

 ,


3
−1
2
−1
6

 ,


1
−1
0
−1
−2

 ,

−3
2
−3
6
−10



〉

Let A be the matrix whose rows are the vectors in X , so by design X = R(A),

A =


1 2 1 6 6
3 −1 2 −1 6
1 −1 0 −1 −2
−3 2 −3 6 −10


Row-reduce A to form a row-equivalent matrix in reduced row-echelon form,

B =


1 0 0 2 −1
0 1 0 3 1

0 0 1 −2 5
0 0 0 0 0
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Then the above theorem says we can grab the nonzero columns of Bt and write

X = R(A) = R(B) =

〈


1
0
0
2
−1

 ,

0
1
0
3
1

 ,


0
0
1
−2
5



〉

These three vectors provide a much-improved description of X . There are fewer
vectors, and the pattern of zeros and ones in the first three entries makes it easier
to determine membership in X .

Theorem 14.16 (Column Space Row Space Transpose). Suppose A is a matrix.
Then C (A) = R(At).

Proof. Column Space, Row Space, Transpose

C (A) = C
((
At
)t)

= R
(
At
)

Example 14.17. Column space from row operations
Find the column space of A in Example 14.11.
Method 1

A
RREF−−−→


1 4 0 0 2 1 −3
0 0 1 0 1 −3 5

0 0 0 1 2 −6 6
0 0 0 0 0 0 0


Let

T = {A1,A3,A4} =




1
2
0
−1

 ,


0
−1
2
2

 ,

−1
3
−3
4


 .

Then T is linear independent and C (A) = 〈T 〉.
Method 2 The transpose of A is

1 2 0 −1
4 8 0 −4
0 −1 2 2
−1 3 −3 4
0 9 −4 8
7 −13 12 −31
−9 7 −8 37


.
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Row-reduced this becomes, 

1 0 0 −31
7

0 1 0 12
7

0 0 1 13
7

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


.

Now, using Theorem Column Space, Row Space, Transpose and Theorem Basis
for the Row Space,

C (A) = R
(
At
)
=

〈


1
0
0
−31

7

 ,

0
1
0
12
7

 ,

0
0
1
13
7



〉
.

This is a very nice description of the column space. Fewer vectors than the 7
involved in the definition, and the pattern of the zeros and ones in the first 3 slots
can be used to advantage. For example, let’s check if

b =


3
9
1
4


is in C (A) or not.

If it is, then

b =


3
9
1
4

 = x


1
0
0
−31

7

+ y


0
1
0
12
7

+ z


0
0
1
13
7

 =


x
y
z

−31
7
x+ 12

7
y + 13

7
z

 .
From the first three coordinate x = 3, y = 9, z = 1. Let’s check the last coordi-
nate:

−31

7
× 3 +

12

7
× 9 +

13

7
× 1 = 4.

So

b =


3
9
1
4

 = 3


1
0
0
−31

7

+ 9


0
1
0
12
7

+ 1


0
0
1
13
7


and hence b ∈ C (A).
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Remark. Both methods describe algorithms to find bases (i.e., linear independent
set the generate the column space) for the column space. Here are the differences.

1. In method 1, we find a subset of columns that forms a basis. However in
method 2, the basis is not a subset of columns.

2. Given a vector b ∈ C (A), it is easier to express it as a linear combination
of the basis given by method 2.
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