
Math 1030 Chapter 12

Reference.

• Beezer, Ver 3.5 Section LI (print version p95 - p104)

• Strang, Section 2.3

Exercise.

• Exercises with solutions can be downloaded at http://linear.ups.edu/download/fcla-
3.50-solution-manual.pdf Section LI (p.40-48) (Replace C by R in the fol-
lowing questions) C20-25, C30-33, C60, M20, M21, M50, M51, T10-13,
T15, T20, T50.

• Strang, Section 2.3

Linear independence is one of the most fundamental conceptual ideas in linear
algebra, along with the notion of span. So this lecture, and the subsequent one,
will explore this new idea.

12.1 Linearly Independent Sets of Vectors
Definition 12.1 (Relation of Linear Dependence). Given a set of vectors S =
{u1, u2, u3, . . . , un}, an equality of the form

α1u1 + α2u2 + α3u3 + · · ·+ αnun = 0

is a relation of linear dependence on S. If this equality is formed in a trivial
fashion, i.e., αi = 0, 1 ≤ i ≤ n, then we say that it is the trivial relation of linear
dependence on S.

Definition 12.2 (Linear Independence). The set of vectors S = {u1, u2, u3, . . . , un}
is linearly dependent if there is a relation of linear dependence on S that is not
trivial. In the case where the only relation of linear dependence on S is the trivial
one, then S is a linearly independent set of vectors.
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Remark. In short, a set of vectors {u1, u2, u3, . . . , un} is linearly independent
if and only if the only solution to:

x1u1 + x2u2 + · · ·+ xnun = 0

is:
x1 = x2 = · · · = xn = 0.

Theorem 12.3 (Linearly Independent Vectors and Homogeneous Systems). Sup-
pose that S = {v1, v2, v3, . . . , vn} ⊆ Rm is a set of vectors and that A is the
m×nmatrix whose columns are the vectors in S. Then S is a linearly independent
set if and only if the homogeneous system LS(A,0) has a unique solution.

Proof. (⇐) Suppose that LS(A,0) has a unique solution. Since it is a homoge-
neous system, this solution must be the trivial solution, x = 0. This means that
the only relation of linear dependence on S is the trivial one. So S is linearly
independent.

(⇒) We will prove the contrapositive. Suppose that LS(A,0) does not have a
unique solution. Since it is a homogeneous system, it is consistent. And so must
have infinitely many solutions. One of these infinitely many solutions must be
nontrivial (in fact, almost all of them are); choose one. This nontrivial solution
will give a nontrivial relation of linear dependence on S. We therefore conclude
that S is a linearly dependent set.

Since the above theorem is an "if-and-only-if" statement, we can use it to
determine the linear independence or dependence of any set of column vectors,
just by creating a matrix and analyzing its row-reduced echelon form. Let us
illustrate this with two more examples.

Example 12.4. Linearly dependent set in R5

Consider the following set of n = 4 vectors in R5:

S =




2
−1
3
1
2

 ,


1
2
−1
5
2

 ,


2
1
−3
6
1

 ,

−6
7
−1
0
1




To determine linear independence, we first form an arbitrary relation of linear
dependence,

α1


2
−1
3
1
2

+ α2


1
2
−1
5
2

+ α3


2
1
−3
6
1

+ α4


−6
7
−1
0
1

 = 0
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We know that α1 = α2 = α3 = α4 = 0 is a solution to this equation, but that is
of no interest whatsoever. That is always the case, no matter what four vectors we
might have chosen. We are curious to know if there are other, nontrivial, solutions.

In other words, are there nontrivial solutions to the homogeneous linear system
LS(A,0), where the columns of A consist of the vectors in S.

Row-reducing the matrix A gives:

A =


2 1 2 −6
−1 2 1 7
3 −1 −3 −1
1 5 6 0
2 2 1 1

 RREF−−−→


1 0 0 −2
0 1 0 4

0 0 1 −3
0 0 0 0
0 0 0 0

 .
We could solve the corresponding homogeneous system completely, but for this
example all we need is one nontrivial solution. Setting the lone free variable to
any nonzero value, such as x4 = 1, yields the nontrivial solution:

x =


2
−4
3
1

 .
Hence,

2


2
−1
3
1
2

+ (−4)


1
2
−1
5
2

+ 3


2
1
−3
6
1

+ 1


−6
7
−1
0
1

 = 0.

This is a relation of linear dependence on S that is not trivial, so we conclude that
S is linearly dependent .

Example 12.5. Linearly independent set in R5

Consider the following set of n = 4 vectors in R5:

T =




2
−1
3
1
2

 ,


1
2
−1
5
2

 ,


2
1
−3
6
1

 ,

−6
7
−1
1
1


 .
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To determine linear independence we first form an arbitrary relation of linear de-
pendence,

α1


2
−1
3
1
2

+ α2


1
2
−1
5
2

+ α3


2
1
−3
6
1

+ α4


−6
7
−1
1
1

 = 0.

We want to know if there are solutions to the equation above besides the trivial
one: α1 = α2 = α3 = α4 = 0.

Row-reducing the associated matrix gives:

B =


2 1 2 −6
−1 2 1 7
3 −1 −3 −1
1 5 6 1
2 2 1 1

 RREF−−−→


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
0 0 0 0

 .

From the form of this matrix, we see that there are no free variables. Hence the
associated homogeneous linear system has only the trivial solution. So we now
know that there is but one way to combine the four vectors of T into a relation of
linear dependence, and that this one way is the easy and obvious way. Hence, the
set T is linearly independent .

12.1.1 More Examples
Example 12.6. Linearly independent

Is the set of vectors:

S =




2
−1
3
4
2

 ,


6
2
−1
3
4

 ,


4
3
−4
5
1




linearly independent or linearly dependent?

Solution. The above theorem suggests that we study the matrixA whose columns
are the vectors in S. Specifically, we are interested in the size of the solution set
of the homogeneous system LS(A,0). Row-reducing A gives:
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A =


2 6 4
−1 2 3
3 −1 −4
4 3 5
2 4 1

 RREF−−−→


1 0 0

0 1 0

0 0 1
0 0 0
0 0 0

 .
We have r = 3, so there are n − r = 3 − 3 = 0 free variables. Hence LS(A,0)
has a unique solution. By the above theorem, the set S is linearly independent.

Example 12.7. Linearly dependent
Is the set of vectors:

S =




2
−1
3
4
2

 ,


6
2
−1
3
4

 ,


4
3
−4
−1
2




linearly independent or linearly dependent?

Solution. Theorem Linearly Independent Vectors and Homogeneous Systems sug-
gests that we study the matrix A whose columns are the vectors in S. Specifi-
cally, we are interested in the size of the solution set of the homogeneous system
LS(A,0). Row-reducing A gives

A =


2 6 4
−1 2 3
3 −1 −4
4 3 −1
2 4 2

 RREF−−−→


1 0 −1
0 1 1
0 0 0
0 0 0
0 0 0

 .
We have r = 2, so there are n − r = 3 − 2 = 1 free variables. Hence LS(A,0)
has infinitely many solutions. By Theorem Linearly Independent Vectors and
Homogeneous Systems, the set S is linearly dependent.

Theorem Linearly Independent Vectors and Homogeneous Systems gives us
a straightforward way to determine if a set of vectors is linearly independent or
dependent.

Review the previous two examples. They are very similar, differing only in
the last two slots of the third vector. This resulted in slightly different matrices
when row-reduced, and different values of r, the number of nonzero rows. Notice,
too, that we are less interested in the actual solution set, and more interested in
its form or size. These observations allow us to make a slight improvement on
Theorem Linearly Independent Vectors and Homogeneous Systems.
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12.2 Relation between Linear Independence and the
Number of Pivot Columns

Theorem 12.8 (Linearly Independent Vectors r and n). Suppose that

S = {v1, v2, v3, . . . , vn} ⊆ Rm

is a set of vectors and that A is the m×n matrix whose columns are the vectors in
S. Let B be a matrix in reduced row-echelon form that is row-equivalent to A and
let r denote the number of pivot columns in B. Then S is linearly independent if
and only if n = r.

Proof. Theorem Linearly Independent Vectors and Homogeneous Systems says
the linear independence of S is equivalent to the homogeneous linear system
LS(A,0) having a unique solution. Since the zero vector is a solution ofLS(A,0),
LS(A,0) is consistent. We can therefore can apply Consistent Systems, r and n
to see that the solution is unique exactly when n = r.

Here is an example of the most straightforward way to determine if a set of
column vectors is linearly independent or linearly dependent. While this method
can be quick and easy, do not forget the logical progression from the definition
of linear independence through homogeneous system of equations which makes
it possible.

Example 12.9. Linear dependence, r and n
Is the set of vectors:

S =




2
−1
3
1
0
3

 ,


9
−6
−2
3
2
1

 ,

1
1
1
0
0
1

 ,

−3
1
4
2
1
2

 ,


6
−2
1
4
3
2




linearly independent or linearly dependent?

Solution. Theorem Linearly Independent Vectors, r and n suggests that we take
the vectors of S as the columns of a matrix and then analyze its reduced row-
echelon form:

2 9 1 −3 6
−1 −6 1 1 −2
3 −2 1 4 1
1 3 0 2 4
0 2 0 1 3
3 1 1 2 2


RREF−−−→



1 0 0 0 −1
0 1 0 0 1

0 0 1 0 2

0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

 .
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Now we need only compute that r = 4 < 5 = n to recognize, via Theorem
Linearly Independent Vectors, r and n, that S is a linearly dependent set. Boom!

Example 12.10. Large linearly dependent set in R4

Consider the set of n = 9 vectors from R4,

R =



−1
3
1
2

 ,


7
1
−3
6

 ,


1
2
−1
−2

 ,

0
4
2
9

 ,


5
−2
4
3

 ,


2
1
−6
4

 ,


3
0
−3
1

 ,

1
1
5
3

 ,

−6
−1
1
1


 .

To employ Theorem Linearly Independent Vectors and Homogeneous Systems,
we form a 4× 9 matrix C whose columns are the vectors in R:

C =


−1 7 1 0 5 2 3 1 −6
3 1 2 4 −2 1 0 1 −1
1 −3 −1 2 4 −6 −3 5 1
2 6 −2 9 3 4 1 3 1

 .
To determine if the homogeneous system LS(C,0) has a unique solution or not,
we would normally row-reduce this matrix. But in this particular example, we can
do better:

Since the system is homogeneous with n = 9 variables in m = 4 equations,
and n > m, there are infinitely many solutions. Since there is not a unique solu-
tion, Theorem Linearly Independent Vectors and Homogeneous Systems says the
set R is linearly dependent.

The following theorem generalizes the previous example.

Theorem 12.11 (More Vectors than Size implies Linear Dependence). Suppose
that S = {u1, u2, u3, . . . , un} ⊆ Rm and n > m. Then S is a linearly depen-
dent set.

Proof. Form the m× n matrix A whose columns are ui, 1 ≤ i ≤ n. Consider the
homogeneous system LS(A,0). By Theorem 8.6 this system has infinitely many
solutions. Since the system does not have a unique solution, Theorem Linearly
Independent Vectors and Homogeneous Systems says the columns of A form a
linearly dependent set, as desired.

12.3 Linear Independence and Nonsingular Matri-
ces

We will now specialize to sets of n vectors in Rn.
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Example 12.12. Linearly dependent columns Do the columns of the matrix1 −1 2
2 1 1
1 1 0


form a linearly independent or dependent set?

Solution. We can show that A is singular. According to the definition of nonsin-
gular matrices, the homogeneous system LS(A,0) has infinitely many solutions.
So, by Theorem Linearly Independent Vectors and Homogeneous Systems, the
columns of A form a linearly dependent set.

Example 12.13. Linearly independent columns
Do the columns of this matrix

B =

−7 −6 −125 5 7
1 0 4


form a linearly independent or dependent set?

Solution. We can show that B is nonsingular. According to the definition of
nonsingular matrices, the homogeneous system LS(A,0) has a unique solution.
So, by Theorem Linearly Independent Vectors and Homogeneous Systems, the
columns of B form a linearly independent set.

That the previous two examples have opposite properties for the columns of
their coefficient matrices is no accident. Here is the theorem, and then we will
update our equivalences for nonsingular matrices.

Theorem 12.14 (Nonsingular Matrices have Linearly Independent Columns). Sup-
pose that A is a square matrix. Then A is nonsingular if and only if the columns
of A form a linearly independent set.

Proof. This is a proof where we can chain together equivalences, rather than prov-
ing the two halves separately.

A nonsingular ⇐⇒ LS(A,0) has a unique solution

⇐⇒ A~x = ~0 has a unique solution ~x
⇐⇒ columns of A are linearly independent

Here is the update to Nonsingular Matrix Equivalences
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Theorem 12.15 (Nonsingular Matrix Equivalences Round 2). Suppose that A is
a square matrix. The following are equivalent.

1. A is nonsingular.

2. A row-reduces to the identity matrix.

3. The null space of A contains only the zero vector, N (A) = {0}.

4. The linear system LS(A,b) has a unique solution for every possible choice
of b.

5. The columns of A form a linearly independent set.

Proof. This follows directly from Nonsingular Matrices have Linearly Indepen-
dent Columns and Nonsingular Matrix Equivalences, Round 2.

12.4 Null Spaces, Spans, Linear Independence
In this section, we will find a linearly independent set that spans a null space.
Recall that, by Theorem 11.10, there exists a particular set of n − r vectors that
could be used to span the null space of a matrix.

Example 12.16. Linear independence of null space basis Suppose that we are
interested in the null space of a 3× 7 matrix A which row-reduces to

B =

 1 0 −2 4 0 3 9

0 1 5 6 0 7 1

0 0 0 0 1 8 −5

 .
Then F = {3, 4, 6, 7} is the set of indices for our four free variables that would
be used in a description of the solution set for the homogeneous system LS(A,0).
Applying Theorem 8.6, we can begin to construct a set of four vectors whose span
is the null space of A, a set of vectors we will refer to as T .

N (A) = 〈T 〉 = 〈{z1, z2, z3, z4}〉

=

〈



1
0

0
0


,


0
1

0
0


,


0
0

1
0


,


0
0

0
1





〉
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So far, we have constructed as much of these individual vectors as we can, based
just on the knowledge of the contents of the set F . This has allowed us to deter-
mine the entries in slots 3, 4, 6 and 7, while we have left slots 1, 2 and 5 blank.
Without doing any more, let us ask if T is linearly independent? Begin with a
relation of linear dependence on T , and see what we can learn about the scalars.

0 = α1z1 + α2z2 + α3z3 + α4z4

0
0
0
0
0
0
0


= α1


1
0

0
0


+ α2


0
1

0
0


+ α3


0
0

1
0


+ α4


0
0

0
1



=


α1

0

0
0


+


0
α2

0
0


+


0
0

α3

0


+


0
0

0
α4


=


α1

α2

α3

α4


Applying the equalities of vectors, we see that α1 = α2 = α3 = α4 = 0. So the
only relation of linear dependence on the set T is the trivial one. By the definition
of linear independence, the set T is linearly independent. The important feature
of this example is how the pattern of zeros and ones in the four vectors led to the
conclusion of linear independence.

Theorem 12.17 (Basis for Null Spaces). Suppose thatA is anm×nmatrix, andB
is a row-equivalent matrix in reduced row-echelon form with r pivot columns. Let
D = {d1, d2, d3, . . . , dr} and F = {f1, f2, f3, . . . , fn−r} be the sets of column
indices of B which are and are not, respectively, pivot columns. Construct the
n− r vectors zj , 1 ≤ j ≤ n− r of size n as

[zj]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj if i ∈ D, i = dk

(In fact zj corresponding to the solution xfj = 1 and xfk = 0 for k 6= j.) Define
the set S = {z1, z2, z3, . . . , zn−r}. Then
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1. N (A) = 〈S〉.

2. S is a linearly independent set.

Proof. Study the above example. You can skip the proof for now. Notice first
that the vectors zj , 1 ≤ j ≤ n − r, are the same as the n − r vectors defined
in Theorem 11.10. Also, the hypotheses of Theorem 11.10 are the same as the
hypotheses of the theorem we are currently proving. So Theorem 11.10 tells us
that N (A) = 〈S〉. That was the easy half, but the second part is not much harder.
What is new here is the claim that S is a linearly independent set.

To prove the linear independence of a set, we need to start with a relation of
linear dependence and somehow conclude that the scalars involved must all be
zero, i.e., that the relation of linear dependence is trivial. So, we start with and
equation of the form

α1z1 + α2z2 + α3z3 + · · ·+ αn−rzn−r = 0.

For each j, 1 ≤ j ≤ n − r, consider the equality of the individual entries of the
vectors on both sides of this equality in position fj:

0 = [0]fj

= [α1z1 + α2z2 + α3z3 + · · ·+ αn−rzn−r]fj

= [α1z1]fj + [α2z2]fj + [α3z3]fj + · · ·+ [αn−rzn−r]fj

= α1 [z1]fj + α2 [z2]fj + α3 [z3]fj + · · ·+
αj−1 [zj−1]fj + αj [zj]fj + αj+1 [zj+1]fj + · · ·+
αn−r [zn−r]fj

= α1(0) + α2(0) + α3(0) + · · ·+
αj−1(0) + αj(1) + αj+1(0) + · · ·+ αn−r(0) definition of zj

= αj

So for all j, 1 ≤ j ≤ n − r, we have αj = 0. Hence, the only relation of linear
dependence on S = {z1, z2, z3, . . . , zn−r} is the trivial one. By the definition of
linear independence, the set is linearly independent, as desired.

Example 12.18. Find the null space of the matrix

A =


−2 −1 −2 −4 4
−6 −5 −4 −4 6
10 7 7 10 −13
−7 −5 −6 −9 10
−4 −3 −4 −6 6

 .
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Solution. The RREF of A is:

B =


1 0 0 1 −2
0 1 0 −2 2

0 0 1 2 −1
0 0 0 0 0
0 0 0 0 0

 .
The free variables are x4 and x5.

Setting x4 = 1 and x5 = 0 gives:

z1 =


−1
2
−2
1
0

 .
Setting instead x4 = 0 and x5 = 1 gives

z2 =


2
−2
1
0
1

 .
Hence

N (A) =

〈
−1
2
−2
1
0

 ,


2
−2
1
0
1


〉
.
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