
Math 1030 Chapter 11

Reference.

• Beezer, Ver 3.5 Section SS (print version p83 - p94)

• Strang, Sect 2.3

Exercise.

• Exercises with solutions can be downloaded at http://linear.ups.edu/download/fcla-
3.50-solution-manual.pdf Section SS (p.34-40) C40-45, C50, C60, M10,
M11, M12. (Replace C by R in the following questions) T10, T20, T21,
T22.

• Strang, Sect 2.3.

In this section we will provide an extremely compact way to describe an infinite
set of vectors, making use of linear combinations. This will give us a convenient
way to describe the solution set of a linear system, the null space of a matrix, and
many other sets of vectors.

11.1 Span of a Set of Vectors
Definition 11.1 (Span of a Set of Column Vectors). Given a set of vectors

S = {u1, u2, u3, . . . , un},

their span, 〈S〉, is the set of all linear combinations of u1, u2, u3, . . . , un. Sym-
bolically,

〈S〉 = {α1u1 + α2u2 + α3u3 + · · ·+ αnun | αi ∈ R, 1 ≤ i ≤ n}

=

{
n∑

i=1

αiui

∣∣∣∣∣ αi ∈ R, 1 ≤ i ≤ n

}
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Theorem 11.2. Let S = {u1, . . . ,uk} ⊆ V = Rm. Then 〈S〉 is a subspace of V .

Proof. Theorem 11.2 Obviously 〈S〉 is nonempty. Let α ∈ R, v,w ∈ W = 〈S〉.
Then there exists α1, . . . , αk, β1, . . . , βk such that

v = α1u1 + · · ·+ αkuk,

w = β1u1 + · · ·+ βkuk.

Then

αv +w = (αα1 + β1)u1 + · · ·+ (ααk + βk)uk

is in 〈S〉. Thus by Theorem 9.23, W is a subspace.

Main Questions.

1. Determine if a vector v is an element of 〈S〉.

2. Describe the set 〈S〉.

3. Is 〈S〉 equal to Rm?

Example 11.3. Consider the following set of 5 vectors, S, from R4:

S =



1
1
3
1

 ,


2
1
2
−1

 ,


7
3
5
−5

 ,


1
1
−1
2

 ,

−1
0
9
0


 .

Consider the infinite set of vectors 〈S〉 formed by all linear combinations of the
elements of S. Here are four vectors which we definitely know are elements of
〈S〉:

w = (2)


1
1
3
1

+ (1)


2
1
2
−1

+ (−1)


7
3
5
−5

+ (2)


1
1
−1
2

+ (3)


−1
0
9
0

 =


−4
2
28
10



x = (5)


1
1
3
1

+ (−6)


2
1
2
−1

+ (−3)


7
3
5
−5

+ (4)


1
1
−1
2

+ (2)


−1
0
9
0

 =


−26
−6
2
34
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y = (1)


1
1
3
1

+ (0)


2
1
2
−1

+ (1)


7
3
5
−5

+ (0)


1
1
−1
2

+ (1)


−1
0
9
0

 =


7
4
17
−4



z = (0)


1
1
3
1

+ (0)


2
1
2
−1

+ (0)


7
3
5
−5

+ (0)


1
1
−1
2

+ (0)


−1
0
9
0

 =


0
0
0
0

 .
Fundamental question: Determine if a given vector is an element of the set or
not. Let us learn more about 〈S〉 by investigating which vectors are elements of
the set, and which are not.

First, is u =


−15
−6
19
5

 an element of 〈S〉?

In other words, are there scalars α1, α2, α3, α4, α5 such that:

α1


1
1
3
1

+ α2


2
1
2
−1

+ α3


7
3
5
−5

+ α4


1
1
−1
2

+ α5


−1
0
9
0

 = u =


−15
−6
19
5

?
Searching for such scalars is equivalent to finding a solution to the linear system
of equations with augmented matrix:

1 2 7 1 −1 −15
1 1 3 1 0 −6
3 2 5 −1 9 19
1 −1 −5 2 0 5

 .
This matrix row-reduces to

1 0 −1 0 3 10

0 1 4 0 −1 −9
0 0 0 1 −2 −7
0 0 0 0 0 0

 .
At this point, we see that the system is consistent, so we know there is a solution
for the five scalars α1, α2, α3, α4, α5. This is enough evidence for us to say that
u ∈ 〈S〉.
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Moreover, we can compute an actual solution, for example:

α1 = 2 α2 = 1 α3 = −2 α4 = −3 α5 = 2.

This particular solution allows us to write

(2)


1
1
3
1

+ (1)


2
1
2
−1

+ (−2)


7
3
5
−5

+ (−3)


1
1
−1
2

+ (2)


−1
0
9
0

 = u =


−15
−6
19
5


making it even more obvious that u ∈ 〈S〉.

We now determine if v =


3
1
2
−1

 an element of 〈S〉.

We want to know if there are scalars α1, α2, α3, α4, α5 such that:

α1


1
1
3
1

+ α2


2
1
2
−1

+ α3


7
3
5
−5

+ α4


1
1
−1
2

+ α5


−1
0
9
0

 = v =


3
1
2
−1


Again, this is equivalent to finding a solution to the linear system of equations
with augmented matrix:

1 2 7 1 −1 3
1 1 3 1 0 1
3 2 5 −1 9 2
1 −1 −5 2 0 −1

 .
This matrix row-reduces to

1 0 −1 0 3 0

0 1 4 0 −1 0

0 0 0 1 −2 0

0 0 0 0 0 1

 .
At this point, we see that the system is inconsistent, so we know there is no solu-
tion for the five scalars α1, α2, α3, α4, α5. This is enough evidence for us to say
that v 6∈ 〈S〉. End of story.

From the previous example, we have the following theorem:
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Theorem 11.4. Suppose that u1, u2, u3, . . . , un are in Rm. Let A be the m ×
n matrix whose i-th column is ui. Then v ∈ 〈S〉 is and only if LS(A,v) is
consistent.

Example 11.5. Computational Technique.
Given S = {u1, u2, u3, . . . , un} in Rm, determine if

v =

v1...
vm

 ∈ 〈S〉 .
Solution. 1. To determine if v ∈ 〈S〉, we need to find α1, . . . , αn such that

α1u1 + · · ·+ αnun = v.

2. This is equivalent to solving the system of linear equationsLS(A,v), where
A is the m× n matrix whose i-th column is ui.

3. Row-reduce the augmented matrix [A|v] to an RREF B.

(a) If the last column of B is a pivot column, then the system is inconsis-
tent and v /∈ 〈S〉.

(b) If the last column of B is not a pivot column, then the system is con-
sistent and v ∈ 〈S〉.

Example 11.6. Following the previous example, determine if:

v =

v1...
v4

 ∈ 〈S〉 .
Applying Gauss-Jordan elimination to the augmented matrix

1 2 7 1 −1 v1
1 1 3 1 0 v2
3 2 5 −1 9 v3
1 −1 −5 2 0 v4

 ,
we obtain


1 0 −1 0 3 −3v1 + 5v2 − v4
0 1 4 0 −1 v1 − v2
0 0 0 1 −2 2v1 − 3v2 + v4
0 0 0 0 0 9v1 − 16v2 + v3 + 4v4

 .
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If 9v1 − 16v2 + v3 + 4v4 = 0, then the last column is not a pivot column and the
above is an RREF. In this case, v ∈ 〈S〉.

If instead 9v1 − 16v2 + v3 + 4v4 6= 0, then the above matrix is not an RREF.
Hence, the corresponding system of linear equations is inconsistent and thus v 6∈
〈S〉.

We therefore conclude that v ∈ 〈S〉 if and only if:

9v1 − 16v2 + v3 + 4v4 = 0.

Example 11.7. Consider:

S = {u1, u2, u3} =


12
1

 ,
−11

1

 ,
21
0


and consider the infinite set 〈S〉.

Does w =

18
5

 lie in 〈S〉?

To answer this question, we will look for scalars α1, α2, α3 such that

α1u1 + α2u2 + α3u3 = w.

This is equivalent to solving the system of linear equations

α1 − α2 + 2α3 = 1

2α1 + α2 + α3 = 8

α1 + α2 = 5.

Building the augmented matrix for this linear system, and row-reducing, gives:

 1 0 1 3

0 1 −1 2
0 0 0 0

 .
This system has infinitely many solutions (there is a free variable in x3), but all
we need is one solution vector. The solution,

α1 = 2 α2 = 3 α3 = 1

tells us that:

(2)u1 + (3)u2 + (1)u3 = w.
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So we are convinced that w really is in 〈S〉.
Notice that there is an infinite number of ways to answer this question affirma-

tively. We could choose a different solution, this time choosing the free variable
to be zero,

α1 = 3 α2 = 2 α3 = 0,

showing that

(3)u1 + (2)u2 + (0)u3 = w.

Verifying the arithmetic in this second solution will make it obvious that w is in
this span. And of course, we now realize that there are an infinite number of ways
to realize w as element of 〈S〉.

Let us ask the same type of question again, but this time with: y =

24
3

.

Is y ∈ 〈S〉?
So we will look for scalars α1, α2, α3 such that

α1u1 + α2u2 + α3u3 = y.

This is equivalent to finding solutions to the system of equations

α1 − α2 + 2α3 = 2

2α1 + α2 + α3 = 4

α1 + α2 = 3,

Building the augmented matrix for this linear system and row-reducing gives 1 0 1 0

0 1 −1 0

0 0 0 1

 .
This system is inconsistent because the last column is a pivot column. So there
are no scalars α1, α2, α3 that will create a linear combination of u1, u2, u3 that
equals y. More precisely, y 6∈ 〈S〉.

There are three things to observe in this example.

1. It is easy to construct vectors in 〈S〉.

2. It is possible that some vectors are in 〈S〉 (such as w), while others are not
(such as y).
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3. Deciding if a given vector is in 〈S〉 leads to a linear system of equations and
asking if the system is consistent.

Example 11.8. Let

R = {v1, v2, v3} =


−75

1

 ,
−65

0

 ,
−127

4


and consider its span 〈R〉.

Does the vector z =

−3324
5

 lie in 〈R〉?

To answer this question, we will look for scalars α1, α2, α3 so that

α1v1 + α2v2 + α3v3 = z.

This is equivalent to finding solutions to the following system of linear equations:

−7α1 − 6α2 − 12α3 = −33
5α1 + 5α2 + 7α3 = 24

α1 + 4α3 = 5.

Building the augmented matrix for this linear system and row-reducing gives 1 0 0 −3
0 1 0 5

0 0 1 2

 .
This system has a unique solution,

α1 = −3 α2 = 5 α3 = 2

telling us that

(−3)v1 + (5)v2 + (2)v3 = z.

So we are convinced that z really is in 〈R〉. Notice that in this case we have only
one way to answer the question affirmatively, since the solution is unique.

Let us ask about another vector. Let x =

−78
−3

. Is x a vector in 〈R〉?

In other words, are there scalars α1, α2, α3 so that:

α1v1 + α2v2 + α3v3 = x
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This is equivalent to finding the solutions to the system of equations

−7α1 − 6α2 − 12α3 = −7
5α1 + 5α2 + 7α3 = 8

α1 + 4α3 = −3.

Building the augmented matrix for this linear system and row-reducing gives 1 0 0 1

0 1 0 2

0 0 1 −1

 .
This system has a unique solution,

α1 = 1 α2 = 2 α3 = −1

telling us that

(1)v1 + (2)v2 + (−1)v3 = x.

So we are convinced that x really is in 〈R〉. Notice that in this case we again
have only one way to answer the question affirmatively since the solution is again
unique.

We could continue to test other vectors for membership in 〈R〉, but there is
no point. A question about membership in 〈R〉 inevitably leads to a system of
three equations in the three variables α1, α2, α3 with a coefficient matrix whose
columns are the vectors v1, v2, v3. This particular coefficient matrix is nonsin-
gular, so by Nonsingular Matrix Equivalences the system is guaranteed to have
a solution. (This solution is unique, but that is not critical here.) So no matter
which vector we might have chosen for z, we are certain to discover that it was an
element of 〈R〉.

Conclusion: Every vector of size 3 is in 〈R〉, or 〈R〉 = R3.

The previous example above inspires the following result:

Theorem 11.9. Given m vectors S = {u1, u2, u3, . . . , um} in Rm, let A be the
m×m square matrix whose i-th column is ui. Then A is non-singular if and only
if 〈S〉 = Rm.

Proof. Theorem 11.9 (⇒) If A is non-singular, then for every b ∈ Rm the equa-
tionLS(A,b) is consistent by Nonsingular Matrices and Unique Solutions. Hence
b ∈ 〈S〉. So Rm = 〈S〉.
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(⇐) This part is difficult; we will only sketch the idea. Let the RREF of A
be B. Suppose that A is singular. Then B 6= Im and the last row of B is a zero

row. So there exists b ∈ Rm such that LS(B,b) is inconsistent. (e.g. b =


0
...
0
1

).

Hence there exists c ∈ Rm such that LS(A, c) is inconsistent (why?). Thus
c /∈ 〈S〉. So 〈S〉 6= Rm. This completes the proof.

Alternatively: Suppose A is singular. We claim that the span of S is not equal
to Rm:

If A is singular, then there exists a sequence of elementary matrices Ji such
that: JlJl−1 · · · J2J1A is an RREF matrix B whose last row is a zero row.

Let J = JlJl−1 · · · J2J1, which is invertible. We claim that the vector:

~v = J−1~em = J−1


0
0
...
0
1


(which incidentally is the last column of the matrix J−1) does not lie in 〈S〉.

Suppose ~v ∈ 〈S〉, then exists a vector ~x ∈ Rm such that:

A~x = ~v = J−1~em

Multiplying both sides with J from the left, we have:

JA~x = ~em.

But JA = B, whose last row is the zero row, which implies that the last com-
ponent of the vector JA~x is equal to zero, contradicting the fact that the last
component of ~em is equal to 1.

It follows that if A is singular, then 〈S〉 6= Rm.

11.2 Spanning Sets of Null Spaces
Recall Theorem 9.26
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Theorem 11.10. Spanning Sets for Null Spaces Suppose thatA is anm×nmatrix
and B is a row-equivalent matrix in reduced row-echelon form. Suppose that B
has r pivot columns, with indices given by D = {d1, d2, d3, . . . , dr}, while the
n− r non-pivot columns have indices F = {f1, f2, f3, . . . , fn−r}. Construct the
n− r vectors zj , 1 ≤ j ≤ n− r of size n,

[zj]i =


1 if i ∈ F , i = fj

0 if i ∈ F , i 6= fj

− [B]k,fj if i ∈ D, i = dk

Then the null space of A is given by

N (A) = 〈{z1, z2, z3, . . . , zn−r}〉

Proof. Theorem 11.10 The can be seen by moving the free variables to another
side. For details. See Beezer p88. Don’t memorize this theorem. Instead, study
the examples below.

Example 11.11. Spanning set of a null space
Find a set of vectors, S, so that the null space of the matrix

A =


1 3 3 −1 −5
2 5 7 1 1
1 1 5 1 5
−1 −4 −2 0 4


is the span of S, that is, 〈S〉 = N (A).

The null space of A is the set of all solutions to the homogeneous system
LS(A,0). Begin by row-reducing A. The result is

1 0 6 0 4

0 1 −1 0 −2
0 0 0 1 3
0 0 0 0 0

 .
We have D = {1, 2, 4} and F = {3, 5}. Hence x3 and x5 are free variables and
we can interpret each nonzero row as an expression for the dependent variables
x1, x2, x4 (respectively) in the free variables x3 and x5. With this we can write the
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vector form of a solution vector as
x1
x2
x3
x4
x5

 =


−6x3 − 4x5
x3 + 2x5

x3
−3x5
x5

 = x3


−6
1
1
0
0

+ x5


−4
2
0
−3
1

 .
Then, in the notation of the above theorem, we have

z1 =


−6
1
1
0
0

 z2 =


−4
2
0
−3
1


and

N (A) = 〈{z1, z2}〉 =

〈


−6
1
1
0
0

 ,

−4
2
0
−3
1



〉
.

Example 11.12. Consider the matrix:

A =


2 1 5 1 5 1
1 1 3 1 6 −1
−1 1 −1 0 4 −3
−3 2 −4 −4 −7 0
3 −1 5 2 2 3

 .
Row-reducing A gives the matrix

B =


1 0 2 0 −1 2

0 1 1 0 3 −1
0 0 0 1 4 −2
0 0 0 0 0 0
0 0 0 0 0 0

 .

First, the non-pivot columns have indices F = {3, 5, 6}, so we will construct the
n− r = 6− 3 = 3 vectors with a pattern of zeros and ones dictated by the indices
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in F . This is the realization of the first two lines of the three-case definition of the
vectors zj , 1 ≤ j ≤ n− r.

z1 =


1

0
0

 z2 =


0

1
0

 z3 =


0

0
1

 .

Each of these vectors arises due to the presence of a non-pivot column. The re-
maining entries of each vector are the entries of the non-pivot column, negated,
and distributed into the empty slots in order (these slots have indices in the set
D, so also refer to pivot columns). This is the realization of the third line of the
three-case definition of the vectors zj , 1 ≤ j ≤ n− r.

z1 =


−2
−1
1
0
0
0

 z2 =


1
−3
0
−4
1
0

 z3 =


−2
1
0
2
0
1

 .

So we have

N (A) = 〈{z1, z2, z3}〉 =

〈



−2
−1
1
0
0
0

 ,


1
−3
0
−4
1
0

 ,

−2
1
0
2
0
1




〉
.

11.3 Obtain Same Span Using Fewer Vectors
Example 11.13. Begin with the following set of four vectors of size 3:

T = {w1, w2, w3, w4} =


 2
−3
1

 ,
14
1

 ,
 7
−5
4

 ,
−7−6
−5

 .

Let:

D =

 2 1 7 −7
−3 4 −5 −6
1 1 4 −5
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and consider the infinite set W = 〈T 〉. Check that the vector

z2 =


2
3
0
1


is a solution to the homogeneous system LS(D,0)

We can write the linear combination,

2w1 + 3w2 + 0w3 + 1w4 = 0

which we can solve for w4 as

w4 = (−2)w1 + (−3)w2.

This equation says that whenever we encounter the vector w4, we can replace it
with a specific linear combination of the vectors w1 and w2. So using w4 in the
set T , along with w1 and w2, is excessive. An example of what we mean here can
be illustrated by the computation:

5w1 + (−4)w2 + 6w3 + (−3)w4

= 5w1 + (−4)w2 + 6w3 + (−3) ((−2)w1 + (−3)w2)

= 5w1 + (−4)w2 + 6w3 + (6w1 + 9w2)

= 11w1 + 5w2 + 6w3.

So, what began as a linear combination of the vectors w1, w2, w3, w4 has been
reduced to a linear combination of the vectors w1, w2, w3.

Hence:

W = 〈{w1, w2, w3}〉 ,

and the span of our set of vectors, W , has not changed, but we have described it
by the span of a set of three vectors, rather than four. Furthermore, we can achieve
yet another, similar, reduction.

Check that the vector

z1 =


−3
−1
1
0
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is a solution to the homogeneous system LS(D,0).
We can write the linear combination,

(−3)w1 + (−1)w2 + 1w3 = 0

which we can solve for w3 as

w3 = 3w1 + 1w2.

This equation says that whenever we encounter the vector w3, we can replace it
with a specific linear combination of the vectors w1 and w2. So, as before, the
vector w3 is not needed in the description of W , provided we have w1 and w2

available. In particular, a careful proof would show that

W = 〈{w1, w2}〉

SoW began life as the span of a set of four vectors. We have now shown (utilizing
solutions to a homogeneous system) that W can also be described as the span of
a set of just two vectors. Convince yourself that we cannot go any further. In
other words, it is not possible to dismiss either w1 or w2 in a similar fashion and
winnow the set down to just one vector.

What was it about the original set of four vectors that allowed us to declare
certain vectors as surplus? And just which vectors were we able to dismiss? And
why did we have to stop once we had two vectors remaining? The answers to these
questions motivate linear independence, our next section and next definition, and
so are worth considering carefully now.

11.4 Geometric Interpretation
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