
QUANTUM COHOMOLOGY, SHIFT OPERATORS, AND
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Abstract. Given a complex reductive group G and a G-representation N, there is an associated quantized Coulomb branch
algebra Aℏ

G,N defined by [Nak16; BFN18]. In this paper, we give a new interpretation of Aℏ
G,N as the largest subalgebra

of the equivariant Borel–Moore homology of the affine Grassmannian on which shift operators can naturally be defined.
As a main application, we show that if X is a smooth semiprojective variety equipped with a G-action, and X ! N is a
G-equivariant proper holomorphic map, then the equivariant big quantum cohomology QH•

G(X) defines a quasi-coherent
sheaf of algebras on the Coulomb branch with coisotropic support. Upon specializing the Novikov and bulk parameters, this
sheaf becomes coherent with Lagrangian support. We also apply our construction to recover Teleman’s gluing construction
for Coulomb branches [Tel21] and derive different generalizations of the Peterson isomorphism [Pet97].
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Introduction

Main results and background. This paper concerns the interaction between quantum cohomology [Wit91; KM94;
CK99], shift operators [Sei97; OP10; Iri17], and Coulomb branches [Nak16; BFN18; BDGH16; Tel21] arising from
3d N = 4 supersymmetric gauge theories.

Let G be a complex reductive group and N a representation of G. Let AG,N denote the corresponding Braverman-
Finkelberg-Nakajima (BFN) Coulomb branch algebra, andAℏ

G,N be the quantized Coulomb branch. LetX be a smooth
semiprojective variety (see Section 3.1) equipped with a G-action, and let f : X ! N be a proper G-equivariant
holomorphic map. Below are the main results of this paper.

Theorem 1. There exists a module action

SG,N,X : Aℏ
G,N ⊗C[ℏ] QH

•
G×C×

ℏ
(X) −! QH•

G×C×
ℏ
(X) (1)

of the quantized Coulomb branch algebra Aℏ
G,N on the (G × C×

ℏ )-equivariant big quantum cohomology of X , such
that SG,N,X(Γ,−) commutes with the quantum connections for any Γ ∈ Aℏ

G,N.

Theorem 2. There exists a ring homomorphism

ΨG,N,X : AG,N −! QH•
G(X) (2)

from the Coulomb branch algebra AG,N to theG-equivariant big quantum cohomology ofX . Moreover, the support of
QH•

G(X) in the Coulomb branch SpecAG,N is coisotropic. Upon specialization of the Novikov and bulk parameters
to complex values (whenever such a specialization is possible), the support becomes Lagrangian.

Theorems 1 and 2 highlight a deep relationship between equivariant quantum cohomology and the geometry of the
Coulomb branch. As we will see, the actionSG,N,X is defined using a generalized version of non-abelian shift operators,
which encode enumerative data from X into the algebraic structure of Aℏ

G,N. In Theorem 2, the coisotropic property
comes from the fact that the module action (1) is a quantization of the ring homomorphism (2); see Proposition 5.20.

By specializing the equivariant parameters H•
G(pt) (and ℏ) to zero, we obtain the following non-equivariant limits

of shift operators (Corollary 5.26):

SG,N,X : Aℏ
G,N ⊗QH•(X) −! QH•(X)[ℏ],

Sℏ=0
G,N,X : AG,N ⊗QH•(X) −! QH•(X).

New non-equivariant invariants in the quantum cohomology of X can thus be obtained via SG,N,X and Sℏ=0
G,N,X ; see

Example 6.2 for an explicit example. One can interpret Theorem 1 as identifying Aℏ
G,N as the subalgebra in Aℏ

G that
captures precisely those shift operators for which a non-equivariant limit exists.

Let us also emphasize that these results depend crucially on our use of equivariant Novikov variables, which will
be explained in more detail later in this introduction.

To motivate the above theorems, let us review the relevant geometric structures.

Quantum cohomology and shift operators. The equivariant (big) quantum cohomology ringQH•
G(X) is a deformation

of the classical equivariant cohomology ring H•
G(X) over the Novikov and bulk parameters, defined via genus-zero

Gromov–Witten invariants.
Shift operators are endomorphisms of equivariant quantum cohomology that play an important role in symplectic

topology, mirror symmetry, and representation theory [Sei97; OP10; MO19; Iri17].
When G = T is a complex torus and X is a smooth projective variety equipped with a T -action. Let C×

ℏ denote
an additional one-dimensional torus acting trivially on X . Then for each cocharacter λ : C× ! T , there exists a shift
operator

Sλ : QH•
T×C×

ℏ
(X) −! QH•

T×C×
ℏ
(X).

These operators satisfy the relations

Sλ1
(Sλ2

(α)) = Sλ1+λ2
(α), (3)

Sλ(P (a, ℏ)α) = P (a+ λ(ℏ), ℏ)Sλ(α), (4)

for any cocharacters λ, λ1, λ2 : C× ! T , any α ∈ QH•
T×C×

ℏ
(X) and any P (a, ℏ) ∈ H•

T×C×
ℏ
(pt), regarded as a

polynomial function on Lie(T × C×
ℏ ).
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The Teleman/González–Mak–Pomerleano generalization. A non-abelian generalization of shift operators was devel-
oped in [GMP23b], building on the ideas introduced in Teleman’s ICM address [Tel14]. Suppose G is a reductive
group acting on a smooth projective variety X (which corresponds to the special case N = 0 in our setting). In their
proposal, there should exist a module action

SG,X : H
GO⋊C×

ℏ
• (GrG)⊗C[ℏ] QH

•
G×C×

ℏ
(X) −! QH•

G×C×
ℏ
(X), (5)

where GrG = GK/GO
1 is the affine Grassmannian of G, C×

ℏ acts on GrG by loop rotation, and HGO⋊C×
ℏ• (GrG),

also denoted as Aℏ
G, is the equivariant Borel–Moore homology of GrG, equipped with the convolution product; see

Section 1 for more details.
When G = T is a torus, the ring H

TO⋊C×
ℏ

• (GrT ) is a free H•
T×C×

ℏ
(pt)-module with basis {tλ} indexed by

cocharacters λ : C× ! T . The convolution product satisfies

tλ1 ∗ tλ2 = tλ1+λ2 ,

tλ ∗ P (a, ℏ) = P (a+ λ(ℏ), ℏ) ∗ tλ,

for any cocharacters λ, λ1, λ2 : C× ! T and any P (a, ℏ) ∈ H•
T×C×

ℏ
(pt). Setting Sλ := ST,X(tλ,−), the module

property implies (3) and (4).

Coulomb branches. The motivation behind the works of [Tel14; GMP23b] is that the affine scheme SpecHGO
• (GrG)

arises as the Coulomb branch of the 3d N = 4 supersymmetric pure gauge theory associated to the gauge group G.
The Coulomb branch is a moduli space of vacua of the theory and dictates the 2d mirror symmetry of G-actions.

More generally, given a representationN ofG, there is a corresponding 3dN = 4 supersymmetric gauge theory with
gauge group G and matter N. The Coulomb branch of such a theory was first described in the physics literature [SW],
and a rigorous mathematical definition was given much later by Braverman, Finkelberg, and Nakajima in [BFN18].
They defined the quantized Coulomb branch algebra Aℏ

G,N as a subalgebra of Aℏ
G, and the Coulomb branch is the

spectrum of its classical limit
AG,N := Aℏ

G,N/ℏAℏ
G,N ⊂ AG.

In [BFN18], it was proved that AG,N is a finitely generated commutative algebra, and that the quantization Aℏ
G,N

induces a Poisson structure on AG,N, which defines a symplectic structure on the smooth locus of the Coulomb
branch. The Coulomb branch SpecAG,N is expected to capture the 2d mirror-symmetric information ofG-equivariant
fibrations X ! N.

Theorem 1 is an extension of Teleman’s proposal to full generality, where we have general gauge groupG and matter
N, and also general X which may not be projective. A major obstacle is the possible non-compactness of the T -fixed
locus XT (where T ⊂ G is a maximal torus), which prevents us from applying any of the previous constructions. As
we will see shortly in the description of the construction of SG,N,X below, a new understanding of Aℏ

G,N precisely
provides the key for overcoming this difficulty.

Relations with earlier constructions.

The case G = T and N = 0. Shift operators were originally introduced by Braverman, Maulik, Okounkov, and
Pandharipande in [OP10; BMO11; MO19] for small quantum cohomology. The version on equivariant symplectic
cohomology was constructed in [Lie21]. The classical limit as ℏ ! 0 corresponds to the so-called Seidel elements
or Seidel representations, which had appeared earlier in [Sei97]. A generalization of shift operators to big quantum
cohomology was developed by Iritani [Iri17] to study toric mirror symmetry. This corresponds to the “G = T and
N = 0” case of Theorem 1.

The case of general G and N = 0. Non-abelian shift operators in the case N = 0 were suggested in [Tel14], and
constructed in [GMP23b] using symplectic geometry in the setting of compact monotone symplectic manifolds. This
is (the symplecto-geometric version of) the “general G and N = 0” case of Theorem 1 restricted to small quantum
cohomology. We also note that the non-abelian generalization of Seidel elements were studied in [Sav08] via the
homology of the loop group of the Hamiltonian symplectomorphism group; the ideas therein might have influenced
later development. In [GMP23a], a non-abelian version of Seidel representation was also constructed for equivariant
symplectic cohomology.

1Here, K = C((t)) and O = C[[t]] denote the formal Laurent and power series rings, respectively.
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The map ΨG,X in the special case where G is simple and simply connected, and X = G/P is a partial flag variety
was studied in [Cho23], whose setting is closer to ours. However, their treatment of Novikov variables was specific to
that particular case. In contrast, our approach uses equivariant Novikov variables, allowing the construction to extend
to more general X and arbitrary G.

The main focus of [Cho23] is to show that the non-abelian shift operators recover the Peterson isomorphism. In
Section 6.3, we show that our generalization likewise induces an analogue of the Peterson isomorphism, valid for more
general G, including groups that are neither simply connected nor semisimple. In this broader setting, equivariant
Novikov variables play a crucial role, as certain Lagrangians in SpecAG,N appear only when we incorporate these
variables.

The case of general G and N. Our paper is the first to define the shift operators SG,N,X and ΨG,N,X for general
choices of G, N, and X . In particular, our construction recovers the following special cases:

(1) In the case G = T with XT compact, shift operators were defined in [Iri17] using localization. Under the
assumptions of op. cit., there always exists a G-representation N and a proper holomorphic map f : X ! N.
Then, the shift operators of op. cit. can be recovered by localizing our construction of SG,N,X (Remark 5.25).

(2) We also recover the caseX = N studied in [GMP23a], which builds on Teleman’s description of the Coulomb
branch SpecAG,N as a gluing of two copies of the pure gauge Coulomb branch SpecAG (see [Tel21]).
Their construction relies on the observation that the gluing maps coincide with certain Seidel elements in
the case X = N. In contrast, our result yields a new, self-contained proof of Teleman’s gluing construction
(Theorem 6.5).

We remark that even in the abelian case, the construction of shift operators when the T -fixed locus XT is noncompact
has not previously appeared in the literature.

Shift operators for quasimaps. In [Tam24], the author provided a construction of non-abelian shift operators using
quasimaps for G = GLn. Their computation offers a new proof that Aℏ

GLn
is a quotient of the shifted Yangian (see

also [BFN19]).

Open-string analogue. The first-named author and Leung have attempted to construct Lagrangians in the Coulomb
branch AG,N using equivariant 2d mirror symmetry, motivated again by ideas of Teleman [Tel14]. The abelian
case was discussed in [CL24a]. The non-abelian case involves studying non-displaceable (real) Lagrangians under a
Hamiltonian action. The case of general G with N = 0 was studied in [CL24b]; see Section 1.8 of [CL24a] for a
discussion of the case with general G and arbitrary N.

The construction of SG,N,X .

Equivariant Novikov variables. GivenG andX , we let τ ∈ H•
G×C×

ℏ
(X) be a general point, treated as a formal variable.

We define C[[qG, τ ]] to a formal completion of C[[τ ]][Hord,G
2 (X;Z)]2 along the cone of effective curve classes (see

Section 3.1). In this paper, the equivariant quantum cohomology ring has underlying vector space given by a completed
tensor product

H•
G(X)[[qG, τ ]] := H•

G(X)p⊗C[[qG, τ ]].
The quantum product is defined using equivariant genus-zero Gromov–Witten invariants.

The case N = 0. We begin with the construction in the pure gauge case. Note that when N = 0, the variety X is
projective. The first step involves a convolution-type operation.

We define a map (see Definition 2.1)

tw := (πR)∗ ◦ (πL)∗ : H
GO⋊C×

ℏ
• (GrG)⊗C[ℏ] H

G×C×
ℏ

• (X) −! H
G×C×

ℏ
• (GK ×GO X)

via the correspondence
GK ×X

GrG ×X GK ×GO X

πL πR . (6)

2We use H• to denote Borel–Moore homology and Hord
• to denote ordinary (i.e., singular) homology.
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The map tw is twisted-linear in the following sense. The projection

u : GrG = GK/GO −! [pt/GO] (7)

induces a pullback homomorphism

u∗ : H•
G×C×

ℏ
(pt) −! H•

GO⋊C×
ℏ
(GrG).

For any P ∈ H•
G×C×

ℏ
(pt) and Γ⊗ α ∈ H

G×C×
ℏ

• (GrG)⊗H
G×C×

ℏ
• (X), we have

tw(Γ⊗ Pα) = tw((u∗P ∩ Γ)⊗ α) = u∗P ∩ tw(Γ⊗ α),

which in the abelian case reflects the twisted-linearity relation (4) (Proposition 2.9).
The second step involves counting curves in a certain associated X-bundle. By a theorem of Beauville and

Laszlo [BL95], there is a canonical principal G-bundle E over GrG × P1 together with a trivialization

φ : E|GrG×Spec(C[t−1])
∼
−! G×GrG × Spec(C[t−1])

over GrG × Spec(C[t−1]); here we use t to denote the coordinate on P1. The trivialization φ will play a crucial role
in the general N case below.

Let E(X) := E ×G X denote the associated X-bundle. The restrictions of E(X) to GrG × {0} and GrG × {∞}
are isomorphic to GK ×GO X and GrG ×X , respectively.

Let Eff(E(X))sec ⊂ Hord
2 (E(X);Z) denote the subset of effective section classes, i.e., those effective classes whose

image in Hord
2 (GrG × P1;Z) is equal to [pt× P1].

For β ∈ Eff(E(X))sec, let M(X,β)n be the moduli space of genus-zero stable maps to E(X) with curve class β,
and n+2 points y0, y∞, y1, . . . , yn, such that y0 and y∞ lie over the 0 and ∞ fibres, respectively. Let ev0, ev∞, ev1, ...
be the evaluation maps. We define

S̃G,X : H
GO⋊C×

ℏ
• (GK ×GO X) −! H

G×C×
ℏ

• (X)[[qG, τ ]]

by the formula

S̃G,X(γ) =
∑

β∈Eff(E(X))sec

∞∑
n=0

qβ

n!
prX∗ ev∞∗

(
ev∗0(γ)

n∏
ℓ=1

ev∗ℓ (τ̂) ∩ [M(X,β)n]
vir

)
,

where prX : GrG × X ! X is the projection map, [M(X,β)n]
vir is the virtual fundamental class of the moduli

space, and β is the image of β under the natural map

Hord
2 (E(X);Z) −! Hord,G

2 (X;Z)

induced by E(X) = E ×G X ! [X/G]; and the definition of τ̂ ∈ H•
G×C×

ℏ
(E(X)) is given in Definition 3.13.

The module map SG,X is then defined to be the composition

H
GO⋊C×

ℏ
• (GrG)⊗C[ℏ] H

G×C×
ℏ

• (X)[[qG, τ ]]
tw

−−−−! H
G×C×

ℏ
• (GK ×GO X)[[qG, τ ]]

S̃G,X
−−−! H

G×C×
ℏ

• (X)[[qG, τ ]],

up to intertwining with Poincaré duality.
We conclude with two remarks about the construction above.
(1) First, to obtain a well-defined notion of virtual fundamental classes, we must approximate the Borel–Moore

homology of GrG by the homology of resolutions of its affine Schubert varieties.
(2) Second, the use of equivariant Novikov variables is essential in this construction. When G = T is a

torus, one can define a map Hord
2 (E(X);Z) ! Hord

2 (X;Z) depending on the choices of suitable section
classes (see [Iri17]). In the cases studied in [Cho23], the natural map Hord

2 (X;Z) ! Hord,G
2 (X;Z) is an

isomorphism. In [GMP23b; GMP23a], equivariant Novikov variables appeared implicitly by the consideration
of vertical Chern classes (cf. Lemma 3.11).
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The general case. Since AG,N is a subalgebra of AG, one might be tempted to define SG,N,X as the restriction of
SG,X . This idea works for the map tw, but fails for the map S̃G,X .

As mentioned above, the main issue that the T -fixed locusXT may not be compact. In this case, the evaluation map
ev∞ (or its restriction to the T -fixed locus) may fail to be proper. Hence, the pushforward ev∞∗ is not well-defined in
general, even via localization.

Our strategy is to cut down the moduli space M(X,β)n to a smaller subspace on which the evaluation maps become
proper. A key ingredient in our approach is a reformulation of the quantized Coulomb branch algebra Aℏ

G,N which we
now describe.

Recall that in [BFN18], the authors considered an infinite-rank vector bundle T = TN over the affine Grassmannian
and a fibrewise linear subvariety R ⊂ T . The quantized Coulomb branch algebra Aℏ

G,N is defined as the equivariant
Borel–Moore homology of R. Let S := T /R be the fibrewise quotient. We prove the following theorem in Section 1.

Theorem 3. The quantized Coulomb branch algebra Aℏ
G,N is isomorphic to the following subalgebra of Aℏ

G:

e(S) ∩HG×C×
ℏ

• (GrG) ⊂ Aℏ
G.

The heuristic behind Theorem 3 is as follows: if one “resolves” the affine Grassmannian by the vector bundle T ,
then the pullback of S admits a canonical section whose zero locus is precisely R. The term “stratified” in Theorem 3
means that S restricts to a vector bundle over each affine Schubert cell in GrG. See Section 1 on how we can make
sense of the symbol e(S)∩.

Here we highlight a novel relation between Coulomb branches and shift operators. One can understand Theorem 3
as stating that Aℏ

G,N is cut out from Aℏ
G by the stratified bundle S. We further show that the pullback of S to M(X,β)n

admits a canonical section whose zero locus is proper with respect to the evaluation map ev∞ (Proposition 4.4).
Now we can continue our construction of the shift operators for general N. For simplicity, we will denote the

pullback of S to the various spaces by the same symbol. The twisting map tw now restricts to give a homomorphism

tw : AG,N ⊗C[ℏ] H
G×C×

ℏ
• (X) −! e(S) ∩HG×C×

ℏ
• (GK ×GO X).

As just mentioned, there is a canonical section of S over the moduli space M(X,β)n, and the restriction of ev∞ to
its zero loci Z(X,β)n is proper. As an example, the subspace Z(X,N)0 ⊂ M(X,N)0 = Γ(GrG, E(N)) consists of
those sections that are constant over Spec(C[t−1]), with respect to the trivialization of φ.

We may therefore define

S̃G,N,X : e(S) ∩HG×C×
ℏ

• (GK ×GO X) −! H
G×C×

ℏ
• (X)[[qG, τ ]]

by the formula

S̃G,N,X(e(S) ∩ γ) =
∑

β∈Eff(E(X))sec

∞∑
n=0

qβ

n!
prX∗ ev∞∗

(
ev∗0(γ)

n∏
ℓ=1

ev∗ℓ (τ̂) ∩ [Z(X,β)n]
vir

)
,

and set SG,N,X = S̃G,N,X ◦ tw, up to intertwining with Poincaré duality.

Remark 0.1 (Independence of the choice of representation). A priori, the construction of SG,N,X depends on the choice
of the representation N and the map f : X ! N. However, we will show that this dependence is in fact superfluous.
More precisely, suppose N′ is another representation ofG, and g : X ! N′ is a properG-equivariant morphism. Then
we show in Corollary 5.2 that SG,N,X and SG,N′,X agree on the common domain of definition:

(Aℏ
G,N ∩ Aℏ

G,N′)⊗C[ℏ] QH
•
G×C×

ℏ
(X).

Therefore, they extend to the same map on the localized algebras

Aℏ
G,N,loc ⊗C[ℏ] QH

•
G×C×

ℏ
(X) = Aℏ

G,N′,loc ⊗C[ℏ] QH
•
G×C×

ℏ
(X).

Remark 0.2 (Relation with 2d and 3d mirror symmetry). In the context of 3d mirror symmetry, an equivariant fibration
X ! N corresponds to a 3d brane on the Higgs branch of the associated gauge theory. It is expected that there exists
a mirror 3d brane supported on the Coulomb branch, reflecting the 2d mirror of the fibrationX ! N (see [CL24a] for
further discussion). This mirror brane is expected to be a Lagrangian in SpecAG,N produced from Theorem 2.

In the special case N = 0, this perspective is useful in the study of quantum cohomology of GIT quotients [PT24;
Iri25]. The categorical generalization of this correspondence, in terms of wrapped Fukaya categories, was also
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conjectured in [LS25]. If one interprets the quantum cohomology QH•
G(X) as a closed-string incarnation of the

(equivariant) 2d mirror of X , then one may expect a corresponding open-string construction of the Lagrangian

SuppQH•
G(X) ⊂ SpecAG,N.

As mentioned above, such a construction was achieved by the first-named author and Leung in the abelian case
in [CL24a] and in the non-abelian case in [CL24b] (see also [CL24a, Section 1.8]). We conjecture that these
Lagrangians coincide with those given by Theorem 2.

Applications.

Rationality of shift operators. Shift operators for non-compact spaces are often defined via localization [BMO11;
Iri17], as operators on

QHG×C×
ℏ
(X)loc := Frac(H•

G×C×
ℏ
(pt))⊗H•

G×C×ℏ
(pt) QH

•
G×C×

ℏ
(X).

In contrast, the subalgebra Aℏ
G,N ⊂ Aℏ

G captures those shift operators that can be defined without localizing the
equivariant parameters. In the abelian case, this recovers the observation of Iritani [Iri17, Remark 3.10] that the shift
operator associated to a semi-negative cocharacter does not require localization, so they admit non-equivariant limits;
see Remark 4.10.

A new characterization of the Coulomb branch. In many cases, one can go further and show that AG,N is the largest
subalgebra of AG capturing those shift operators that do not require localization. This is formulated precisely in
Theorem 4 below (see Section 6.2). Recall that T ⊂ G denotes a maximal torus.

Definition 0.3. TheG-representation N is called gluable if, for all nonzero T -weights ξ1, ξ2 of N, ξ1 is not a negative
multiple of ξ2.

Theorem 4. Under the assumptions of Theorem 1, there is a commutative diagram

AG,N AG ⊗H•
G(pt) AG,N AG ⊗H•

G(pt) QH
•
G(X)

AG AG ⊗H•
G(pt) AG AG ⊗H•

G(pt) QH
•
G(X)loc

∆∗ id⊗ΨG,N

∆∗ id⊗ΨG,N,loc

. (8)

Moreover, if N is gluable and X = N, then the above diagram is Cartesian.

The gluable assumption is satisfied if one replaces G with G× C×
dil, where the additional C×

dil-factor acts on N by
scaling. This recovers Teleman’s gluing formula for Coulomb branches [Tel21].

Peterson isomorphisms. The Peterson isomorphism theorem (cf. [Pet97; LS10; LL12; Cho23]) asserts that there is an
isomorphism

HGO
• (GrG)loc ∼= QH•

G(G/B)|τ=0

when G is a simply connected semisimple group.
In Section 6.3, we compute the map ΨG,X (after setting τ = 0) for the case where X is a partial flag variety.

In particular, this shows that ΨG,G/B is birational, thereby extending the Peterson isomorphism to general reductive
groups. The computations closely follow those in [Cho23], except that we incorporate equivariant Novikov parameters.

In Section 6.4, we prove a version of the Peterson isomorphism under the assumption that all weights of N are
positive (resp. negative) with respect to a central C× ⊂ G; see Corollary 6.13. We also obtain a generalization of
Teleman’s result on the stratification on pure gauge Coulomb branches to SpecAG,N; see Corollary 6.12.

Structure of the paper. In Section 1, we review the definition of the Coulomb branch and prove Theorem 3. The
twisting map tw is discussed in Section 2. Sections 3 to 5 are devoted to the definition and properties of shift operators.
The proofs of Theorem 1 and Theorem 2 are given in Section 5. Several applications and computational examples
of shift operators are presented in Section 6, including Theorem 4 and the different generalizations of the Peterson
isomorphism.

Conventions. In this paper, H• will always denote Borel–Moore homology and Hord
• denotes the ordinary homology.

All varieties, schemes and stacks considered in this paper are over C.
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1. Coulomb branches

In this section, we give a short treatment of the Coulomb branch and set up notations that will be important for later
sections. We work over the complex numbers C.

Lie-theoretic notations. We let G denote a connected complex reductive group, T ⊂ G a Cartan subgroup, and
W = NG(T )/T the corresponding Weyl group. We write Φ for the set of roots of G. We fix a subset Φ+ ⊂ Φ of
positive roots, or equivalently, we fix a Borel subgroup T ⊂ B ⊂ G.

The coweight lattice of G is denoted by Λ, and its submonoid of dominant coweights is denoted by Λ+.

Affine Grassmannian. For a C-algebra A, let GA denote the sheaf3 on the category of affine schemes over C (that is,
the opposite category of the category of C-algebras) defined by sending a C-algebra R to G(R⊗A).

Denote O = C[[t]] (the ring of formal power series) and K = C((t)) (the field of Laurent series). In particular, we
have

GO(R) = G(R[[t]]),

GK(R) = G(R((t))),

for any C-algebra R. The affine Grassmannian of G is defined as the quotient

GrG = GK/GO.

Let I be the Iwahori subgroup
I = {g ∈ GO : g(0) ∈ B},

that is, I is the preimage of B under the evaluation map evt=0 : GO ! G.
For λ ∈ Λ, let tλ denote the corresponding point in GrG. Define the I-orbit

Cλ = I · tλ ⊂ GrG,

and let C≤λ denote its closure. Each Cλ is isomorphic to an affine space, and C≤λ admits the structure of a projective
variety. We define a partial order on Λ by declaring that µ ≤ λ if and only if Cµ ⊂ C≤λ. In particular,

C≤λ =
⊔
µ≤λ

Cµ.

We remark that Cλ (and hence C≤λ) is GO-invariant if and only if λ ∈ Λ+.

Equivariant Borel–Moore homology. In this paper, if X is a complex quasi-projective variety, we use H•(X) =
H−•(X,ωX) to denote the Borel–Moore homology groups of X with complex coefficients, using the classical
topology. Here, ωX is the dualizing complex ofX . Similarly, ifK is an algebraic group acting algebraically onX , we
define the equivariant Borel–Moore homology HK

• (X) := H−•
K (X,ωX), where both K and X are considered with

the classical topology. We refer to [BL94] for the basics of cohomology of equivariant sheaves.

3Sheaves are defined with respect to the fppf topology.
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The pure gauge Coulomb branch. Let Gi = GO/tiO for any positive integer i. For each λ ∈ Λ+, the action of GO on
C≤λ factors through Gi for all sufficiently large i. We set

HGO
• (C≤λ) := HGi

• (C≤λ)

for any such choice of i. It is easy to see that this definition is independent of i. We define

AG = HGO
• (GrG) := lim−!

λ∈Λ+

HGO
• (C≤λ).

We can similarly define HTO
• (GrG), HG

• (GrG), and so on.
There is a convolution product ∗ onAG turning it into a finitely generated commutativeC-algebra [BFM05; BFN18].

The resulting algebra (AG, ∗) is called the (pure gauge) Coulomb branch algebra. The affine scheme SpecAG is
smooth and is known as the (pure gauge) Coulomb branch. We now briefly review the construction of the convolution
product.

We follow [MV07; BFN18]. The convolution product on HGO
• (GrG) is defined using the diagram

GrG ×GrG GK ×GrG GK ×GO GrG GrG,
p q m (9)

where p and q are the natural projections, andm is given bym([g, g′]) = [gg′]. LetGO act on GrG andGK ×GO GrG
from the left, and let GO ×GO act on GK ×GrG by

(g1, g2) · (g, [g′]) = (g1gg
−1
2 , [g2g

′]).

Then p is GO × GO-equivariant, m is GO-equivariant, and q is equivariant with respect to the first GO-action on
GK ×GrG. The convolution product is given by

m∗ ◦ (q∗)−1 ◦ p∗ : AG ⊗AG ! AG. (10)

Since we are dealing with infinite-dimensional spaces and groups, the Borel–Moore homology groups and the
homomorphisms among them must be treated carefully. We briefly explain this, and refer to [BFN18] for more details.

For λ ∈ Λ+, we write G≤λ
K for the preimage of C≤λ ⊂ GrG in GK, and let Ki denote the kernel of the natural

homomorphism GO ! Gi.
Let λ1, λ2 ∈ Λ+ and set λ3 = λ1 + λ2. Choose positive integers i ≫ j ≫ 0 such that the actions of Kj on Cλ2 ,

and the actions of Ki on Cλ1
, Cλ3

, and G≤λ1

K /Kj are trivial. The diagram (9) induces the diagram below (we use the
same symbols for the induced maps):

C≤λ1
× C≤λ2

(G≤λ1

K /Kj)× C≤λ2
G≤λ1

K ×GO C≤λ2
C≤λ3

.
p q m (11)

The product (10) should be understood as the direct limit over λ1, λ2 ∈ Λ+ of

m∗ ◦ (q∗)−1 ◦ p∗ : HGi
• (C≤λ1

)⊗H
Gj
• (C≤λ2

) −! HGi
• (C≤λ3

),

where p∗, q∗, and m∗ are homomorphisms induced by the diagram (11). Explicitly:
• The map

p∗ : HGi
• (C≤λ1)⊗H

Gj
• (C≤λ2) −! H

Gi×Gj
•

(
(G≤λ1

K /Kj)× C≤λ2

)
is the pullback along p.

• The map

q∗ : HGi
•

(
G≤λ1

K ×GO C≤λ2

)
−! H

Gi×Gj
•

(
(G≤λ1

K /Kj)× C≤λ2

)
is the pullback along q, with respect to the inclusion Gi

∼= Gi × {e} ⊂ Gi ×Gj .
• The map

m∗ : HGi
•

(
G≤λ1

K ×GO C≤λ2

)
! HGi

• (C≤λ3)

is the pushforward along m.
Note that q∗ is an isomorphism because the Gj-action makes (G≤λ1

K /Kj)× C≤λ2 into a principal Gj-bundle over
G≤λ1

K ×GO C≤λ2 .
9



Quantizations. Let C×
ℏ be a one-dimensional complex torus, which scales the parameter t. It is called the group of

loop rotations, and there are induced actions on GK, GO, and GrG. For z ∈ C×
ℏ and g(t) ∈ GK, the action is given by

z · g(t) = g(zt),

and the other actions are defined similarly. See Section 3.2 and Appendix B for more discussion on the group of loop
rotations.

Note that the diagrams (9) and (11) are equivariant with respect to the loop rotations. Let ℏ ∈ H2
C×

ℏ
(pt) be a

generator, so that H•
C×

ℏ
(pt) ∼= C[ℏ]. Then we define the (pure gauge) quantized Coulomb branch algebra as

Aℏ
G = H

GO⋊C×
ℏ

• (GrG).

The same reasoning as above gives the product map

Aℏ
G ⊗C[ℏ] Aℏ

G
∼= H

(GO×GO)⋊C×
ℏ

• (GrG ×GrG) −! H
GO⋊C×

ℏ
• (GrG) ∼= Aℏ

G.

As shown in [BFM05], this defines a noncommutative product structure on Aℏ
G, with ℏ a central element. The

commutator on Aℏ
G induces a Poisson bracket on AG = Aℏ

G/ℏAℏ
G. It was shown in [BFM05] that this Poisson bracket

defines a symplectic structure on the pure gauge Coulomb branch SpecAG.

The BFN Coulomb branch. Let N be a complex representation of G, and we fix a decomposition

N =

N⊕
i=1

Cξi

into one-dimensional T -representations, where each ξi is a character of T , and Cξi denotes the corresponding one-
dimensional T -representation. We define the following spaces:

T = TG,N = GK ×GO NO,

R = RG,N = {(g, s) ∈ T : gs ∈ NO},

S = SG,N = TG,N/RG,N.

Suppose d is a positive integer, we write T d for the vector bundle

T d = GK ×GO (NO/t
dNO).

If λ ∈ Λ, we write T d
≤λ for the restriction of T d to C≤λ. If, furthermore, gtdNO ⊂ NO for all [g] ∈ C≤λ, then we

write Rd
≤λ as the image of R≤λ = R|C≤λ

in T d
≤λ. Note that the fibrewise quotient

S≤λ := T d
≤λ/Rd

≤λ

is independent of the choice of such d. Moreover, Sλ := S≤λ|Cλ
is a vector bundle, whose rank is denoted by dλ. For

p ∈ GrG, we write Sp for the fibre of S≤λ at p, for λ ∈ Λ satisfying p ∈ C≤λ. This definition is independent of the
choice of λ.

For later use, we record the decomposition

Stλ
∼=

⊕
⟨ξi,λ⟩<0

C−ξi(λ)
ξi

, (12)

as T -representations. In particular,
dλ = −

∑
⟨ξi,λ⟩<0

⟨ξi, λ⟩. (13)

For each λ ∈ Λ+, we choose an integer d so that Rd
≤λ is defined, and we use the same symbol z∗λ to denote the

corresponding Gysin pullbacks
HK

• (T d
≤λ) −! HK

• (C≤λ),

where K stands for one of GO, GO ⋊C×
ℏ , TO, or TO ⋊C×

ℏ . The following is a reformulation of the definition of the
Coulomb branch in [BFN18], which follows from Lemma 5.11 in loc. cit.
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Definition 1.1 ([BFN18]). The Coulomb branch algebra AG,N is the sum over λ ∈ Λ+ of the images of HGO
• (Rd

≤λ)
under the composition

HGO
• (Rd

≤λ) −! HGO
• (T d

≤λ)
z∗
λ−! HGO

• (C≤λ) −! HGO
• (GrG),

where the first and last maps are pushforwards along inclusions.
Similarly, the quantized Coulomb branch algebra Aℏ

G,N is defined as the sum over λ ∈ Λ+ of the images of

H
GO⋊C×

ℏ
• (Rd

≤λ) under the composition

H
GO⋊C×

ℏ
• (Rd

≤λ) −! H
GO⋊C×

ℏ
• (T d

≤λ)
z∗
λ−! H

GO⋊C×
ℏ

• (C≤λ) −! H
GO⋊C×

ℏ
• (GrG).

An alternative description. We now give a new and alternative description of the Coulomb branch algebra AG,N and
quantized Coulomb branch algebra Aℏ

G,N.

Lemma 1.2. There exists an I ⋊C×
ℏ -equivariant resolution of singularities4

ρλ : C̃≤λ −! C≤λ

such that ρ−1
λ (S|Cλ

) extends to a (necessarily unique) I ⋊ C×
ℏ -equivariant quotient vector bundle S̃≤λ of ρ−1

λ (T d
≤λ).

Moreover, we may assume that ρλ and S̃≤λ are GO ⋊C×
ℏ -equivariant if λ ∈ Λ+.

Proof. Let d > 0 be a sufficiently large integer such that S≤λ is well-defined. Consider the Grassmannian bundle
Gr(dλ, T d

≤λ), which parameterizes rank dλ quotients of T d
≤λ. The vector bundle Sλ defines a section of Gr(dλ, T d

≤λ)

over Cλ. Let Cλ denote the closure of the image of this section. By construction, the section Cλ ! Gr(dλ, T d
≤λ)

extends uniquely to a I ⋊C×
ℏ -equivairant (or GO ⋊C×

ℏ -equivairant when λ ∈ Λ+) map

Cλ −! Gr(dλ, T d
≤λ).

As a result, Sλ extends to a quotient bundle of the pullback of T d
≤λ to Cλ. We then choose C̃≤λ to be an I ⋊ C×

ℏ -
equivariant (or GO ⋊C×

ℏ -equivariant) resolution of Cλ, which always exists (see Theorem 3.27 of [Kol07]). □

We now fix the I ⋊C×
ℏ -equivariant resolution ρλ : C̃≤λ ! C≤λ and S̃≤λ for each λ ∈ Λ, and ρλ is assumed to be

GO ⋊C×
ℏ -equivariant when λ ∈ Λ+.

Proposition 1.3. Let λ ∈ Λ, and let d be a sufficiently large positive integer such that Rd
≤λ is well-defined. Then the

following subspaces of HTO
• (GrG) are equal:

(1) The sum of the images e(S̃≤µ) ∩HTO
• (C̃≤µ) in HTO

• (GrG) under the pushforward

HTO
• (C̃≤µ)

ρµ∗
−−! HTO

• (C≤µ) ⊂ HTO
• (GrG),

taken over all µ ≤ λ;
(2) The image of HTO

• (Rd
≤λ) under the composition

HTO
• (Rd

≤λ) −! HTO
• (T d

≤λ)
z∗
λ−! HTO

• (C≤λ) ⊂ HTO
• (GrG);

(3) The direct sum ⊕
µ≤λ

H•
T (pt) · pµ∗

(
e(S̃≤µ) ∩ [C̃≤µ]

)
,

i.e., the free H•
T (pt)-submodule of HTO

• (GrG) with basis {pµ∗
(
e(S̃≤µ) ∩ [C̃≤µ]

)
}µ≤λ.

Moreover, each element e(S̃≤µ) ∩ [C̃≤µ] is independent of the choice of resolution. The same equivalences hold
when TO is replaced by TO ⋊ C×

ℏ . Furthermore, (1) and (2) remain equivalent when TO is replaced by GO or
GO ⋊C×

ℏ , and only dominant coweights are considered.

4That is, C̃≤λ is non-singular and ρλ is a proper birational map.
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Proof. We only prove the proposition for TO; the case for TO⋊C×
ℏ proceeds similarly. The cases forGO andGO⋊C×

ℏ
are obtained by taking Weyl invariants.

We first show that (1) ⊂ (2). Consider the fibre diagram

ρ−1
µ T d

≤µ T d
≤µ

C̃≤µ C≤µ

ρ′
µ

p̃r pr

ρµ

.

Let z̃λ∗ be the Gysin map for the vector bundle ρ−1
µ T d

≤µ over C̃≤µ, then for γ ∈ HTO
• (C̃≤µ), we have

ρµ∗

(
e(S̃≤µ) ∩ γ

)
= ρµ∗

(
e(S̃≤µ) ∩ z̃λ∗p̃r∗γ

)
= ρµ∗ z̃λ

∗
(
p̃r∗e(S̃≤µ) ∩ p̃r∗γ

)
= z∗λ ρ

′
µ∗

(
p̃r∗e(S̃≤µ) ∩ p̃r∗γ

)
.

(14)

Let R̃d
≤µ denote the kernel of the projection ρ−1

µ T d
≤µ ! S̃≤µ, and ι : R̃d

≤µ ! ρ−1
µ T d

≤µ be the inclusion. Since
S̃≤µ = ρ−1

µ T d
≤µ/R̃d

≤µ, we have:

p̃r∗e(S̃≤µ) ∩HTO
• (ρ−1

µ T d
≤µ) ⊂ ι∗H

TO
• (R̃d

≤µ).

As a result:
ρµ∗
(
e(S̃≤µ) ∩ γ

)
∈ z∗λ ρ

′
µ∗ι∗H

TO
• (R̃d

≤µ) ⊂ z∗λ ι∗H
TO
• (Rd

≤µ),

where the last inclusion follows from ρ′µ(R̃d
≤µ) ⊂ Rd

≤µ. This proves that (1) ⊂ (2).
To prove (2) ⊂ (3), note that there is an affine stratification

Rd
≤λ =

⊔
µ≤λ

Rd
µ, (15)

where Rd
µ = Rd

≤λ|Cµ
and hence

HTO
• (Rd

≤λ) =
⊕
µ≤λ

H•
T (pt) · [Rd

≤µ].

Putting γ = [C̃≤µ] in (14), and using S̃≤µ = ρ−1
µ T d

≤µ/R̃d
≤µ again, we obtain :

ρµ∗
(
e(S̃≤µ) ∩ [C̃≤µ]

)
= z∗λ ρ

′
µ∗[R̃d

≤µ] = z∗λ[Rd
≤µ],

where the last equality follows from the fact that R̃d
≤µ is mapped birationally to Rd

≤µ under ρ′µ. This proves (2) ⊂ (3)
and also establishes that the class ρµ∗

(
e(S̃≤µ) ∩ [C̃≤µ]

)
is independent of the choice of resolutions.

To see that the elements {ρµ∗
(
e(S̃≤µ) ∩ [C̃≤µ]}µ≤λ are linearly independent over H•

T (pt), it suffices to show that
both the Gysin map HTO

• (T d
≤λ) ! HTO

• (C≤λ) and the pushforward HTO
• (Rd

≤λ) ! HTO
• (T d

≤λ) are injective.
The former is clear because T d

≤λ is a vector bundle over C≤λ. For the latter, note that there is an affine stratification:

T d
≤λ =

⊔
µ≤λ

T d
µ ,

which is compatible with (15). Therefore, it suffices to show that each pushforward HTO
• (Rd

µ) ! HTO
• (T d

µ ) is
injective. This is equivalent to verifying that the element e(Sµ) = e(T d

µ /Rd
µ) ∈ H•

T (Cµ) ∼= H•
T (pt) is nonzero.

However, by Equation (12), the fibre of Sµ at tµ is a T -representation with no zero weights, hence e(Sµ) ̸= 0.
Finally, it is clear that the subspace defined in (3) is contained in the subspace defined in (1). □

We introduce the notation

e(S) ∩HGO
• (GrG) :=

∑
λ∈Λ+

Im
(
e(S̃≤λ) ∩HGO

• (C̃≤λ) ! HGO
• (GrG)

)
,

and similarly for the versions of GO ⋊C×
ℏ , TO, or TO ⋊C×

ℏ -equivariant Borel–Moore homology.
Now, the following theorem follows immediately.
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Theorem 1.4 (=Theorem 3). We have

AG,N = e(SG,N) ∩HGO
• (GrG) =

(
e(SG,N) ∩HTO

• (GrG)
)W

,

and similarly

Aℏ
G,N = e(SG,N) ∩HGO⋊C×

ℏ
• (GrG) =

(
e(SG,N) ∩HTO⋊C×

ℏ
• (GrG)

)W
.

The following proposition follows from Proposition 1.3 and [BFN18]. An independent proof is given in Appendix A.

Proposition 1.5. The subspaces e(S) ∩ HGO
• (GrG) and e(S) ∩ HGO⋊C×

ℏ
• (GrG) are stable under the convolution

product.

We remark that localization(
e(SN) ∩HTO⋊C×

ℏ
• (GrG)

)
loc

:= FracH•
T×C×

ℏ
(pt)⊗H•

T×C×ℏ
(pt)

(
e(SN) ∩HTO⋊C×

ℏ
• (GrG)

)
(16)

is independent of N ([BFN18]).

2. Twisting maps and twisted linearity

2.1. Twisting maps. Let X be a smooth quasiprojective variety with a G-action. Consider the space GK ×GO X ,
where GO acts on X with via the homomorphism evt=0 : GO ! G. It is equipped with a left GO-action via
h · [g, x] = [hg, x]. There is aGO-equivariant morphismGK×GO X ! GrG by sending [g, x] 7! [g] ∈ GrG. We will
consider theGO-equivariant Borel–Moore homology ofGK ×GO X , defined using finite-dimensional approximation.
For each dominant coweight λ ∈ Λ+, consider the GO-invariant closed subset

G≤λ
K ×GO X ⊂ GK ×GO X. (17)

We define
HGO

• (GK ×GO X) := lim−!
λ∈Λ+

HGO
• (G≤λ

K ×GO X).

Convolution. We have a correspondence similar to the convolution diagram (9) (we will use the notations pG,X and
qG,X if we need to specify G),

GrG ×X GK ×X GK ×GO X
pX qX

which induces the following map,

(q∗X)−1 ◦ p∗X : H
GO⋊C×

ℏ
• (GrG)⊗C[ℏ] H

GO⋊C×
ℏ

• (X) −! H
GO⋊C×

ℏ
• (GK ×GO X). (18)

As in the discussion following (10), the above should be understood using finite-dimensional approximations. For
λ ∈ Λ+, let i≫ j > 0 be positive integers such that the actions of Ki on C≤λ and G≤λ

K /Kj are trivial. Then there is
a corresponding diagram (we use the same notations for the maps in the finite-dimensional approximation):

C≤λ ×X (G≤λ
K /Kj)×X G≤λ

K ×GO X
pX qX (19)

The map (18) should be understood as the direct limit over λ ∈ Λ+ of

(q∗X)−1 ◦ p∗X : H
Gi⋊C×

ℏ
• (C≤λ)⊗C[ℏ] H

Gj⋊C×
ℏ

• (X) ! H
Gi⋊C×

ℏ
• (G≤λ

K ×GO X),

where p∗X and q∗X are homomorphisms induced by the diagram (19). Explicitly:
• The map p∗X is the pullback along pX :

p∗X : H
Gi⋊C×

ℏ
• (C≤λ)⊗C[ℏ] H

Gj⋊C×
ℏ

• (X) −! H
(Gi×Gj)⋊C×

ℏ
•

(
(G≤λ

K /Kj)×X
)
.

• The map q∗X is the pullback along qX , with respect to the inclusion Gi
∼= Gi × {e} ⊂ Gi ×Gj :

q∗X : H
Gi⋊C×

ℏ
•

(
G≤λ

K ×GO X
)
−! H

(Gi×Gj)⋊C×
ℏ

•

(
(G≤λ

K /Kj)×X
)
.

Note q∗X is an isomorphism, and that this construction is independent of i and j. Similarly, there is also TO ⋊C×
ℏ -

equivariant version of (18), as in the following definition.
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Definition 2.1. The twisting map is defined to be the composition (q∗X)−1 ◦ p∗X , namely,

twG : H
GO⋊C×

ℏ
• (GrG)⊗C[ℏ] H

GO⋊C×
ℏ

• (X) −! H
GO⋊C×

ℏ
• (GK ×GO X),

as well as its TO-equivariant counterpart:

twG : H
TO⋊C×

ℏ
• (GrG)⊗C[ℏ] H

GO⋊C×
ℏ

• (X) −! H
TO⋊C×

ℏ
• (GK ×GO X).

Note that we use the same notation twG to denote both homomorphisms. This abuse of notation should cause no
ambiguity, as the first homomorphism agrees with the restriction of the second to the subspace of W -invariants.

The following proposition is obvious if one notice that both pX and qX are quotient maps for a free GO-action.

Proposition 2.2. There is a commutative diagram

H
GO⋊C×

ℏ
• (GrG)⊗C[ℏ] H

GO⋊C×
ℏ

• (X) H
GO⋊C×

ℏ
• (GK ×GO X)

H
(GO×GO×GO)⋊C×

ℏ
• (GK ×X) H

(GO×GO)⋊C×
ℏ

• (GK ×X)

twG

∼= ∼= ,

where the action of GO × GO × GO on GK × X is defined as follows: the first two factors act on GK from the
left and right respectively, while the third factor acts on X . The bottom horizontal map is induced by restricting the
equivariance to the subgroup

GO ×∆GO ⊂ GO ×GO ×GO.

In other words, one may regard twG as identifying the equivariance on X with the equivariance on GrG coming
from GrG = GK/GO. One can also understand this as saying there is the following fibre product identity:

[GO\GrG]×[pt/GO] [GO\X] ∼= [GO\(GK ×GO X)] .

Proposition 2.3. There is a commutative diagram.

H
TO⋊C×

ℏ
• (GrG)⊗C[ℏ] H

GO⋊C×
ℏ

• (X) H
TO⋊C×

ℏ
• (GK ×GO X)

H
TO⋊C×

ℏ
• (GrT )⊗C[ℏ] H

GO⋊C×
ℏ

• (X) H
TO⋊C×

ℏ
• (TK ×TO X)

H
TO⋊C×

ℏ
• (GrT )⊗C[ℏ] H

TO⋊C×
ℏ

• (X) H
TO⋊C×

ℏ
• (TK ×TO X)

twG

⊂

twT

(20)

such that all the maps in the diagram are W -equivariant.

Proof. In the proof below, we omit the finite-dimensional approximations for clarity, as the necessary constructions
should now be clear.

Consider the diagram

GrG ×X GK ×X GK ×GO X

GrT ×X TKGO ×X TKGO ×GO X

GrT ×X TK ×X TK ×TO X

pG,X qG,X

ι′′

p′
X q′X

ι′ ι

pT,X qT,X

∼=

.

Here, the second row is the base change of the first row via the inclusion GrT ! GrG. Since pushforward commutes
with smooth pullback in a fibre diagram, the restriction of twG to HTO⋊C×

ℏ
• (GrT )⊗C[ℏ] H

GO⋊C×
ℏ

• (X) is equal to

(q∗G,X)−1 ◦ p∗G,X ◦ ι′′∗ = (q∗G,X)−1 ◦ ι′∗ ◦ p′ ∗X = ι∗ ◦ (q′ ∗X )−1 ◦ p′ ∗X .
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This proves the commutativity of the upper square in (20). For the lower square, note that we have the following
commutative diagram:

H
(TO×GO×GO)⋊C×

ℏ
• (TKGO ×X) H

(TO×∆GO )⋊C×
ℏ

• (TKGO ×X)

H
(TO×TO×TO)⋊C×

ℏ
• (TK ×X) H

(TO×∆TO )⋊C×
ℏ

• (TK ×X)

.

Here, the horizontal maps correspond to restrictions of equivariant parameters. The left vertical map is the composition

H
(TO×GO×GO)⋊C×

ℏ
• (TKGO ×X) ! H

(TO×GO×TO)⋊C×
ℏ

• (TKGO ×X)

∼= H
(TO×TO×TO)⋊C×

ℏ
• (TK ×X),

and similarly for the right vertical map. In view of Proposition 2.2, this proves the commutativity of the lower square
in (20). □

For the purpose of defining the shift operators (see Definition 4.8), we require the following variant of the twisting
map. Let λ be a coweight, and define the fibre product

G̃≤λ
K := GK ×GrG C̃≤λ. (21)

Using the same construction as above, we obtain a map

tw≤λ : H
GO⋊C×

ℏ
• (C̃≤λ)⊗C[ℏ] H

GO⋊C×
ℏ

• (X) −! H
GO⋊C×

ℏ
•

(
G̃≤λ

K ×GO X
)
.

By abuse of notation, we also denote by the same symbol the following map, obtained from tw≤λ by applying Poincaré
duality twice.

tw≤λ : H
GO⋊C×

ℏ
• (C̃≤λ)⊗C[ℏ] H

•
GO⋊C×

ℏ
(X) −! H•

GO⋊C×
ℏ

(
G̃≤λ

K ×GO X
)
. (22)

Similarly, one can define the TO-equivariant version (and its Poincaré dual version):

tw≤λ : H
TO⋊C×

ℏ
• (C̃≤λ)⊗C[ℏ] H

GO⋊C×
ℏ

• (X) −! H
TO⋊C×

ℏ
•

(
G̃≤λ

K ×GO X
)
.

For later use, we record the following lemmas, whose proofs follow immediately from the compatibility of smooth
pullbacks with pushforwards, and cap products.

Lemma 2.4. The map twG is compatible with tw≤λ in the sense that the following diagram commutes:

H
TO⋊C×

ℏ
• (C̃≤λ)⊗C[ℏ] H

GO⋊C×
ℏ

• (X) H
TO⋊C×

ℏ
•

(
G̃≤λ

K ×GO X
)

H
TO⋊C×

ℏ
• (GrG)⊗C[ℏ] H

GO⋊C×
ℏ

• (X) H
TO⋊C×

ℏ
• (GK ×GO X)

tw≤λ

twG

Lemma 2.5. Suppose we have another resolution C̃ ′
≤λ ! C≤λ which factors through C̃≤λ ! C≤λ. Then the

following diagram commutes:

H
TO⋊C×

ℏ
• (C̃ ′

≤λ)⊗C[ℏ] H
•
GO⋊C×

ℏ
(X) H•

TO⋊C×
ℏ

(
G̃′ ≤λ

K ×GO X
)

H
TO⋊C×

ℏ
• (C̃≤λ)⊗C[ℏ] H

•
GO⋊C×

ℏ
(X) H•

TO⋊C×
ℏ

(
G̃≤λ

K ×GO X
)

tw′
≤λ

tw≤λ

Here, G̃′≤λ
K and tw′

≤λ are defined analogously. The vertical maps are pushforwards.

Lemma 2.6. Suppose Γ ∈ H
TO⋊C×

ℏ
• (C̃≤λ) and α ∈ H

GO⋊C×
ℏ

• (X), we have

tw≤λ

(
e(S̃≤λ) ∩ Γ⊗ α

)
= e(S̃≤λ) ∪ tw≤λ(Γ⊗ α),
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where the bundle S̃≤λ on the right-hand side is understood as the pullback along the projection

G̃≤λ
K ×GO X −! C̃≤λ.

2.2. Twisted linearity. It is clear that twG(− ⊗ −) and twT (− ⊗ −) are H•
TO⋊C×

ℏ
(pt)-linear in the first argument.

However, linearity in the second argument is more subtle, which we will explain now.
There is a morphism u : [GO\GrG] = [GO\GK/GO] ! [pt/GO] ! [pt/G], where the second map is induced by

evt=0 : GO ! G. The pullback map on cohomology

u∗ : H•
G(pt) −! H•

GO⋊C×
ℏ
(GrG)

defines a second H•
G(pt)-module structure on HGO⋊C×

ℏ
• (GrG). More specifically, the map u∗ sends a characteristic

class ck(V ) ∈ H•
G(pt) to the cohomology class

u∗(ck(V )) = ck(GK ×GO V ) ∈ H•
GO×C×

ℏ
(GrG).

Here, V is a G-representation, and GK ×GO V is the associated vector bundle on GrG. Then, the second module
structure is given by

H•
G(pt)⊗H

GO⋊C×
ℏ

• (GrG) −! H
GO⋊C×

ℏ
• (GrG),

P ⊗ Γ 7−! u∗(P ) ∩ Γ.
(23)

By viewing GK ×GO X as the quotient of GK ×X by the action of GO, one similarly obtains the homomorphism

u∗ : H•
G(pt) −! H•

GO⋊C×
ℏ
(GK ×GO X)

by considering the map GK ×GO X ! [pt/GO].
Now we can explain the twisted linearity of twG in the second factor.

Proposition 2.7. Let P ∈ H•
G×C×

ℏ
(pt). Then

twG(Γ⊗ (P ∩ α)) = twG((u
∗P ∩ Γ)⊗ α) = u∗P ∩ twG(Γ⊗ α).

Proof. By Proposition 2.2, we may understand twG as the map

H
(GO×GO×GO)⋊C×

ℏ
• (GK ×X) H

(GO×GO)⋊C×
ℏ

• (GK ×X)

obtained by identifying the second and third copies of GO. The proposition follows by observing that: 1) the second
GO corresponds to the second H•

G(pt)-module action on HGO⋊C×
ℏ

• (GrG) via u∗; 2) The third GO corresponds to the
standard H•

G(pt)-module structure on HG×C×
ℏ

• (X). □

Remark 2.8. There is a parallel story for H•
T (G/T ) replacing HGO

• (GrG), as explained in [Pet97]. Specifically,

H•
T (G/T )

∼= H•
T (pt)⊗H•

G(pt) H
•
T (pt)

carries two distinct H•
T (pt)-module structures. Moreover, for any T -space X , there is a natural isomorphism

H•
T (G/T )⊗H•

T (pt) H
•
T (X) ∼= H•

T (G×T X)

which mirrors the twisting map construction introduced in this section.

Comparison with the previous construction. Let G = T be a torus. We now compare our version of the twisted map
with that of Iritani [Iri17]. For λ ∈ Λ, let Xλ denote the fibre of TK ×TO X over the point [tλ] ∈ GrT . The variety
Xλ is isomorphic to X as a T -variety, but carries the loop rotation action:

zℏ · x = λ(zℏ) · x, for zℏ ∈ C×
ℏ , x ∈ Xλ.

Consider the diagram:
T ×X

X Xλ

a b

where the map a is projection to the second factor, and b is the action map of for the T -action on X (not Xλ).
16



Taking j = 1 in (19), one observes that the map

twT ([t
λ]⊗−) : H•

T×C×
ℏ
(X) −! H•

T×C×
ℏ
(Xλ)

is given by the composition

H•
T×C×

ℏ
(X)

a∗

−! H•
T×T×C×

ℏ
(T ×X)

(b∗)−1

−−−−! H•
T×C×

ℏ
(Xλ).

Here, T × T × C×
ℏ acts on T ×X by the formula

(z1, z2, zℏ) · (z, x) = (λ(zℏ)z1zz
−1
2 , z2x).

To compute a∗ and b∗ explicitly, let E = ET and E′ = EC×
ℏ be contractible spaces equipped with free right actions

by T and C×
ℏ , respectively. Also let Eλ = E as a T -space, but C×

ℏ acts on Eλ through λ. Then a∗ and b∗ correspond
to pullbacks along a′ and b′ in the diagram:

(Eλ × E × E′)×T×T×C×
ℏ
(T ×X)

(E × E′)×T×C×
ℏ
X (Eλ × E′)×T×C×

ℏ
Xλ

a′ b′

where
a′(e1, e2, e

′, z, x) = (e2, e
′, x), b′(e1, e2, e

′, z, x) = (e1, e
′, z · x),

with z · x denoting the original T -action on X .
The map a′ is a weak homotopy equivalence with inverse

c′ : (E × E′)×T×C×
ℏ
X −! (Eλ × E × E′)×T×T×C×

ℏ
(T ×X)

c′(e, e′, x) = (e, e, e′, 1, x).

One can check that c′ is indeed well-defined, and that b′ ◦ c′ = id.
One can summarize the above as follows. The identity map (E ×E′)×X ! (Eλ ×E′)×Xλ is equivariant with

respect to the group automorphism

T × C×
ℏ −! T × C×

ℏ , (z, zℏ) 7!
(
zλ(zℏ)

−1, zℏ
)
, (24)

and the induced map on T × C×
ℏ -equivariant cohomology is naturally identified with twT ([t

λ] ⊗ −). We record this
in the following proposition.

Proposition 2.9. Let Φλ : H
•
T×C×

ℏ
(X) −! H•

T×C×
ℏ
(Xλ) be the (twisted) homomorphism induced by the identity map

id : X ! Xλ, which is equivariant with respect to the group automorphism (24). Then Φλ agrees with the twisting
map twT ([t

λ]⊗−). In particular, for P (a, ℏ) ∈ H•
T×C×

ℏ
(pt) and α ∈ H•

T×C×
ℏ
(X), we have

twT ([t
λ]⊗ P (a, ℏ)α) = P (a+ λ(ℏ), ℏ) twT ([t

λ]⊗ α).

Remark 2.10. Φλ is the same as the twisted homorphism defined in [Iri17, Section 3.1].

3. Shift operators I: preparation

3.1. Quantum cohomology.

Assumptions on the space. Let X be a smooth, semiprojective complex variety with an algebraic G-action. By
semiprojective, we mean that X is quasiprojective and that the affinization map

aff : X −! Xaff := SpecH0(X,OX)

is projective. We assume that X carries an algebraic G-action commuting with an auxiliary C×
dil-action satisfying:

(1) all C×
dil-weights on H0(X,OX) are non-positive; and

(2) the C×
dil-invariants satisfy H0(X,OX)C

×
dil = C.
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These conditions imply in particular that XC×
dil is compact. We refer to C×

dil as the group of dilations or the conical
action, not to be confused with the group of loop rotations, C×

ℏ , which acts trivially on X .
These assumptions ensure that X has nice cohomological properties, including Proposition 3.1 below; see [Iri17].

Note that in [Iri17], it is assumed that the conical group C×
dil is a subgroup of G, which is required for defining shift

operators in their setting. However, we do not need this assumption in the Coulomb branch setting, as will be explained
in Section 4.

Proposition 3.1. The G-action on X is equivariantly formal.

Proof. See [Iri17, Proposition 2.1]. In loc. cit., only abelian G were considered, but the same proof applies to any
reductive group G. □

Equivariant quantum cohomology. We fix a graded C-basis {ai}i∈I of H•
G(pt) and a graded H•

G(pt)-basis {ϕj}Nj=0

of H•
G(X). We denote ϕi,j := aiϕj . Let {τ i,j} be coordinates on H•

G(X) dual to the basis {ϕi,j}, and set
τ =

∑
i,j τ

i,jϕi,j . We declare the degrees of the coordinates τ i,j to be

deg τ i,j = 2− deg(ϕi,j).

We write C[[τ ]] = C[[τ i,j ]], where the odd variables (i.e., τ i,j for deg ϕi,j odd) anti-commute. In other words, this is
the tensor product of the formal power series ring in the even variables with the exterior algebra in the odd variables.

Remark 3.2.
(1) If K ⊂ G is a reductive subgroup, then the restriction of {ϕj}Nj=0 gives a graded H•

K(pt)-basis of H•
K(X).

We always assume that such a compatible choice of basis is made.
(2) We may use the notation τG to indicate the dependence on G. In this paper, we always assume τ = τG unless

otherwise specified.

Remark 3.3. The introduction of the variables τ i,j is in order to define the quantum connection ∇ℏ∂ℏ (26) and shift
operators (38). More specifically, this is due to the grading operator µX (27) and the assignment τ 7! τ̂ (30) not being
H•

G(pt)-linear. For the sole purpose of defining equivariant quantum cohomology, it is possible to takeH•
G(pt)-valued

coordinates instead of the C-valued coordinates τ i,j .

Let K ⊂ G be a reductive subgroup, we write

C[qK ] = C[Hord,K
2 (X;Z)]

for the group algebra of the abelian group Hord,K
2 (X;Z). The ring C[qK ] is equipped with a grading determined by

deg qβ = 2⟨cK1 (X), β⟩.

Let Eff(X) ⊂ Hord
2 (X;Z) be the subset of effective curve classes. We denote ι∗ : Hord

2 (X;Z) ! Hord,K
2 (X;Z)

the natural map. We define H•
G(X)[[qK , τ ]] to be the graded completion of H•

G(X)[[τ ]]⊗CC[qK ] along the direction
Eff(X)5. Concretely, an element of H•

G(X)[[qK , τ ]] is a formal sum∑
β,m

qβcβ,m
∏
i∈I

0≤j≤N

(τ i,j)mi,j

where β ranges over Hord,K
2 (X;Z), m = {mi,j} runs over multi-indices with finite support on I × {0, 1, . . . , N},

and the product is taken in some fixed order on this index set. The sum is required to satisfy the following:
(1) Each cβ,m lies in H•

G(X).
(2) There exists a finite subset S ⊂ Hord,K

2 (X;Z) such that cβ,m = 0 unless β ∈ S + ι∗(Eff(X)).
(3) There exists a finite subsetR ⊂ Z such that (cβ,m)d = 0 for d+

∑
mi,j deg τ

i,j+deg qβ ̸∈ R, where (cβ,m)d
denotes the degree d component of cβ,m.

5One can see that the product on C[[qG]] is well-defined as follows. Choose a closed embedding X ↪! Pm × Cn. It suffices to verify that the
moduli stack of stable maps to X of degree less than or equal to a fixed number E has only finitely many components. This follows from the fact
that this moduli stack is a closed substack of the corresponding moduli stack of stable maps to Pm × Cn, which has quasiprojective coarse moduli
space. We thank Hiroshi Iritani for explaining this argument to us.

18



Definition 3.4. The G-equivariant quantum cohomology of X with K-equivariant Novikov variables is the ring

QH•
G(X)[[qK , τ ]],

whose underlying vector space is H•
G(X)[[qK , τ ]]. Its ring structure is defined by the big quantum product ⋆τ , where

γ ⋆τ γ
′ =

∑
β∈Eff(X)

∞∑
n=0

qι∗β

n!
PD ev3∗

(
ev∗1(γ) ev

∗
2(γ

′)

n+3∏
ℓ=4

ev∗ℓ (τ) ∩ [M0,n+3(X,β)]
vir
)

for γ, γ′ ∈ H•
G(X). Here,M0,n+3(X,β) is the moduli stack of genus-zero stable maps toX with n+3 marked points

and curve class β, and [M0,n+3(X,β)]
vir denotes its virtual fundamental class. Note that ev3 is proper, thanks to X

being semiprojective. The product ⋆τ on a general element of H•
G(X)[[qK , τ ]] is then defined termwise on its power

series expansion.

From now on, we will simply write qι∗β as qβ whenever no confusion is likely to arise. It is clear that if
K1 ⊂ K2 ⊂ G are reductive subgroups of G, then there is a natural ring homomorphism

QH•
G(X)[[qK1 , τ ]] −! QH•

G(X)[[qK2 , τ ]]. (25)

Quantum connection. We consider the trivial C×
ℏ -action on X . We follow the notations in [Iri25, Section 2.1].

Definition 3.5 (Quantum connection). The equivariant quantum connections are the operators

∇τ i,j ,∇ℏ∂ℏ ,∇D : H•
G×C×

ℏ
(X)[[qK , τ ]] ! H•

G×C×
ℏ
(X)[[qK , τ ]][ℏ−1],

defined as

∇τ i,j = ∂τ i,j + ℏ−1(ϕi,j⋆τ ),

∇ℏ∂ℏ = ℏ∂ℏ − ℏ−1(E⋆τ ) + µX , (26)

∇Dq∂q
= Dq∂q + ℏ−1(D⋆),

where D ∈ H2
G(X) and Dq∂q is the derivation on C[[qK ]] with Dq∂qqβ = ⟨D,β⟩qβ , while EX is the Euler vector

field and µX is the grading operator, defined respectively by the formulas

EX = cG1 (X) +
∑
i,j

deg(τ i,j)

2
τ i,jϕi,j

and

µX(ϕi,j) =
1

2
(deg(ϕi,j)− dimX)ϕi,j . (27)

Definition 3.6 (Fundamental solution). The fundamental solution to the quantum differential equation is the operator

MX : H•
G×C×

ℏ
(X)[[qG, τ ]][[ℏ−1]] ! H•

G×C×
ℏ
(X)[[qG, τ ]][[ℏ−1]]

defined by

MX(γ) = γ +
∑

0 ̸=β∈Eff(X)

∞∑
n=0

qβ

n!
PD ◦ ev2∗

(
ev∗1(γ)

ℏ− ψ1

n+2∏
ℓ=3

ev∗ℓ (τ) ∩ [M0,n+2(X,β)]
vir

)
,

where ψ1 is the equivariant first Chern class of the universal cotangent line bundle at the first marked point.

The following proposition is well-known (see [Giv96; Pan98; CIJ18; Iri25]).

Proposition 3.7. The operator MX is invertible and satisfies the identities

∇τ i,j ◦MX = MX ◦ ∂τ i,j ,

∇ℏ∂ℏ ◦MX = MX ◦
(
ℏ∂ℏ − ℏ−1(cG1 (X)∪) + µX

)
, (28)

∇Dq∂q
◦MX = MX ◦

(
Dq∂q + ℏ−1(D∪)

)
.
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3.2. Universal G-torsor. We fix the standard affine chart C = SpecC[t] ⊂ P1 and take the base point 0 ∈ C ⊂ P1.
By the Beauville–Laszlo theorem [BL95] (see also [Zhu17]), the affine Grassmannian GrG represents the functor on
the category of C-scheme.

Z 7−!

{
(P, φ)

∣∣∣∣ P is a G-torsor over P1
Z ,

φ∞ : P|(P1\{0})Z
∼
−! (P1 \ {0})Z ×G is a trivialization

}/ ∼= .

In particular, there exists a universalG-torsor E ! GrG ×P1. If p ∈ GrG, we denote Ep the restriction of E to p×P1.
We now make the correspondence between a map f : Z ! GrG and the pair (P, φ∞) more explicit. Suppose first

that f factors through a map f̃ : Z ! GK. Then P is the unique (up to isomorphism) G-torsor over P1
R with local

trivializations
φ∞ : P|Z×(P1\{0})

∼
−! (Z × (P1 \ {0}))×G,

and
φ0 : P|Z×SpecO

∼
−! (Z × SpecO)×G,

such that the induced automorphism

φ∞|Z×SpecK ◦ (φ0|Z×SpecK)
−1 : (Z × SpecK)×G! (Z × SpecK)×G

is given by left multiplication by the map

(Z × SpecK)×G! Z × SpecK f̃
−! G.

The existence of such a torsor P is the content of the Beauville–Laszlo theorem. In general, there exists an fppf cover⊔
Zi ! Z such that the pullback of f to each Zi factors throughGK. One can then construct P and φ∞ by gluing the

corresponding G-torsors and local trivializations over the cover, using fppf descent.
Under the above correspondence, the subgroup GC[t−1] ⊂ GK acts on GrG by modifying the section φ over

P1 \ {0}, while loop rotation acts by scaling the coordinate on P1. More explicitly, for z ∈ C×
ℏ , let mz : P1 ! P1 be

the morphism given by t 7! z−1t. There is an action of GC[t−1] ⋊C×
ℏ on GrG given by

g = (g1, z) · (P, φ) = (m∗
zP, g ·m∗

zφ) ,

where g1 is regarded as a morphism SpecC[t−1] ! G.
The action of GC[t−1] ⋊ C×

ℏ lifts to the universal torsor E , in the sense of the next lemma, which follows from the
functorial description of GrG.

Lemma 3.8. Suppose f : Z ! GrG is a morphism from a scheme Z corresponding to the pair (P, φ∞), and let
g = (g1, z) ∈ GC[t−1] ⋊C×

ℏ . If (P ′, φ′
∞) corresponds to the map g · f : Z ! GrG, then there exists a G-equivariant

isomorphism
gf : P ∼

−! m∗
zP ′

such that m∗
zφ

′
∞ ◦ gf = g1 · φ∞.

In particular, if H ⊂ GC[t−1] ⋊ C×
ℏ and f : Z ! GrG is an H-equivariant morphism corresponding to the pair

(P, φ∞), then there is an induced H-action on P such that the projection P ! Z × P1 is H-equivariant (where C×
ℏ

acts on P1 by scalar multiplication).
Strictly speaking, we have defined the action on E only at the level of C-points of GC[t−1] ⋊ C×

ℏ . In Appendix B,
we will describe the action ofGC[t−1] ⋊C×

ℏ as a group scheme by considering itsR-points, and in particular show that
the actions defined above are algebraic.

Example 3.9. Suppose G = T = C× and λ = 1. Then

Et := E|t ∼= OP1(−1)× ∼= C2 \ {0}.
Let u, v be coordinates onC2, so that the projectionC2\{0} ! P1 is given by t = v/u. Indeed, there are trivializations

φ0 : OP1(−1)×|SpecC[t]
∼
−! SpecC[t]× C×,

φ∞ : OP1(−1)×|SpecC[t−1]
∼
−! SpecC[t−1]× C×,

given by
φ0(u, v) =

( v
u
, u
)
, φ∞(u, v) =

(u
v
, v
)
.
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It is clear that the transition function φ∞ ◦ φ−1
0 corresponds to left multiplication by t = v/u. The subgroup6

C× × C×
ℏ ⊂ C×

C[t−1] ⋊C×
ℏ acts on OP1(−1)× by (g, zℏ) · (u, v) = (zℏgu, gv).

More generally, if G = T is abelian and λ ∈ Λ is arbitrary, then

Etλ ∼= OP1(−1)× ×C× T,

where C× acts on T via λ, and T × C×
ℏ acts on Etλ via (g, zℏ) · (u, v, g′) = (zℏu, v, gg

′). □

3.3. Seidel spaces. For each λ ∈ Λ, we fix an I-equivariant resolution of singularities ρλ : C̃≤λ ! C≤λ satisfying
the conditions in Lemma 1.2. Let E≤λ be the principal G-bundle on C̃≤λ × P1 induced by the morphism

C̃≤λ
ρλ−! C≤λ ⊂ GrG.

If p ∈ C̃≤λ, we write Ep for the restriction of E≤λ to p×P1. In particular, there is a canonical isomorphism Ep ∼= Eρλ(p).
If X is a G-variety, we call

E≤λ(X) := E≤λ ×G X

the Seidel space associated to X and C̃≤λ.
By construction, there is a T × C×

ℏ -action on E≤λ(X) such that the projection

π : E≤λ(X) ! C̃≤λ × P1

is equivariant, where C×
ℏ acts on P1 by scalar multiplication. Moreover, if λ ∈ Λ+, this action can be upgraded to a

G× C×
ℏ -action.

Example 3.10. The bundle Etλ(X) is isomorphic to OP1(−1)× ×C× X , where C× acts on X via the cocharacter
λ : C× ! T . The action of T × C×

ℏ on Etλ(X) is given by (cf. Example 3.9)

(g, zℏ) · (u, v, x) = (zℏu, v, gx).

This space is T × C×
ℏ -equivariantly isomorphic to the Seidel space Eλ defined in Section 3.2 of [Iri17], but with the

roles of 0 and ∞ swapped. □

Section classes. An effective curve class β ∈ Hord
2 (E≤λ(X);Z) is called a section class if π∗β = [pt × P1]. Denote

by Eff(E≤λ(X))sec the subset of section classes.
The projection E≤λ ×X ! X is G-equivariant, and hence induces a pushforward map in equivariant homology:

Hord
2 (E≤λ(X);Z) −! Hord,G

2 (X;Z).

For any β ∈ Hord
2 (E≤λ(X);Z), we denote by β ∈ Hord,G

2 (X,Z) its image under this map.
Let T vertE≤λ(X) := ker(dπ) ∼= E≤λ(TX) be the relative tangent bundle of π. The following lemma is immediate.

Lemma 3.11. deg(qβ) = 2 c1(T
vertE≤λ(X)) · β.

Fibres at 0 and ∞. There are GC[t−1] ⋊C×
ℏ -equivariant isomorphisms

E(X)|GrG×{0} ∼= GK ×GO X,

E(X)|GrG×{∞} ∼= GrG ×X.
(29)

These are straightforward consequences of the construction of E , see (65) in Appendix B. We denote

ι0 : X≤λ,0 := π−1(C̃≤λ × {0}) ↪! E≤λ(X),

ι∞ : X≤λ,∞ := π−1(C̃≤λ × {∞}) ↪! E≤λ(X).

Recall that G̃≤λ
K denotes GK ×GrG C̃≤λ (see (21)). The following lemma follows immediately from Equation (29).

Lemma 3.12. There are T × C×
ℏ -equivariant isomorphisms

X≤λ,0
∼= G̃≤λ

K ×GO X,

X≤λ,∞ ∼= C̃≤λ ×X.

Moreover, these isomorphisms are G× C×
ℏ -equivariant if λ ∈ Λ+.

6C× and C×
C[t−1]

have the same underlying C-points
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In particular, ρX,λ : X≤λ,0 ! G≤λ
K ×GO X is a resolution of singularities.

Definition 3.13. We define a map

H•
G×C×

ℏ
(X) ! H•

T×C×
ℏ
(E≤λ(X)), τ 7! τ̂ , (30)

as the composition of the following maps:

H•
GO⋊C×

ℏ
(X)

pr∗X−−! H•
(TO×GO×GO)⋊C×

ℏ
(E≤λ ×X) ! H•

(TO×∆GO )⋊C×
ℏ
(E≤λ ×X)

∼
−! H•

TO⋊C×
ℏ
(E≤λ(X)),

where we identify H•
G×C×

ℏ
(X) with H•

GO⋊C×
ℏ
(X), and similarly for the other terms.

The following lemma is an immediate consequence of Definition 3.13 and the considerations in Proposition 2.2.

Lemma 3.14. Let

τ̃ = 1⊗ τ ∈ H•
(T×GO×G)⋊C×

ℏ
(G̃≤λ

K ×X) ∼= H•
T×C×

ℏ
(C̃≤λ)⊗C[ℏ] H

•
G×C×

ℏ
(X).

Then the restriction of τ̂ to X≤λ,0 is equal to tw≤λ(τ̃), and the restriction of τ̂ to X≤λ,0 is equal to the image of τ̃
under the restriction of the equivariant parameter

H•
(T×GO×G)⋊C×

ℏ
(G̃≤λ

K ×X) −! H•
(T×GO×1)⋊C×

ℏ
(G̃≤λ

K ×X) ∼= H•
T×C×

ℏ
(C̃≤λ ×X).

Remark 3.15. It follows from Lemma 3.14 that when G = T is abelian, the class τ̂ agrees with [Iri17, Notation 3.8],
except that the roles of the zero and infinity fibres are reversed (cf. Example 3.10).

Moduli spaces and virtual fundamental classes. Let β ∈ Eff(E≤λ(X))sec. Recall that M0,n+2(E≤λ(X), β) denotes
the moduli stack of genus-zero stable maps to E≤λ(X) with n+ 2 marked points and curve class β. A typical object
in this moduli stack is a stable map

σ : (Σ, y0, y∞, y1, . . . , yn) ! E≤λ(X),

where Σ is a genus-zero nodal curve and y0, y∞, y1 . . . , yn ∈ Σ are the marked points.
Since E≤λ(X) is smooth, the moduli stack admits a virtual fundamental class ([BF97]),

[M0,n+2(E≤λ(X), β)]vir ∈ H
T×C×

ℏ
• (M0,n+2(E≤λ(X), β)).

Definition 3.16. Let M≤λ(X,β)n ⊂M0,n+2(E≤λ(X), β) denote the substack consisting of those stable maps σ such
that σ(y0) lies over 0 ∈ P1 and σ(y∞) lies over ∞ ∈ P1. In other words, we have the fibre diagram:

M≤λ(X,β)n M0,n+2(E≤λ(X), β)

{(0,∞)} P1 × P1

jM

(prP1 ◦Ev0)×(prP1 ◦Ev∞) (31)

Here, Ev0 and Ev∞ denote the evaluation maps at the marked points y0 and y∞, respectively. We also denote

M≤λ(X)n :=
⊔

β∈Eff(E≤λ(X))sec

M≤λ(X,β)n.

In particular, the evaluation maps restrict to

ev0 : M≤λ(X)n −! X≤λ,0, ev∞ : M≤λ(X)n −! X≤λ,∞.

In order to distinguish between the evaluation maps onM andM , we use the different symbols ev andEv, respectively.
We define the virtual fundamental class of M≤λ(X,β)n to be

[M≤λ(X,β)n]
vir := j!M

[
M0,n+2(E≤λ(X), β)

]vir
, (32)

where j!M is the refined Gysin pullback

j!M : H
T×C×

ℏ
•

(
M0,n+2(E≤λ(X), β)

)
! H

T×C×
ℏ

•−4 (M≤λ(X,β)n)
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defined via the fibre diagram (31) (see [8.3.21] in [CG97] or part 3(ii)(b) of [BFN18]). The degree of the virtual
fundamental class equals twice the virtual dimension of M≤λ(X,β)n, which is computed as follows (cf. [FP97;
CK99]):

vdim
(
M≤λ(X,β)n

)
= dim E≤λ(X) + c1

(
TE≤λ(X)

)
· β + n− 3

= dimX + dimCλ + c1
(
T vertE≤λ(X)

)
· β + n

= dimX + dimCλ + cG1 (X) · β + n. (33)

If p is a point in GrG or in C̃≤λ, the substack Mp(X,β)n ⊂ M0,n+2(Ep(X), β) is defined similarly. We write
prC̃≤λ

: M≤λ(X,β)n ! C̃≤λ for the projection.

4. Shift operators II: definition

We assume that X satisfies the conditions in Section 3.1, that N is a representation of G, and that there exists an
equivariant proper morphism

f : X ! N.

Our goal is to construct a homomorphism

SG,N,X : Aℏ
G,N ⊗C[ℏ] H

•
G×C×

ℏ
(X)[[qG, τ ]] −! H•

G×C×
ℏ
(X)[[qG, τ ]]

that endows H•
G×C×

ℏ
(X)[[qG, τ ]] with the structure of an Aℏ

G,N-module.

4.1. The tautological section and its zero locus. Throughout this section, β will always denote a section class.

A lemma on Ep(N). Recall in Section 3.2 that we have a trivialization of E over GrG × {∞}. Let p ∈ GrG, there is
thus an induced local trivialization of the vector bundle Ep(N) over P1

φ∞(N) : Ep(N)|SpecC[t−1]
∼
−! SpecC[t−1]×N

over SpecC[t−1]. We write φ∞(N) simply as φ∞ when no confusion arises. Suppose s is a section of the vector
bundle Ep(N), which corresponds to a morphism s∞ : SpecC[t−1] ! N under φ∞. We regard s∞ as an element of
NC[t−1]. Recall the bundle T = GK ×GO NO.
Lemma 4.1. s∞ ∈ Tp.
Proof. Let p̃ be a lift of p in GK, and recall that Tp = p̃NO ⊂ NK. There is a trivialization of Ep(N) over SpecO:

φ0 : Ep(N)|SpecO
∼
−! SpecO ×N

such that the transition function φ∞ ◦φ−1
0 : NK ! NK is given by the action of p̃ ∈ GK. Let s0 : SpecO ! N be the

morphism induced by s under φ0, and regard it as an element of NO. Then we have s∞ = p̃s0 ∈ Tp, as claimed. □

The tautological section. Let λ ∈ Λ, and let ρλ : C̃≤λ ! C≤λ be a resolution as in Lemma 1.2. We will construct a
section of S̃≤λ over M≤λ(X)n

7.
Let σ : (Σ, y0, y∞, y1, . . . , yn) ! E≤λ(X) be a stable map representing a point in M≤λ(X)n. By the definition of

the section class, there exists a point pσ ∈ C̃≤λ and a unique irreducible component Σ0 of Σ such that the composition

Σ
σ
−! Ep(X) ! C̃≤λ × P1

restricts to an isomorphism r : Σ0
∼
−! pσ × P1. Composing σ ◦ r−1 with the projection M≤λ(X)n ! M≤λ(N)n

gives a section σ of the vector bundle Ep(N) := Eρλ(p)(N).
By Lemma 4.1, the image σ∞ lies in Tpσ

:= Tρλ(pσ).

Definition 4.2. Let can≤λ(X) be the section of S̃≤λ over M≤λ(X)n given by the assignment
σ 7−! [σ∞],

where σ ∈ M≤λ(X)n, and [σ∞] denotes the image of σ∞ under the projection Tpσ ! (S̃≤λ)pσ .
Moreover, ifβ is a section class of E≤λ(X), we denote by can≤λ(X,β) the restriction of can≤λ(X) toM≤λ(X,β)n.

If p ∈ C̃≤λ, then the maps canp(X) : Mp(X)n ! S̃≤λ|p are defined analogously.

7That is, a morphism M≤λ(X)n ! S̃≤λ of spaces over C̃≤λ.
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The zero locus.

Definition 4.3. We denote by Z≤λ(X,β)n and Z≤λ(X)n the zero loci of can≤λ(X,β) and can≤λ(X) respectively.
We also write ZN

≤λ(X,β)n and ZN
≤λ(X)n if we want to emphasize the representation N.

In contexts involving multiple representations, we include a superscript to indicate the representation, denoting, for
example, ZN

≤λ(X)n and canN≤λ(X)n.
If p is a point in GrG or in C̃≤λ, the substack Zp(X,β)n ⊂ Mp(X,β)n is defined similarly. We regard ev∞ as a

morphism M≤λ(X)n ! C̃≤λ ×X .

Proposition 4.4. The restriction of the evaluation map ev∞ : M≤λ(X)n ! C̃≤λ ×X to Z≤λ(X)n is proper.

Proof. Since the morphism M≤λ(X)n+1 ! M≤λ(X)n that forgets the last marked point (and stabilizes) is proper,
it suffices to consider the case n = 0. For simplicity, we write M≤λ(X)0 = M≤λ(X).

We first consider the case X = N. It suffices to prove that for any p ∈ C̃≤λ, the restriction of the evaluation map
ev∞ : Mp(N) ! Ep(N) to the zero locus of canp(N) is proper. We regard canp(N) as a map Mp(N) ! (S̃≤λ)p.

Note that we may identify the moduli space Mp(N) with the vector space of global sections of the vector bundle
Ep(N) over p × P1. Under this identification, the map canp(N) sends a section s to [s∞]. It is clear from this
description that canp(N) is a linear map. Note that the composition

Rp ! Tp ! (S̃≤λ)p

is zero. If canp(N)(s) = 0, then we must have s∞ ∈ Rp, which means s∞ ∈ NO∩NC[t−1] = N. We can summarize
this by saying that the assignment s 7! s∞ gives an injective linear map of vector spaces ker canp(N) ↪! N. However,
the evaluation map ev∞ also sends s 7! s∞, so this proves the lemma in the case X = N.

For the general case, we consider the commutative diagram:

Z≤λ(X,β) M≤λ(X,β) E≤λ(X)

Z≤λ(N) M≤λ(N) E≤λ(N)

jX

Z(f)

ev∞

M(f) E(f)

jN ev∞

It suffices to show that M(f) is proper, since this implies the properness of Z(f), and hence of the composition
E(f) ◦ ev∞ ◦jX = ev∞ ◦jN ◦ Z(f). In particular, this shows that ev∞ ◦jX is proper.

Properness of M(f) follows from the semiprojectivity of X . Indeed, f : X ! N factors equivariantly as

X
h
↪−! Pn ×N −! N,

where h is a closed embedding. Then there is a corresponding factorization of M(f):

M≤λ(X,β)
M(h)
−−−−! M≤λ(Pn ×N, h∗β) −! M≤λ(N).

The natural map induces an isomorphism

M≤λ(Pn ×N, h∗β) ∼= M≤λ(Pn, (prPn)∗h∗β)×M≤λ(N).

Since h is a closed embedding (cf. [FP97, Section 5.1]) and M≤λ(Pn, (prPn)∗h∗β) is proper, the map M(f) is also
proper, as claimed. □

4.2. Section-counting map.

Virtual fundamental classes. Consider the fibre diagram

Z≤λ(X,β)n M≤λ(X,β)n

C̃≤λ S̃≤λ

jX

can≤λ(X) , (34)

where the bottom row is the inclusion of the zero section. We define the virtual fundamental class

[Z≤λ(X,β)n]
vir := j!X

[
M≤λ(X,β)n

]vir
, (35)
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where j!X denotes the Gysin pullback

j!X : H
T×C×

ℏ
•

(
M≤λ(X,β)n

)
−! H

T×C×
ℏ

•−2dλ

(
Z≤λ(X,β)n

)
,

taken relative to the diagram (34). Here, dλ denotes the rank of the vector bundle S̃≤λ (see (13)). We record the
following.

vdim
(
Z≤λ(X,β)n

)
= dimX + dimCλ + cG1 (X) · β − dλ + n. (36)

We write ev∞ in place of ev∞ ◦jX for simplicity.

Definition 4.5. We define the section-counting map

S̃N,≤λ : e(S̃≤λ) ∪H•
T×C×

ℏ
(X≤λ,0)[[qG, τ ]] −! H•

T×C×
ℏ
(X)[[qG, τ ]]

by setting

S̃N,≤λ(e(S̃≤λ) ∪ γ) :=
∑

β∈Eff(E≤λ(X))sec

∞∑
n=0

qβ

n!
PD ◦ prX∗ ev∞∗

(
ev∗0(γ)

n∏
ℓ=1

ev∗ℓ (τ̂) ∩ [Z≤λ(X,β)n]
vir

)
(37)

for γ ∈ H•
T×C×

ℏ
(X≤λ,0). Here, prX : X≤λ,∞ ∼= C̃≤λ × X ! X is the projection map, and PD: H

T×C×
ℏ

• (X) !

H2 dimX−•
T×C×

ℏ
(X) is the Poincaré duality map. The formula for an arbitrary γ ∈ H•

T×C×
ℏ
(X≤λ,0)[[qG, τ ]] is defined

termwise on its power series expansion.

The above definition makes sense due to the following two lemmas.

Lemma 4.6. There exists a finite subset S ⊂ Hord,G
2 (X;Z) such that{

β ∈ Hord,G
2 (X;Z)

∣∣∣β ∈ Eff(E≤λ(X))sec
}
⊂ S + i∗ (Eff(X)) ,

where i : X ↪! E≤λ(X) is the inclusion of a fibre.

Lemma 4.7. Let γ ∈ H•
T×C×

ℏ
(X≤λ,0) be a homogeneous element. Then, each summand in the power series expansion

of the right-hand side of (37) is of degree deg e((S̃≤λ)∪γ)−2 dimCλ = 2dλ−2 dimCλ+deg γ, which is independent
of β and n.

Definition 4.8. We define the shift operator with matter N to be the map

SG,N,X : e(SN) ∩HTO⋊C×
ℏ

• (GrG)⊗C[ℏ] H
•
G×C×

ℏ
(X)[[qG, τ ]] −! H•

T×C×
ℏ
(X)[[qG, τ ]]

which sends
e(S) ∩ [C≤λ]⊗ α 7−! S̃N,≤λ

(
e(S̃≤λ) ∪ tw≤λ

(
[C̃≤λ]⊗ α

))
. (38)

The map SG,N,X is then extended H•
T×C×

ℏ
(pt)-linearly in the first argument. And for a general element of

H•
G×C×

ℏ
(X)[[qG, τ ]], the assignment SG,N,X is then defined termwise on its power series expansion. Here tw≤λ

is the twisting map defined in (22).

Note that by Lemma 2.6, the expression (38) can also be written as the composition SN,≤λ ◦ tw≤λ(e(S̃≤λ) ∩
[C̃≤λ]⊗ α).

We will simply write SG,N when the space X is clear from the context, and we write SG if the representation
N = 0. We will show in Corollary 5.9 that SG,N,X is W -equivariant and in particular its restriction to the subspace
of W -invariants gives the map (1).

Proof of Lemma 4.6. We first reduce to the case where X is compact. Indeed, if C is a curve on E≤λ(X) representing
a section class, we may use the C×

dil-action to move σ so that it lies in E≤λ(X
C×

). Hence, we may replace X by XC×
,

which is compact.
Next, we use the T -action to move the curve C to a T -invariant curve. In particular, its projection p = prC̃≤λ

(C)

must be a T -fixed point in C̃≤λ. We have
Ep(X) = ET

ρλ(p)
(X),

where ET denotes the universal T -torsor over GrT ×P1. Therefore, we may reduce to the case whereG = T is abelian.
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Now let C ⊂ ET
p (X) be a T -invariant curve representing a section class with irreducible components C0, . . . , Cm.

Then one of them, say C0, must be the constant section

Constx = ET
p ×T x

for some x ∈ XT , and all other components lie in the fibres of ET
p (X) ! p × P1. Let F1, . . . , Fk be the connected

components of XT , and let βi ∈ Eff(E≤λ(X))sec be the class represented by Constx for some (any) y ∈ Fi. Then the
above reasoning gives

[C] ∈ Z≥0β1 + · · ·+ Z≥0βk + Eff(X).

Therefore, we may conclude the lemma by taking S = {β1, . . . , βk}. □

Proof of Lemma 4.7. Using (36) and Lemma 3.11, we see that for any iℓ ∈ I and jℓ ∈ {0, 1, . . . , N}, the degree of

qβ

n!
PD ◦ prX∗ ev∞∗

(
ev∗0(γ)

n∏
ℓ=1

ev∗ℓ (τ
iℓ,jℓ ϕ̂iℓ,jℓ) ∩ [Z≤λ(X,β)n]

vir

)
is equal to

2cG1 (X) · β + 2dimX − 2vdim(Z≤λ(X,β)n) + deg γ +

n∑
ℓ=1

(
deg τ iℓ,jℓ + deg ϕiℓ,jℓ

)
= 2dλ − 2 dimCλ + deg γ. □

We adopt the cohomological convention for degrees in Borel–Moore homology. In particular, an element of
H

T×C×
ℏ

k (GrG) has degree −k.
Since tw≤λ increases the degree by 2 dimCλ (due to Poincaré duality), we obtain the following corollary of

Lemma 4.7.
Corollary 4.9. SG,N preserves cohomological degrees.
Remark 4.10. SupposeG = T is abelian, and let λ ∈ Λ be semi-negative with respect toX , in the sense that ξ(λ) ≤ 0
for every weight ξ of H0(X,OX) (cf. [Iri17, Definition 3.3]).

It is easy to show that there exists a representation N with λ-non-positive weights and a proper T -equivariant
morphism f : X ! N. By Equation (12), we have Stλ = 0, and hence Z≤λ(X)n = M≤λ(X)n. In this case, the
properness statement in Proposition 4.4 follows from [Iri17, Lemma 3.5].

Remark 3.10 of [Iri17] also notes that the semi-negativity condition implies that the shift operator is defined without
localization. One may regard Proposition 4.4 and Definition 4.8 as generalizations of this observation. In Section 5
below, we will explain in detail how our construction of shift operators compares with that in [Iri17].

By the H•
T×C×

ℏ
(pt)-linearities of tw≤λ and S̃N,≤λ, we can extend the shift operators to the localized Coulomb

branch algebras (see (16)).
Definition 4.11. Define

SG,N,loc :
(
e(SN) ∩HTO⋊C×

ℏ
• (GrG)

)
loc

⊗C[ℏ] H
•
G×C×

ℏ
(X)[[qG, τ ]] −! H•

T×C×
ℏ
(X)loc[[qG, τ ]]

by extending FracH•
T×C×

ℏ
(pt)-linearly in the first argument. Here H•

T×C×
ℏ
(X)loc := FracH•

T×C×
ℏ
(pt) ⊗H•

T×C×ℏ
(pt)

H•
T×C×

ℏ
(X) is the localized cohomology.

The Seidel representation.
Definition 4.12. Setting ℏ = 0 defines the equivariant Seidel representation,

Sℏ=0
G,N : e(SN) ∩HTO⋊C×

ℏ
• (GrG)⊗C QH

•
G(X)[[qG, τ ]] −! QH•

G(X)[[qG, τ ]].

The equivariant Seidel map is then defined as the map

ΨG,N,X : e(SN) ∩HTO⋊C×
ℏ

• (GrG) −! QH•
G(X)[[qG, τ ]],

Γ 7−! Sℏ=0
G,N(Γ, 1).

Remark 4.13. Similar to Definition 4.11, we may define the localized Seidel representation and the localized Seidel
map by extending FracH•

T×C×
ℏ
(pt)-linearly. We will denote them by Sℏ=0

G,N,loc and ΨG,N,loc respectively.
26



4.3. Independence of resolutions. In this subsection, we prove basic properties of SG,N, including the independence
of choice of resolutions C̃≤λ.

Proposition 4.14. Let P ∈ H•
G×C×

ℏ
(pt). Then

SG,N(Γ⊗ (P ∪ α)) = SG,N((u∗P ∩ Γ)⊗ α),

where u∗ : H•
G(pt) ! H•

TO⋊C×
ℏ
(GrG) is the second module structure defined in Equation (23).

Proof. It follows from Proposition 2.7 and the projection formula. □

The following proposition explains the origin of the name “shift operator”.

Proposition 4.15. The map ST,N is twisted-linear, i.e., for P (a, ℏ) ∈ H•
T×C×

ℏ
(pt) and any cocharacter λ,

ST,N(e(Stλ) ∩ [tλ]⊗ P (a, ℏ)α) = P (a+ λ(ℏ), ℏ)ST,N(e(Stλ) ∩ [tλ]⊗ α).

Proof. It follows from Proposition 2.9 and the fact that S̃N≤λ is H•
T×C×

ℏ
(pt)-linear. □

Let 1 denote the class [C≤0] ∈ H
TO⋊C×

ℏ
• (GrG). For any G-representation N, we have S≤0 = 0, so that 1 ∈

e(SN) ∩HTO⋊C×
ℏ

• (GrG).

Proposition 4.16. The operator SG,N(1,−) is equal to the inclusion

H•
G×C×

ℏ
(X)[[qG, τ ]] ⊂ H•

T×C×
ℏ
(X)[[qG, τ ]].

Proof. Note that St0 = 0, and by definition, tw≤0 is the inclusion map. Therefore, it suffices to show that the
section-counting map

S̃≤0 : H•
T×C×

ℏ
(X)[[qG, τ ]] −! H•

T×C×
ℏ
(X)[[qG, τ ]]

is the identity. Let γ, γ′ ∈ H•
T×C×

ℏ
(X). Since

M0,2(X × P1, (0, 1)) = X ×M0,2(P1, 1),

it is immediate that that ⟨ι0∗γ, ι∞∗γ
′⟩X×P1

0,(0,1) = (γ, γ′). Note that τ̂ = τ ⊗ 1. Hence, it suffices to prove that the
Gromov–Witten invariant 〈

γ ⊗ PD([0]), τ ⊗ 1, . . . , τ ⊗ 1︸ ︷︷ ︸
n times

, γ′ ⊗ PD([∞])

〉X×P1

0,(β,1)

(39)

vanishes whenever β ̸= 0 or n ̸= 0. Indeed, the forgetful morphism

pr :M0,n+2(X × P1, (β, 1)) !M0,n+2(X,β)

has relative dimension 3 if β ̸= 0 or n ̸= 0. Therefore,

pr∗ (Ev
∗
0(1⊗ PD([0])) ∪ Ev∗∞(1⊗ PD([∞]))) = 0,

and by the projection formula, the invariant in (39) vanishes when β ̸= 0 or n ̸= 0. □

Proposition 4.17. The operator SG,N is independent of the choices of resolutions C̃≤λ.

Proof. Suppose C̃ ′
≤λ ! C≤λ is another resolution of C≤λ on which Sλ extends as in Lemma 1.2. Replacing C̃ ′

≤λ by
a resolution of the fibre product C̃ ′

≤λ ×C≤λ
C̃≤λ if necessary, we may assume C̃ ′

≤λ ! C≤λ factors as

C̃ ′
≤λ

r
−! C̃≤λ −! C≤λ.

Let us denote
α̃≤λ = tw≤λ

(
[C̃≤λ]⊗ α

)
, α̃′

≤λ = tw′
≤λ

(
[C̃ ′

≤λ]⊗ α
)
.
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Let E≤λ(X) and E ′
≤λ(X) denote the Seidel spaces corresponding to C̃≤λ and C̃ ′

≤λ, respectively. We write
τ̂ ∈ H•

T×C×
ℏ
(E≤λ(X)) and τ̂ ′ ∈ H•

T×C×
ℏ
(E ′

≤λ(X)) for the assignments (30) associated to E≤λ(X) and E ′
≤λ(X),

respectively. By Lemma 2.5 and the projection formula, these classes satisfy

α̃≤λ = r∗α̃
′
≤λ, τ̂ = r∗τ̂

′. (40)

Here, we use the same symbol r∗ to denote the pushforward mapsH•
TO⋊C×

ℏ
(G̃′≤λ

K ×GO X) ! H•
TO⋊C×

ℏ
(G̃≤λ

K ×GO X)

and H•
T×C×

ℏ
(E ′

≤λ(X)) ! H•
T×C×

ℏ
(E≤λ(X)), whenever there is no confusion.

Write S̃ and S̃′ for the respective section-counting maps (4.5). It remains to verify that

S̃(e(S̃≤λ) ∪ α̃′
≤λ) = S̃′(e(S̃≤λ) ∪ α̃≤λ).

Note that the moduli spaces are related by the fibre diagram

M0,n+2(E ′
≤λ(X), β) M0,n+2(E≤λ(X, r∗β)

C̃ ′
≤λ C̃≤λ.

prC̃′
≤λ

prC̃≤λ

r

Therefore, by functoriality (see [BF97, Proposition 5.10]), the virtual fundamental classes are related by Gysin pullback

[M0,n+2(E ′
≤λ(X), β)]vir = r![M0,n+2(E≤λ(X), r∗β)]

vir,

and hence the same is true for the zero loci (see [Ful98, Section 6.4])

[Z ′
≤λ(X,β)n]

vir = r![Z≤λ(X, r∗β)n]
vir.

Denote by ev′0, ev
′
∞,pr

′
X the evaluation and projection maps for the spaces associated with C̃ ′

≤λ. Using the above, we
then compute

S̃′(e(S̃≤λ) ∪ α̃′
≤λ) =

∑
β

∞∑
n=1

qβ

n!
PD ◦ pr′X∗ ev

′
∞∗

(
ev′∗0 (α̃

′
≤λ)

n∏
ℓ=1

ev′∗ℓ (τ̂
′) ∩ [Z ′

≤λ(X,β)n]
vir

)

=
∑
β

∞∑
n=1

qβ

n!
PD ◦ prX∗ ev∞∗ r∗

(
ev′∗0 (α̃

′
≤λ)

n∏
ℓ=1

ev′∗ℓ (τ̂
′) ∩ r![Z≤λ(X, r∗β)n]

vir

)

=
∑
β

∞∑
n=1

qβ

n!
PD ◦ prX∗ ev∞∗

(
ev∗0(α̃≤λ)

n∏
ℓ=1

ev∗ℓ (τ̂) ∩ [Z≤λ(X,β)n]
vir

)
= S̃(e(S̃≤λ) ∪ α̃≤λ).

Here, we have used the identification r∗β = β and the last equality is by projection formula and (40). □

5. Shift operators III: properties

In this section, we establish several key properties of the shift operators. In particular, we prove Theorem 1 and
Theorem 2 as stated in the introduction. Throughout, we assume that the pair (X, f : X ! N) satisfies the assumptions
outlined in Section 4.

5.1. Change of representations and groups. In this subsection, we study the compatibility of shift operators under
changes of the representation or the group. All the properties proved in this subsection are stated for SG,N, but the
analogous statements all hold for Sℏ=0

G,N andΨG,N with similar proofs (e.g., by specializing ℏ = 0 in all the constructions
and maps).

Proposition 5.1 (Change of representations). Suppose V is another G-representation, and either of the following
holds:

(a) V contains N as a subrepresentation.
(b) N is a quotient representation of V, and the morphism f : X ! N factors through V ! N.
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Then SG,V is equal to the restriction of SG,N along

e(SV) ∩HTO⋊C×
ℏ

• (GrG) ⊂ e(SN) ∩HTO⋊C×
ℏ

• (GrG).

Proof. We prove case (a); the other case proceeds similarly.
Write V = N⊕N′, and choose a resolution C̃≤λ such that both SN and SN′ extend over it. Since the composition

X ! V ! N′ is zero, we have canN
′

≤λ(X) = 0. Moreover, since canV≤λ(X) = (canN≤λ(X), canN
′

≤λ(X)), it follows
that

ZV
≤λ(X,β)n = ZN

≤λ(X,β)n

for any β ∈ Eff(E≤λ(X))sec.
We also have the identity

[ZV
≤λ(X,β)n]

vir = e(S̃N′,≤λ) ∩ [ZN
≤λ(X,β)n]

vir,

which follows from (35) and excess intersection formula associated to the diagram:

Z≤λ(X,β)n M≤λ(X,β)n

C̃≤λ S̃N,≤λ

C̃≤λ S̃V,≤λ = S̃N,≤λ ⊕ S̃N′,≤λ

jX

canN
≤λ(X)

Let ev′0 and ev′∞ denote the evaluation maps on ZV
≤λ(X,β)n, and writing α̃≤λ = tw≤λ([C̃≤λ] ⊗ α). Then we

verify

SG,N(e(SV) ∩ [C≤λ]⊗ α)

= S̃N,≤λ

(
e(S̃N,≤λ) ∪ e(S̃N′,≤λ) ∪ α̃≤λ

)
=

∞∑
n=0

∞∑
n=0

qβ

n!
PD ◦ prX∗ ev∞∗

(
ev∗0

(
α̃≤λ ∪ e(S̃N′,≤λ)

) n∏
ℓ=1

ev∗ℓ (τ̂) ∩ [ZN
≤λ(X,β)n]

vir

)

=
∑
β

∞∑
n=0

qβ

n!
PD ◦ prX∗ ev

′
∞∗

(
ev′∗0 (α̃≤λ)

n∏
ℓ=1

ev′∗ℓ (τ̂) ∩ [ZV
≤λ(X,β)n]

vir

)
= SG,V(e(SV) ∩ [C≤λ]⊗ α). □

Corollary 5.2. Suppose N′ is another representation of G, and g : X ! N′ is a G-equivariant proper morphism.
Then

SG,N(Γ⊗ α) = SG,N′(Γ⊗ α)

for any Γ in the intersection of (e(SN) ∩HTO⋊C×
ℏ

• (GrG)) and (e(SN′) ∩HTO⋊C×
ℏ

• (GrG)), and α ∈ H•
G×C×

ℏ
(X).

Proof. Let V = N⊕N′, and let P ∈ H•
T×C×

ℏ
(pt) be such that PΓ ∈ e(SV) ∩HTO⋊C×

ℏ
• (GrG). By Proposition 5.1,

we have
SG,N(PΓ⊗ α) = SG,V(PΓ⊗ α) = SG,N′(PΓ⊗ α).

The result then follows from the lemma below by taking R = H•
T×C×

ℏ
(pt). □

Lemma 5.3. Let R be an integral domain, and let ζ, ζ ′ : A ! B be homomorphisms of torsion-free R-modules.
Suppose that ζ and ζ ′ agree on a submodule A′ ⊂ A such that

Frac(R)⊗R A = Frac(R)⊗R A
′.

Then ζ = ζ ′.
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Proof. Let a ∈ A. Since Frac(R)⊗R A = Frac(R)⊗R A
′, there exists r ∈ R \ {0} such that ra ∈ A′. Then

rζ(a) = ζ(ra) = ζ ′(ra) = rζ ′(a),

and since B is torsion-free over R, it follows that ζ(a) = ζ ′(a). □

Recall that the localization
(
e(SN) ∩HTO⋊C×

ℏ
• (GrG)

)
loc

is independent of the representation N (see (16)). The
following is now immediate.

Corollary 5.4 (Independence of N and f ). The localized shift operators SG,N,loc is independent of f : X ! N.

Change of groups. Next, we study the functoriality with respect to changing groups.
Following [BFN18, 3(vii)(c)], let G′ ! G be a finite covering, and suppose that N is a G-representation, so it also

has an action of G′. Then the Pontrjagin dual F of π1(G)/π1(G′) acts on e(SN) ∩HTO⋊C×
ℏ

• (GrG) such that

e(SG′,N) ∩HT ′
O⋊C×

ℏ
• (GrG′) =

(
e(SG,N) ∩HTO⋊C×

ℏ
• (GrG)

)F
.

Proposition 5.5. Let G′ ! G be a finite covering, and let N be a G-representation, then SG′,N′ is the restriction of
SG,N to e(SN′) ∩HT ′

O⋊C×
ℏ

• (GrG′).

Proof. Note that the equivariant cohomology with respect to G and G′ coincides since the coefficient is C. The map
G′ ! G induces a closed embedding GrG′ ↪! GrG. For a coweight λ′ ∈ ΛG′ mapping to λ ∈ ΛG, there is a natural
identificationC≤λ′ ∼= C≤λ, which induces an isomorphism S̃G′,≤λ′ ∼= S̃G,≤λ. Therefore, SG′,N(e(S̃≤λ′)∩[C̃≤λ′ ]⊗α)
coincides with SG,N(e(S̃≤λ) ∩ [C̃≤λ]⊗ α). □

Next, consider a short exact sequence 1 ! G! pG! TF ! 1 of connected reductive groups, where TF is a torus.
Let N be a pG-representation. Recall that the quantized Coulomb branch algebras for ( pG,N) and (G,N) are related via
quantum Hamiltonian reduction with respect to T∨

F , the Pontrjagin dual of π1(TF ) (see [BFN18, Proposition 3.18]).
Specifically, we have (

e(S
pG,N) ∩H

pTO⋊C×
ℏ

• (Gr
pG)
)T∨

F ∼= e(S
pG,N) ∩H

pGO⋊C×
ℏ

•
(
GrG

)
, (41)

and
e(SG,N) ∩HTO⋊C×

ℏ
• (GrG) ∼=

(
e(S

pG,N) ∩H
pGO⋊C×

ℏ
• (GrG)

)
⊗H•

xG×C×ℏ
(pt) H

•
G×C×

ℏ
(pt). (42)

Now suppose that X has a pG-action such that f : X ! N is pG-equivariant and proper. Consider the shift operator
S

pG,N. We will construct a reduced operator Sred
pG,N

as follows.
First, we restrict S

pG,N to the subalgebra (41). This map descends to H•
pG×C×(X)[[qG, τ ]] (rather than q

pG), since for
any section class β of the Seidel space corresponding to a coweight λ ∈ ΛG ⊂ Λ

pG, the assignment β 7! β factors
throughHG

2 (X,Z) ! H
pG
2 (X,Z). Next, we quotient out the TF -equivariant parameters by composing with the natural

projection map H•
pT×C×

ℏ
(X)[[qG, τ ]] ! H•

T×C×
ℏ
(X)[[qG, τ ]]. Finally, by Proposition 4.15, the map descends to

Sred
pG,N

: e(SG,N) ∩HTO⋊C×
ℏ

• (GrG)⊗C[ℏ] H
•
G×C×

ℏ
(X)[[qG, τ ]] −! H•

T×C×
ℏ
(X)[[qG, τ ]].

Proposition 5.6 (Quantum Hamiltonian reduction). The shift operator SG,N coincides with the reduced operator
Sred

pG,N
.

Proof. This follows directly from the construction, after specializing the twisting map, the evaluation maps, and the
projection map from pG- (or pT -)equivariance to G- (or T -)equivariance. The only map that requires verification is
tw≤λ. Note that for any f ∈ H•

TF
(pt) and Γ ⊂ H

pTO⋊C×
ℏ

• (GrG) we have

tw≤λ (Γ⊗ (f ∪ α)) = f ∪ tw≤λ(Γ⊗ α).

In other words, the map tw≤λ for the group pG, when restricted to the subalgebra in (41), descends to the quotient in
(42). □

5.2. Properties of shift operators: the T -compact case. In this subsection, we assume that the T -fixed locus XT is
compact. We will explain in the next subsection how to remove this assumption.
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Extension to localizations. Let λ ∈ Λ and β ∈ Eff(E≤λ(X))sec. By comparing (32) and (35), and applying the excess
intersection formula ([Ful98, Theorem 6.3]), we obtain:

(jX)∗[Z≤λ(X,β)n]
vir = e(S̃≤λ) ∩ [M≤λ(X,β)n]

vir

= e(S̃≤λ) ∩ j!M
[
M0,n+2(E≤λ(X), β)

]vir
.

Therefore,

S̃N,≤λ(e(S̃≤λ) ∪ γ)

=
∑
β

∞∑
n=0

qβ

n!
PD ◦ prX∗ ev∞∗

(
ev∗0(γ)

n∏
ℓ=1

ev∗ℓ (τ̂) ∩ [Z≤λ(X,β)n]
vir
)

=
∑
β

∞∑
n=0

qβ

n!
PD ◦ prX∗ ev∞∗

(
ev∗0
(
γ ∪ e(S̃≤λ)

) n∏
ℓ=1

ev∗ℓ (τ̂) ∩ j!M
[
M0,n+2(E≤λ(X), β)

]vir)
=
∑
β

∞∑
n=0

qβ

n!
PD ◦ prX∗ ι

∗
∞ Ev∞∗

(
Ev∗0 ι0∗

(
γ ∪ e(S̃≤λ)

) n∏
ℓ=1

Ev∗ℓ (τ̂) ∩
[
M0,n+2(E≤λ(X), β)

]vir)
.

Here, all the pushforwards are understood as using localization.
Originally, SN,≤λ is defined on the subspace e(S̃≤λ)∩H•

T×C×
ℏ
(X≤λ,0). By the above computation, we may extend

the definition of SN,≤λ toH•
T×C×

ℏ
(X≤λ,0)loc to obtain a map S̃≤λ that is independent ofN. For γ ∈ H•

T×C×
ℏ
(X≤λ,0)loc,

we set

S̃≤λ(γ) :=
∑
β

∞∑
n=0

qβ

n!
PD ◦ prX∗ ι

∗
∞ Ev∞∗

(
Ev∗0 ι0∗(γ)

n∏
ℓ=1

Ev∗ℓ (τ̂) ∩
[
M0,n+2(E≤λ(X), β)

]vir)
.

Equivalently, let {ηi} is aH•
T×C×

ℏ
(pt)-basis ofH•

T×C×
ℏ
(X≤λ,0), and {ηi} the dual basis under the Poincaré pairing.

Then

S̃≤λ(γ) =
∑
β,i

∞∑
n=0

qβ

n!
ηi

∫
[M0,n+2(E≤λ(X),β)]vir

Ev∗0 ι0∗(γ)

n∏
ℓ=1

Ev∗ℓ (τ̂) Ev
∗
∞ ι∞∗ pr

∗
X(ηi). (43)

Similarly, for any µ ∈ Λ and γ ∈ H•
T×C×

ℏ
(X≤λ,0)loc, we define:

S̃tµ(γ) =
∑
β,i

∞∑
n=0

qβ

n!
ηi

∫
[M0,2(Etµ (X),β)]vir

Ev∗0 ι0∗(γ)

n∏
ℓ=1

Ev∗ℓ (τ̂) Ev
∗
∞ ι∞∗(η

i). (44)

A localization formula. Fix λ ∈ Λ. For any µ ≤ λ, let Fµ denote the T × C×
ℏ -fixed locus of ρ−1

λ (tµ). Let
eµ ∈ H•

T×C×
ℏ
(Fµ) be the Euler class of the normal bundle of Fµ in C̃≤λ.

Recall that we denote Xµ = tµGO ×GO X ⊂ GK ×GO X . The restriction of the X-bundle X≤λ,0 ! C̃≤λ to Fµ

is naturally identified with Fµ × Xµ. Let ρX,λ : X≤λ,0 ! G≤λ
K ×GO X be the resolution map induced by ρλ (see

Lemma 3.12), whose restriction to Fµ ×Xµ is equal to the projection map

prXµ : Fµ ×Xµ ! Xµ.

Since each Fµ is proper, we can define the pushforward (ρX,λ)∗ in cohomology via localization.
Let γ ∈ H•

T×C×
ℏ
(X≤λ,0)loc, and define

γµ = (prXµ)∗

(
1

eµ
· γ
∣∣
Fµ×Xµ

)
. (45)

Then we have the equality
(ρX,λ)∗γ =

∑
µ≤λ

γµ
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in the localized cohomology ring

H•
T×C×

ℏ
(G≤λ

K ×GO X)loc ∼=
⊕
µ≤λ

H•
T×C×

ℏ
(Xµ)loc.

Proposition 5.7. For any γ ∈ H•
T×C×

ℏ
(X≤λ,0), let γµ be defined by (45). Then we have

S̃≤λ(γ) =
∑
µ

S̃tµ(γµ).

Proof. We apply the virtual localization formula [GP99], following closely the proof of [Cho23, Proposition 3.12].
We write Mn = M0,n+2(E≤λ(X), β) and Mµ,n = M0,n+2(Etµ(X), β) for a section class β in E≤λ(X). The

latter is empty if β is not represented by a curve contained in Etµ(X). We have

jµ : Fµ × Etµ(X) ∼= Fµ ×C̃≤λ
E≤λ(X) ↪! E≤λ(X),

and hence inducing
jµ : Fµ ×Mµ,n

∼= Fµ ×C̃≤λ
Mn ↪!Mn.

Taking T × C×
ℏ -fixed loci, we obtain

M
T×C×

ℏ
n =

⊔
µ≤λ

Fµ ×M
T×C×

ℏ
µ,n .

Therefore, the virtual localization formula implies that

[Mn]
vir =

∑
µ≤λ

jµ∗

(
1

eµ

[
Fµ]× [Mµ,n

]vir)
. (46)

Now let ϕ ∈ H•
T×C×

ℏ
(X). Let us write Evµ,i : Mµ,n ! Etµ(X) for the evaluation maps on Mµ, and prMµ

:

Fµ ×Mµ,n !Mµ,n be the projection. We compute:∫
[Mn]vir

Ev∗0 ι0∗(γ)

n∏
ℓ=1

Ev∗ℓ (τ̂) Ev
∗
∞ ι∞∗ pr

∗
X(ϕ)

=
∑
µ≤λ

∫
[Fµ]×[Mµ,n]vir

1

eµ
j
∗
µ Ev

∗
0 ι0∗(γ)

n∏
ℓ=1

Ev∗ℓ (τ̂) j
∗
µ Ev

∗
∞ ι∞∗ pr

∗
X(ϕ)

=
∑
µ≤λ

∫
[Fµ]×[Mµ,n]vir

1

eµ
Ev∗µ,0 j

∗
µι0∗(γ)

n∏
ℓ=1

Ev∗ℓ (τ̂) pr
∗
Mµ

Ev∗µ,∞ ι∞∗(ϕ)

=
∑
µ≤λ

∫
[Mµ,n]vir

Ev∗µ,0 ι0∗(γµ)

n∏
ℓ=1

Ev∗µ,ℓ(τ̂) Ev
∗
µ,∞ ι∞∗(ϕ).

Here, the first equality follows from (46) and the last equality follows from (45). In view of equations (43) and (44),
the result follows. □

Corollary 5.8. For any Γ ∈ H
TO⋊C×

ℏ
• (GrT )loc ∼= H

TO⋊C×
ℏ

• (GrG)loc and any α ∈ H•
G×C×

ℏ
(X)[[qG, τ ]], we have

SG,N,loc(Γ⊗ α) = ST,N,loc(Γ⊗ α).

Proof. This follows from Proposition 2.3 and Proposition 5.7. □

Corollary 5.9. The map SG,N,X is W -equivariant.

Proof. By Corollary 5.8 and Proposition 4.17, SG,N and ST,N,loc agrees on their common domain of definition.
By Proposition 2.3, the map twT isW -equivariant, so it remains to show that

⊕
S̃tλ is alsoW -equivariant. Observe

that the GC[t−1] ⋊C×
ℏ -action on E(X) induces an N(T )-action on⊔

µ∈Λ

Etµ(X),

which is compatible with the natural N(T )-actions on both TK ×TO X and on GrT .
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This implies that
⊕

S̃tλ is W -equivariant, because the integrand in (44) involves Gromov–Witten invariants of⊔
µ∈Λ Etµ(X), which are invariant under the N(T )-action. □

In view of Corollary 5.9, it makes sense to take the W -invariant part of SG,N,X . This gives a map, still denoted by
the same symbol,

SG,N,X : Aℏ
G,N ⊗C[ℏ] H

•
G×C×

ℏ
(X)[[qG, τ ]] −! H•

G×C×
ℏ
(X)[[qG, τ ]].

Module property. For each λ, consider

Stλ := S̃tλ ◦ Φλ : H•
T×C×

ℏ
(X)loc[[qG, τ ]] −! H•

T×C×
ℏ
(X)loc[[qG, τ ]],

where Φλ = twT ([t
λ]⊗−) is the twisting map (see Proposition 2.9), and S̃tλ is defined in (44).

Proposition 5.10. For λ, µ ∈ Λ, α ∈ H•
T×C×

ℏ
(X) and P ∈ H•

T×C×
ℏ
(pt), we have

Stλ+µ(α) = Stλ(Stµ(α)), Stλ(Pα) = Φλ(P )Stλ(α).

Remark 5.11. Consider the pairing (−,−)λ on H•
T×C×

ℏ
(X) given by (α, α′)λ := Φλ(α, α

′), where (−,−) is the

original Poincaré pairing. Let SIriλ denote the “adjoint” of Stλ in the sense that (SIriλ (α), α′) = (α,Stλ(α′))λ.
The operator SIriλ agrees with the shift operators defined in [Iri17, Definition 3.9], provided that in loc. cit. one

replaces all d̂ − σmin with d. The appearance of the adjoint is due to a difference in the conventions for the zero and
infinity fibres in our definition of Seidel spaces versus that in Iritani’s (cf. Example 3.10).

The following is a slight modification of [Iri17, Definition 3.13].

Definition 5.12 (Shift operator on the Givental space). Let F1, F2, . . . be the fixed components of XT . Let Ni =⊕
αNi,α denote the normal bundle to Fi inX , whereNi,α is the subbundle on which T acts via the character α ∈ Λ∨.

Let ri,α,1, ri,α,2, . . . denote the Chern roots of Ni,α.
Let λ ∈ Λ, and βi = βλ,i ∈ Eff(Etλ(X))sec be the class of the section Etλ(x) for a point x ∈ Fi. We define

∆i(λ) := qβi

∏
α,j

∏0
c=−∞(ri,α,j + α+ cℏ)∏−α(λ)
c=−∞(ri,α,j + α+ cℏ)

∈ H•
T×C×

ℏ
(Fi)loc[[qG, τ ]].

The shift operator on the Givental space

Stλ : H
•
T×C×

ℏ
(X)loc[[qG, τ ]] ! H•

T×C×
ℏ
(X)loc[[qG, τ ]]

is defined via the following commutative diagram:

H•
T×C×

ℏ
(X)loc[[qG, τ ]] H•

T×C×
ℏ
(X)loc[[qG, τ ]]

H•
T×C×

ℏ
(XT )loc[[qG, τ ]] H•

T×C×
ℏ
(XT )loc[[qG, τ ]]

S
tλ

⊕
i Φλ◦∆i(λ)

Here, the vertical arrows are the natural restriction maps, and the bottom arrow uses the decomposition

H•
T×C×

ℏ
(XT )loc ∼=

⊕
i

Frac(H•
T×C×

ℏ
(pt))⊗H•(Fi),

where ∆i(λ) is interpreted as the operator of multiplication by ∆i(λ) on the i-th summand.

Lemma 5.13. We have Stλ = MXStλM−1
X .

Proof. This is essentially [Iri17, Theorem 3.14]. After addressing the differences in conventions for 0 and ∞
(see Example 3.10), the argument in loc. cit. carries over to our setting upon replacing each occurrence of σi − σmin

with βi. □
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Proof of Proposition 5.10. The second equality follows from Proposition 4.15, so it suffices to prove the first. By
Lemma 5.13, it is enough to show that Stλ+µ(α) = Stλ(Stµ(α)). By localization, we may assume that α is the
pushforward of a class in H•

T×C×
ℏ
(Fi). This reduces the problem to checking the identity

Φλ+µ(∆i(λ+ µ)) = Φλ(∆i(λ)) · Φλ+µ(∆i(µ)),

which follows from a direct computation. □

Theorem 5.14. The operator SG,N,X defines an Aℏ
G,N-module structure on the equivariant quantum cohomology ring

QH•
G×C×

ℏ
(X)[[qG, τ ]].

Proof. Let Γ =
∑

λ aλ[t
λ] and Γ′ =

∑
µ bµ[t

µ], where aµ, bµ ∈ H•
T×C×

ℏ
(pt). By Corollary 5.8 and Proposition 5.10,

we have

SG,N(Γ,SG,N(Γ′, α)) =
∑
λ

aλStλ

(∑
µ

bµStµ(α)

)
=
∑
λ,µ

aλΦλ(bµ)Stλ+µ(α)

= SG,N(Γ ∗ Γ′, α).

Here, we used the formula
[tλ] ∗ bµ = Φλ(bµ) ∗ [tλ],

which is twisted linearity of convolution product (11) (see [BFN18, Section 4(ii)]).
Together with Proposition 4.16, the theorem follows. □

More properties. We now collect other properties of SG,N,X that follow from the localization result of Corollary 5.8.

Proposition 5.15. For any Γ ∈ Aℏ
G,N, the shift operator SG,N(Γ,−) commutes with the quantum connections (see

Definition 3.5), i.e.,

[∇τ i,j ,SG,N(Γ,−)] = 0, [∇ℏ∂ℏ ,SG,N(Γ,−)] = 0, [∇Dq∂q
,SG,N(Γ,−)] = 0.

Proof. By localization, it suffices to consider the case where G = T is abelian. By (28) and Lemma 5.13, the claim
reduces to showing that Stλ commutes with ∂τ i,j , ℏ∂ℏ − ℏ−1(cT1 (X)∪) + µX , and Dq∂q + ℏ−1(D∪), which follows
easily from a direct computation (cf. [Iri23, Corollary 2.11]). □

Proposition 5.16. There is a commutative diagram:

Aℏ
T,N ⊗C[ℏ] H

•
T×C×

ℏ
(X)[[qT , τ ]] H•

T×C×
ℏ
(X)[[qT , τ ]]

e(SN) ∩HTO⋊C×
ℏ

• (GrG)⊗C[ℏ] H
•
T×C×

ℏ
(X)[[qG, τ ]] H•

T×C×
ℏ
(X)[[qG, τ ]]

ST,N

SG,N

Proof. This proposition asserts that SG,N = ST,N ⊗C[[qT ,τ ]] C[[qG, τ ]], when restricted to the common domain of
definition. This follows directly from Corollary 5.8, applied both for G and for T . □

By specializing ℏ = 0, we also obtain properties for Seidel representation and Seidel homomorphisms.

Corollary 5.17. The map Sℏ=0
G,N is compatible with the quantum product, in the sense that

Sℏ=0
G,N(Γ, α1 ⋆τ α2) = Sℏ=0

G,N(Γ, α1) ⋆τ α2.

In particular,
Sℏ=0
G,N(Γ, α) = ΨG,N(Γ) ⋆τ α.

Proof. This follows from Proposition 5.15. Setting ℏ = 0 in the equality [ℏ∇τ i,j ,SG,N(Γ,−)] = 0 yields the desired
result. □

Corollary 5.18. The map ΨG,N is a ring homomorphism.
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Proof. This follows directly from Theorem 5.14 and Corollary 5.17:

Sℏ=0
G,N(Γ ∗ Γ′, 1) = Sℏ=0

G,N(Γ,Sℏ=0
G,N(Γ′, 1)) = ΨG,N(Γ) ⋆τ ΨG,N(Γ′). □

For a, b ∈ AG,N, choose lifts ã, b̃ ∈ Aℏ
G,N. There is a Poisson algebra structure on AG,N given by the bracket

{a, b} =
1

ℏ
(ãb̃− b̃ã) mod ℏ.

It is known that this Poisson bracket induces a symplectic structure on the smooth locus of SpecAG,N (see [BFN18,
Proposition 6.15]).

Definition 5.19. A closed subscheme Z ⊂ SpecAG,N is said to be coisotropic if the radical of its defining ideal
is a Lie subalgebra of AG,N. A coisotropic subscheme Z ⊂ SpecAG,N is said to be Lagrangian if dimZ =
1
2 dimSpecAG,N = dimT .

Note that these definition agree with the classical notions of coisotropic and Lagrangian subvarieties in the smooth
case (see [CG97, Proposition 1.5.1]).

Proposition 5.20. The subscheme V (kerΨG,N,X) ⊂ SpecAG,N is coisotropic. Moreover, if all infinite sums involved
in the quantum product and shift operators converge upon evaluation at a homomorphism

q0 : C[qG, τ ] ! C,

and if we denote by
Ψq0

G,N,X : AG,N ! QH•
G(X)

the resulting specialization, then V (kerΨq0
G,N,X) is Lagrangian.

Proof. This follows from [Gab81, Theorem I] (see also [CG97, page 56]). □

5.3. Properties of shift operators: the general case. In this subsection, we show that the results in the previous
subsection hold without the T -compact assumption.

Set pG = G× C×
dil, where C×

dil is the group of conical action (see Section 3).

Lemma 5.21. There exists a pG-representation V and a pG-equivariant proper morphism g : X ! V.

Proof. Let V∨ be a finite-dimensional pG-invariant subspace of H0(X,OX) such that the corresponding map
Sym• V∨ ! H0(X,OX) is surjective. In other words, the induced morphism SpecH0(X,OX) ! V is a closed
embedding. The composition

X ! SpecH0(X,OX) ! V

is clearly pG-equivariant and proper, as required. □

Theorem 5.22. Corollary 5.8, Corollary 5.9, Theorem 5.14, Proposition 5.15, and Proposition 5.16 all hold without
the T -compactness assumption.

Proof. Let V and g : X ! V be as in Lemma 5.21. All the stated properties have been established for S
pG,V,X in the

last subsection. By Proposition 5.6, these properties also hold for SG,V,X .
Now, by (5.4), SG,N,X and SG,V,X,loc agree on Aℏ

G,N ⊂ Aℏ
G,V,loc. Therefore, the desired properties of SG,N,X

follows from the corresponding properties of SG,V,X,loc. □

Corollary 5.23. Corollary 5.17, Corollary 5.18 and Proposition 5.20 also hold without theT -compactness assumption.

Proof. The same arguments as in the proofs of Corollary 5.17, Corollary 5.18 and Proposition 5.20 apply verbatim. □

Corollary 5.24. Theorem 1 and Theorem 2 are valid.

Remark 5.25. Suppose XT -compact, Iritani in [Iri17] defined shift operators for the T -action on X . By the proof
of Lemma 5.21, there always exists a T -representaion N with a equivariant proper map f : X ! N. Therefore, the
shift operators ST,N defined as in Equation (38) recovers Iritani’s definition, up to adjoint and Novikov variables (see
Remark 5.11).

The following corollary follows from Theorem 1 immediately.
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Corollary 5.26. There are linear maps

SG,N,X : Aℏ
G,N ⊗QH•(X) −! QH•(X)[[qG, τ ]][ℏ],

Sℏ=0
G,N,X : AG,N ⊗QH•(X) −! QH•(X)[[qG, τ ]].

obtained by specializing the equivariant parameters H•
G(pt) to zero. Moreover, Sℏ=0

G,N,X defines a module action.

Note that C×
ℏ acts on X trivially, so it makes sense to refer to SG,N,X and Sℏ

G,N,X as the non-equivariant limits of
the shift operator SG,N,X . See Example 6.2 for a sample calculation.

5.4. Product formula. Recall that for a product variety, its quantum cohomology satisfies a Künneth formula [Beh99].
The equivariant version also holds: if X1 and X2 are smooth semiprojective G-varieties, then

QH•
G×C×

ℏ
(X1 ×X2)[[qG×G, τG×G]] ∼= QH•

G×C×
ℏ
(X1)[[qG, τG]]⊗H•

G×C×ℏ
(pt) QH

•
G×C×

ℏ
(X2)[[qG, τG]]. (47)

Here, τG×G is the bulk parameters associated to theG×G-action onX1 ×X2. The left-hand side is defined to be the
G×G× C×

ℏ -equivariant quantum cohomology under specialization of equivariant parameters along ∆G ⊂ G×G.
This compatibility reflects a similar structure on the level of Coulomb branches. Indeed, the diagonal map

∆ : GrG ↪−! GrG ×GrG

induces a pushforward homomorphism

∆∗ : H
GO⋊C×

ℏ
• (GrG) −! H

GO⋊C×
ℏ

• (GrG)⊗H•
G×C×ℏ

(pt) H
GO⋊C×

ℏ
• (GrG). (48)

Setting ℏ = 0, the spectrum of this map gives the flat SpecH•
G(pt)-group scheme structure on SpecAG,0, realized as

the regular centralizer of the Langlands dual group qG ([BFM05]).
Moreover, ifN1 andN2 are two representations ofG, it is clear that∆−1(SG,N1⊠SG,N2)

∼= SG,N1⊕N2 . Therefore,
(48) restricts to give a homomorphism (denoted by the same symbol)

∆∗ : Aℏ
G,N1⊕N2

−! Aℏ
G,N1

⊗H•
G×C×ℏ

(pt) Aℏ
G,N2

.

In particular, for each representation N, there is a group scheme action of SpecAG on SpecAG,N.

Proposition 5.27. Let fi : Xi ! Ni be a G-equivariant proper morphism for i = 1, 2, satisfying the assumptions of
Section 4. Then we have

SG,N1⊕N2(Γ⊗ γ1 ⊗ γ2) = (SG,N1 ⊗ SG,N2)(∆∗(Γ)⊗ γ1 ⊗ γ2), (49)

for any Γ ∈ Aℏ
G,N1⊕N2

, any γi ∈ H•
G×C×

ℏ
(Xi)[[qG, τG]], for i = 1, 2. Here the tensor product between the γi’s on

the left-hand side is taken over H•
G×C×

ℏ
(pt), and on the right-hand side taken over C. We have used the identification

given by Künneth formula (47).

Proof. Using the same reasoning as in Theorem 5.22, we only need to prove the G = T case.
To simplify notation, we write aλ := e(SN1,tλ)∩ [tλ], bλ := e(SN2,tλ)∩ [tλ] for λ ∈ Λ, and cλ := e(SN1⊕N2,tλ)∩

[tλ]. Then we have
∆∗(c

λ) = aλ ⊗ bλ.

For any γ1 ∈ H•
T×C×

ℏ
(X1)[[qT , τ ]] and γ2 ∈ H•

T×C×
ℏ
(X2)[[qT , τ ]], we have

(ST,X1
⊗ ST,X2

) ◦ (∆∗(c
λ)⊗ γ1 ⊗ γ2) = ST,X1

(aλ ⊗ γ1)⊗ ST,X2
(bλ ⊗ γ2). (50)

On the other hand, we have

ST×T,X1×X2
((aλ ⊗ bλ)⊗ (γ1 ⊗ γ2)) = ST×T,X1×X2

((aλ ⊗ 1)⊗ ST×T,X1×X2
((1⊗ bλ), γ1 ⊗ γ2))

= ST×T,X1×X2((a
λ ⊗ 1)⊗ γ1 ⊗ ST,X2(b

λ, γ2))

= ST,X1(a
λ ⊗ γ1)⊗ ST,X2(b

λ ⊗ γ2). (51)

Here, the first equality follows from Theorem 5.14; the second equality follows from the fact that EG×G
t(0,λ) (X1 ×X2) ∼=

X1 × Etλ(X2), and so only sections that are trivial in the X1-direction contribute (see Proposition 4.16 for a similar
argument). The third equality holds for similar reasons. Now (50) and (51) agree. Moreover, ST×T,X1×X2

((aλ⊗bλ)⊗
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(γ1 ⊗ γ2)) is equal to the right-hand side of (49) after specialization of equivariant parameters along ∆T ⊂ T × T .
This completes the proof. □

6. Applications/calculations

6.1. Examples. To illustrate the rationality of ΨT,N, we compute from definition (38) the map ΨT,N for X = N.

Proposition 6.1. Let G = T = (C×)k and X = N =
⊕n

j=1 Cξj , then

ΨT,N(e(Stλ) ∩ [tλ]) = qλ
∏

j:ξj(λ)>0

ξ
ξj(λ)
j , and

ΨT,N,loc([t
λ]) = qλ

∏
j:ξj(λ)>0 ξ

ξj(λ)
j∏

j:ξj(λ)<0 ξ
−ξj(λ)
j

. (52)

Proof. Let [tλ] ∈ GrT , by Example 3.10, the associated Seidel space is given by

Etλ(N) ∼=
n⊕

j=1

OP1(−ξj(λ)).

It is straightforward to verify that the only contribution comes from 2-points invariants. The associated moduli space
of sections, with marked points on the fibres over 0 and ∞, is

Mtλ(N)0 = H0
(
P1, Etλ(N)

)
=

⊕
j:ξj(λ)≤0

C−ξj(λ)+1
ξj

,

and its virtual fundamental class is

[Mtλ(N)0]
vir = e(H1(P1, Etλ(N)) ∩ [Mtλ(N)0] =

∏
j:ξj(λ)>0

ξ
ξj(λ)−1
j ∩ [Mtλ(N)0].

By the proof of Proposition 4.4 in the special case X = N, we have

Ztλ(N)0 ∼=
∏

j:ξj(λ)≤0

Cξj .

The inclusion Ztλ(N)0 ↪! Mtλ(N)0 is a regular embedding. Consequently,

[Ztλ(N)0]
vir =

∏
j:ξj(λ)>0

ξ
ξj(λ)−1
j ∩ [Ztλ(N)0].

Finally, the evaluation map ev∞ : Ztλ(N) ! N is simply the inclusion. Thus, we obtain

ΨT,N(e(Stλ) ∩ [tλ]) = qλ
∏

j:ξj(λ)>0

ξ
ξj(λ)
j ∈ H•

T (N)[qT ][[τ ]],

as desired. By (12), we obtain (52). □

Next, let us consider a slightly more sophisticated example. This demonstrates the existence of non-equivariant
limits as in Corollary 5.26. As we will see, the statement of Corollary 5.26 cannot possibly hold without the introduction
of G-equivariant Novikov variables.

Example 6.2. Let G = GL2 act on P1 by fractional linear transformations, and consider the induced action on
X = T ∗P1. Let T = (C×)2 ⊂ GL(2,C) denote the subgroup of diagonal matrices. The cohomology of T ∗P1 admits
the following presentation

H•
(C×)2×C×

ℏ
(T ∗P1) =

C[x, a1, a2, ℏ]
⟨(x+ a1)(x+ a2)⟩

,

where x is the pullback of c1(OP1(1)) along T ∗P1 ! P1, and ai are the equivariant parameters of T .
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Let us denote q0T,λ (resp. q∞T,λ) to be the T -equivariant Novikov variables associated to the constant section at 0
(resp. ∞) of the Seidel space Etλ(X). One can compute that

St(1,0)(1) =
a1 − a2 + ℏ
(a1 − a2)2

(
q0T,(1,0)(x+ a2)− q∞T,(1,0)(x+ a1)

)
,

St(0,1)(1) =
a2 − a1 + ℏ
(a1 − a2)2

(
q∞T,(0,1)(x+ a1)− q0T,(0,1)(x+ a2)

)
.

Notice that there exists a G-equivariant proper morphism T ∗P1 ! gl2. For simplicity, let us denote the fixed point
classes z1 = [t(1,0)] and z2 = [t(0,1)]. In this case, a class p(a1, a2)z1 ∈ Aℏ

(C×)2,gl2
if and only if p is divisible by

(a1 − a2)
2. On the other hand, we find

S(C×)2,gl2,T
∗P1((a1 − a2)

2z1 ⊗ 1) = (q0T,(1,0) − q∞T,(1,0))ℏx,

S(C×)2,gl2,T
∗P1((a1 − a2)

2z2 ⊗ 1) = (q∞T,(0,1) − q0T,(0,1))ℏx.
It is more interesting to consider the non-abelian shift operators. Consider the class

e(S) ∩ [C≤(1,0)] = (a1 − a2) (z1 − z2) ∈ Aℏ
GL2,gl2

.

Let η : C[qT ] ! C[qG] be the base change map, then the relevant G-equivariant Novikov variables are identified as
follows

qG := η(q0T,(1,0)) = η(q∞T,(0,1)), q′G := η(q∞T,(0,1)) = η(q0T,(0,1)).

Then, we find
SGL2,gl2,T

∗P1(e(S) ∩ [C≤(1,0)]⊗ 1) = (qG − q′G)(2x+ a1 + a2)− (qG + q′G)ℏ.

Note that 2x+ a1 + a2 is the negative of equivariant Euler class of T ∗P1. So,
SGL2,gl2,T

∗P1(e(S) ∩ [C≤(1,0)]⊗ 1) = −(qG − q′G)e(T
∗P1)− (qG + q′G)ℏ.

In particular, we have
Sℏ=0
GL2,gl2,T

∗P1(e(S) ∩ [C≤(1,0)]⊗ 1) = −(qG − q′G)e(T
∗P1).

Note that the expression admits a non-equivariant limit only after identifying the qT variables via η. Without this
identification, the cancellation needed for existence of the limit does not occur. □

Example 6.3. It is known that for adjoint matter g, the Coulomb branch AG,g is isomorphic to C[T ∗
qT ]W (see [BFN18,

Section 6(vi)]). Continuing from Example 6.2, we may compute explicitly the Seidel map

ΨGL2,gl2,T
∗P1 : C[T ∗(C×)2]Z2 −! QH•

GL2
(T ∗P1)[[qG]].

It sends
z1z2 7! qGq

′
G, z−1

1 z−1
2 7! q−1

G q′−1
G ,

z1 + z2 7! −qG − q′G, (a1 − a2)(z1 − z2) 7! −(qG − q′G) e
GL2(T ∗P1).

□

6.2. A new characterization of the Coulomb branch. In this section, we characterize the Coulomb branch algebra
as the largest subalgebra of the pure gauge Coulomb branch algebra for which the shift operators are defined before
localization. First, let us introduce the following definition, which appeared in [CL24a] and [GW25].

Definition 6.4. The G-representation N is called gluable if for all nonzero T -weights ξ1, ξ2, we have ξ1 is not a
negative multiple of ξ2.

In particular, the G× C×
dil-representation, where C×

dil acts on N via scaling, is gluable.

Theorem 6.5 (=Theorem 4). Let N be a gluable G-representation. Then the following diagram commutes:

AG,N AG ⊗H•
G(pt) AG,N AG ⊗H•

G(pt) QH
•
G(X)[[qG, τ ]]

AG AG ⊗H•
G(pt) AG AG ⊗H•

G(pt) QH
•
G(X)loc[[qG, τ ]].

∆∗ id⊗ΨG,N

∆∗ id⊗ΨG,N,loc

(53)

Moreover, if N is gluable and X = N, then the outer square is Cartesian.
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We remark that the last statement of Theorem 6.5 recovers Teleman’s result that the Coulomb branch SpecAG×C×
ℏ ,N

is the affinization of the scheme obtained by gluing two copies of SpecAG×C×
ℏ

along a rational map.

Proof. The first assertion follows directly from the construction.
For the second assertion, it suffices to prove the claim for the TO-equivariant version of the diagram. The GO-

equivariant case then follows by taking W -invariant parts of the homomorphisms.
We begin by recalling that the Coulomb branch algebra admits a natural filtration (see Proposition 1.5):

e(SN) ∩HTO
• (GrG) =

⋃
λ∈Λ

Im
(
e(S̃≤λ) ∩HTO

• (C̃≤λ)
)
.

The diagram (53) consists of homomorphisms of filtered H•
T (pt)-algebras. To show that it is Cartesian, it suffices to

verify this on each filtered piece.
For clarity, denote the entries in the TO-eqvuiariant version of (53) as follows: let A, B, C, and D correspond

to the top-left, top-right, bottom-left and bottom-right entries, respectively. Define the pullback P := B ×D C =
ker(B ⊕ C ! D) in the category of filtered H•

T (pt)-modules.
Since both B ! D, C ! D and A ! C are all injective, the induced map A ! P is injective. So, it suffices

to show that A ! P is surjective. By induction on λ, we may reduce to showing that the map on associated graded,
grA! grP , is surjective.

Recall that the filtration on A is given by

FλA = H
TO⋊C×

ℏ
• (Rd

≤λ), F<λA = H
TO⋊C×

ℏ
• (Rd

<λ).

Let e ∈ H•
T (pt) be the Euler class of the tangent space of Cλ at [tλ]. The natural map F<λA ! FλA is the

pushforward map associated to the closed subset Rd
<λ ! Rd

≤λ. The long exact sequence in Borel–Moore homology
yields an isomorphism

grλA
∼
−! HTO

• (Rd
λ)

∼= H•
T (pt) · e(Stλ) ·

1

e
[tλ].

On the associated graded level, the bottom horizontal arrow in the diagram sends

[tλ] 7−! [tλ]⊗ [tλ] 7−! [tλ]⊗ΨT ([t
λ]).

Meanwhile, for the pullback P ,

grλP ⊂ grλHTO
• (GrG) ∼= H•

T (pt) ·
1

e
[tλ].

Suppose that c[tλ] ∈ grλP . By definition of pullback, we must have

ceΨT,N,loc([t
λ]) ∈ H•

T (N)[[qT , τ ]].

When N is gluable, by Proposition 6.1, the denominator of ΨT,N,loc([t
λ]) is exactly e(Stλ), and no cancellation of

equivariant parameters occurs. Thus, ce is divisible by e(Stλ).
Hence, c[tλ] lies in the image of grλA, and the map grλA! grλP is surjective. This completes the proof. □

6.3. Peterson isomorphism for reductive groups. In this subsection, we set τ = 0 and consider only the small
quantum cohomology.

We compute the homomorphism ΨG,X = ΨG,0,X in the case where X is a partial flag variety. The main result is
Theorem 6.9, which generalizes the Peterson isomorphism for simply connected groups [Pet97; LS10; Cho23].

The ideas for the computations presented here are all from [Cho23], and we do not claim originality for it. The only
new input here is the use of equivariant Novikov parameters. We hope that Theorem 6.9 offers compelling evidence
that working with equivariant Novikov variables is the natural setting for studying quantum cohomology.

We begin by introducing some notations. Let R be the set of roots of G, and let R+ ⊂ R be the set of positive
roots. Let P ⊃ B be a standard parabolic subgroup of G, and let RP ⊂ R be the set of roots of the Levi subgroup of
P , so that R+

P = RP ∩R+. In particular, we have the decomposition

LieP = LieB ⊕
⊕

α∈R+
P

g−α.

We denote the Weyl group of P by WP . Throughout this section, we regard the quantum cohomology vector space as

QH•
G(G/P )[qG] = H•

G(G/P )⊗ C[Hord,G
2 (G/P,Z)],
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and we will show that the image of ΨG,G/P is actually contained in this space.
Let X = G/P and v ∈W/WP . Let ℓP (v) denote the length of the minimal representative of v in W , respectively.

Define

σ(v) = BvP ⊂ G/P, σ−(v) = B−vP ⊂ G/P.

Then dim(σ(v)) = ℓP (v) and dim(σ−(v)) = dimG/P − ℓP (v).
In Appendix C, we will show that M≤λ(G/P, β) is smooth of expected dimension for any β ∈ Eff(E≤λ(G/P ))

sec.
Moreover, since ev∞ : M≤λ(G/P, β) ! G/P is B-equivariant, it is transverse to all B−-orbits. Therefore,

ΨG,G/P ([C≤λ]) =
∑
β

qβ
∑

v∈W/WP

#
(
M≤λ(G/P, β)×ev∞ σ−(v)

)
· σ(v), (54)

where #(S) for a set S is 0 if S is infinite, and is the cardinality of S otherwise.
Let v ∈W , and consider the point sλ,v ∈ E≤λ(G/P ) representing the constant section

ET
tλ ×T v ⊂ Eλ ×G (G/P ),

where ET is the universal T -torsor over GrT ×P1. Let βλ,v ∈ Hord
2 (E≤λ(G/P );Z) be the corresponding section class.

We write λ = wλ(λ
−), where λ− is antidominant, and wλ is the longest-length element in the coset wλ StabW (λ−).

Definition 6.6. We say that λ ∈ Λ is P -allowed if for any α ∈ R+
P ,

⟨α, λ−⟩ =

{
0 if wλ(α) < 0,

−1 if wλ(α) > 0.

Lemma 6.7. Let β ∈ Eff(E≤λ(G/P ))
sec, and let v ∈W . Suppose

M≤λ(G/P, β)×ev∞ σ−(v)

is finite. Then v ∈ wλWP , λ is P -allowed, and
M≤λ(G/P, βλ,wλ

)×ev∞ σ−(wλ) = {sλ,wλ
}.

Proof. Let s ∈ M≤λ(G/P, β) ×ev∞ σ−(v). Since the space is T -invariant, s must be a T -fixed point, hence lying
over some tµ ∈ C≤λ.

1) Showing that µ = λ: Suppose µ < λ. Then s descends to give a point in

M≤µ(G/P, [s])×ev∞ σ−(v),

but
dimM≤µ(G/P, [s])×ev∞ σ−(v) < dimM≤λ(G/P, [s])×ev∞ σ−(v) = 0,

a contradiction. Therefore, µ = λ, and we must have s = sλ,w for some w ∈W .
2) Showing that v ∈ wWP : Since ev∞(sλ,w) = wP , we have wP ∈ σ−(v). On the other hand, since ev∞ is

B-equivariant and σ−(v) is B−-invariant, we must have σ(w) ∩ σ−(v) = wP , this shows that v ∈ wWP .
3) Showing that v ∈ wλWP : This condition is equivalent to requiring that for all α ∈ R+ \R+

P ,

⟨v(α), λ⟩ ≤ 0, and equality holds only if v(α) < 0.

Let α ∈ R+ \R+
P . Then the normal bundle to sλ,v in the direction of −v(α) is

OP1(⟨v(α), λ⟩).
We must have ⟨v(α), λ⟩ ≤ 0, because otherwise we can deform sλ,v while fixing the infinite point.

Moreover, if ⟨v(α), λ⟩ = 0, then we can deform sλ,v while moving the infinite point in the −v(α) direction. We
must have v(α) < 0, otherwise this deformation remains contained in ev−1

∞ (B−(vP )).
4) Verifying that λ is P -allowed: We introduce some notations. For α ∈ R, we write Uα : C ! G the inclusion

of the corresponding root subgroup. If f ∈ K, we also write Uα(f) for the corresponding element in GK.
Let α ∈ R+

P . If wλ(α) < 0, then U−wλ(α)(z)t
λ · wλ = wλ, for any z ∈ C, and t ∈ C×. Therefore, s can

deform to the constant section sz over U−wλ(α)(z)t
λ ∈ Cλ with value wλ. This contradicts to our assumption that

M≤λ(G/P, β)×ev∞ σ−(v) is finite unless U−wλ(α)(z)t
λ = tλ for any z ∈ C. This means

⟨λ−, α⟩ = ⟨λ,wλ(α)⟩ ≥ 0,

and must in fact equal 0 because λ− is antidominant.
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If wλ(α) > 0, then U−wλ(α)(zt)t
λ ·wλ = wλ, for any z ∈ C, and t ∈ C×. Similar to the above case, we must have

⟨λ−, α⟩ = ⟨λ,wλ(α)⟩ ≥ −1.

Since λ− is antidominant, ⟨λ−, α⟩ can only be 0 or −1. The former case, however, implies wλ(α) < 0 by definition
of wλ. Therefore, we must have ⟨λ−, α⟩ = 0.

This confirms that λ is P -allowed. □

We want to calculate the class βλ,v ∈ Hord,G
2 (G/P ;Z) = HP

2 (pt;Z). LetEP be a contractible space with a freeP -
action, and BP = EP/P . The long exact sequence of homotopy groups associated to the fibration P ! EP ! BP
shows that π1(BP ) = 1 and π2(P ) ∼= π1(P ). In particular, the Hurewicz theorem in algebraic topology implies
Hord,P

2 (pt;Z) = Hord
2 (BP ;Z) ∼= π1(P ).

We identify π1(T ) with Λ; and for λ ∈ Λ, we write λP for the image of λ under the natural map π1(T ) ! π1(P ).
We write λ−P for (λ−)P

Lemma 6.8. βλ,v = v−1(λ)P ∈ π1(P ).

Theorem 6.9.

ΨG,G/P ([C≤λ]) =

{
qλ

−
P σ(wλ) if λ is P -allowed,

0 otherwise.

In particular, the homomorphism
AG ! QH•

G(G/B)[qG]

becomes an isomorphism if we localize AG by all class [Cw0(λ−)] for all λ− ∈ Λ−.

Proof. The last statement follows from the first. To prove the first statement, we observe that

dimM≤λ(G/P, βλ,wλ
)×ev∞ σ−(wλ) = dimCλ + dimG/P +

∑
α∈R+\R+

P

⟨α, λ−⟩ − ℓ−(wλ),

and
dimCλ = −

∑
α∈R+

⟨α, λ−⟩ − |R+|+ ℓ(wλ).

If λ is P -allowed, then
ℓ(wλ) = ℓ−(wλ) + |R+

P |+
∑

α∈R+
P

⟨α, λ−⟩.

To see this, notice that ℓ(wλ) (resp. ℓP (wλ)) is the number of α ∈ R+ (resp. α ∈ R+ \ R+
P ) with wλ(α) < 0, and∑

α∈R+
P
⟨α, λ⟩ is minus the number of α ∈ R+

P with wλ(α) > 0. Combining the above formula together, we see that
dimM≤λ(G/P, βλ,wλ

)×ev∞ σ−(wλ) = 0 when λ is P -allowed.
Now the theorem follows from Equation (54), Lemma 6.7, and Lemma 6.8. □

Proof of Lemma 6.8. Consider the diagram

π2(E≤λ × (G/P )) π2(E≤λ(G/P )) π1(P ) π1(E≤λ × (G/P ))

π2(EP ) π2(BP ) π1(P ) π1(EP ),

1

∼=

where the rows are the long exact sequence associated to the fibrations P ! E≤λ ! E≤λ(G/P ) and P ! EP ! BP
respectively. The vertical homomorphisms are induced by the classifying map E≤λ(G/P ) ! BP corresponding to the
principal P -bundle E≤λ ! E≤λ(G/P ). By a diagram tracing, it remains to show that the boundary homomorphism
π2(E≤λ(G/P )) ! π1(P ) sends βλ,v to v−1(λ).

Let OP1(−1)× be the C× bundle associated to the tautological bundle of P1. By checking the transition functions,
it is easy to see that the restriction of E≤λ to βλ,v is isomorphic to OP1(−1)× ×v−1(λ) P .
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This implies that there is a commutative diagram

π2(P1) π1(C×)

π2(P1) π1(P )

π2(E≤λ(G/P )) π1(P ),

where the horizontal maps are boundary homomorphism associated to the fibrations C× ! O×
P1 ! P1, C× !

OP1(−1)× ×v−1(λ) P ! P1, and P ! E≤λ ! E≤λ(G/P ) respectively. Note that the left lower map sends [P1] to
βλ,v and the right upper map sends the generator 1 ∈ Z ∼= π1(C×) to v−1(λ)P . Now the lemma follows from the
convention that the upper boundary homomorphism sends [P1] to the generator 1 ∈ π1(C×). □

Remark 6.10. There is a ring homomorphism

C[Λ]W ∼= C[Λ−] −! AG,

which sends qλ
−

to the class [C≤−w0(λ−)]. The induced morphism

SpecAG −! SpecC[Λ]W

has fibres that are, set-theoretically, equal to the supports of QH•
G(G/P ) (after specializing qG accordingly). This

gives a foliation of the Coulomb branch by the Lagrangians corresponding to partial flag varieties (cf. [Tel14]). This
statement can be proved using ideas similar to those in [Cho24] for simply connected G.

6.4. Peterson isomorphism with matters. In the case when N = 0 and X = G/P is a partial flag variety, by a
theorem of [LS10] and also [Cho23], the Novikov variables qβ lies in the image of the homomorphism HTO

• (GrG) !
QH•

T (G/P )[qG]. In particular, this implies that for different G/P and G/P ′, or for G/P equipped with different
symplectic forms, the corresponding Lagrangians LG,N(G/P ) and LG,N(G/P ′) have empty intersections.

The analogous statement for general N is not true. The Novikov variables qβ may not lie in the image of
e(SN) ∩ HTO

• (GrG) ! QH•
T (G/P × N)[qG]. Nevertheless, Corollary 6.13 provides partial results, identifying a

subset of quantum Schubert classes which do lie in the image of the Seidel map.

Proposition 6.11. Let Y be a smooth projective G-variety, let N be a G-representation and N∨ be its dual represen-
tation. For any λ ∈ Λ, we have

ΨG,N,Y×N(e(SN) ∩ C≤λ) = ΨG,N∨,Y (e(SN∨) ∩ C≤λ), (55)
under the pullback isomorphism H•

G(Y ) ∼= H•
G(Y ×N).

Proof. By Proposition 5.27, we reduce to the case Y = pt. By Proposition 5.6, we may replace G with G × C×,
where C× acts on N via the scaling action. Now, we may apply Corollary 5.8 to reduce to the abelian case, which
follows from the calculation in Proposition 6.1. □

Now we set τ = 0 and only consider small quantum cohomology.

Corollary 6.12. The equivariant Seidel map ΨG,N,G/B×N induces a birational morphism SpecQH•
G(G/B ×

N)[qG] ! SpecAG,N.

Proof. This follows from (55) and the N = 0 case (Theorem 6.9). □

The following proposition is a generalization of Section 6.3. The assumption is satisfied if G = G′ × C×
dil, where

the C×
dil-factor acts on N by scaling.

Corollary 6.13. Let ρ : C× ⊂ G be the inclusion of a central subgroup, and let N be a representation whose
C×-weights are all positive (resp. negative). Let X = G/P ×N, and fix λ ∈ Λ. Then for sufficiently large n > 0, we
have

ΨG,N, X

(
e(S̃≤λ−nρ) ∩ [C̃λ−nρ]

)
= q(λ−nρ)−P σ(wλ),

resp. ΨG,N, X

(
e(S̃≤λ+nρ) ∩ [C̃λ+nρ]

)
= q(λ+nρ)−P σ(wλ),
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under the pullback isomorphism H•
G(G/P )

∼= H•
G(G/P ×N).

Proof. This follows from Theorem 6.9 and Proposition 6.11 applied to Y = G/P , along with the observation that
SN∨,≤λ−nρ = 0 (resp. SN∨,≤λ+nρ = 0) for n sufficiently large. □

Remark 6.14. For each specialization ς : C[qG] ! C, we obtain a Lagrangian subvariety

Lς = Supp
(
QH•

G(G/B ×N)⊗C[qG] C
)
.

For any two distinct specializations ς1 and ς2, it is easy to see that the corresponding Lagrangians Lς1 and Lς2 are
disjoint. Therefore, the previous corollary may be viewed as a generalization of Teleman’s result in the case N = 0
[Tel14, Theorem 6.8].

Appendix A. Stability under the convolution product

Proof of Proposition 1.5. Let λ1, λ2 ∈ Λ+ be dominant coweights, and let d > 0 be a sufficiently large positive integer
such that Rd

µ is defined for all µ satisfying µ ≤ λ1, µ ≤ λ2, or µ ≤ λ1 + λ2. It suffices to show that under the product
map (11), the image of (

z∗HGO
• (Rd

≤λ1
)
)
⊗
(
z∗HGO

• (Rd
≤λ2

)
)

is contained in z∗HGO
• (Rd

≤λ1+λ2
), where z∗ : HGO

• (T d) ! HGO
• (GrG) is the Gysin map.

Consider the following diagram

Rd
≤λ1

×Rd
≤λ2

p−1(Rd
≤λ1

×Rd
≤λ2

) Z

T d
≤λ1

× T d
≤λ2

p−1(T d
≤λ1

× T d
≤λ2

) (GK)≤λ1 × T d
≤λ2

C≤λ1 × C≤λ2 (GK)≤λ1 × C≤λ2 (GK)≤λ1 × C≤λ2 .

⊂

p′′
⊂

j ⊂

p′

z1

p

z2 z3

Here,
Z := {(g1, [g2, s]) ∈ (GK)≤λ1

×Rd
≤λ2

: g1g2s ∈ NO},
and j is defined by

j(g1, [g2, s]) = (g1, g2s, [g2, s]).

The GO ×GO-action on p−1(T d
≤λ1

× T d
≤λ2

) is given by:

(g, g′) · (g1, s1, [g2, s2]) = (gg1(g
′)−1, g′s1, [g

′g2, s2]),

so j is GO ×GO-equivariant. There is a section ϕ of (the pullback of) T d
≤λ1

over p−1(Rd
≤λ1

×Rd
≤λ2

) defined by

ϕ(g1, s1, [g2, s2]) = [g1, s1 − g2s2],

whose vanishing locus is Z. Therefore,

p∗z∗1H
GO×GO
• (Rd

≤λ1
×Rd

≤λ2
) =z∗2(p

′)∗HGO×GO
• (Rd

≤λ1
×Rd

≤λ2
)

⊂z∗2HGO×GO
• (p−1(Rd

≤λ1
×Rd

≤λ2
))

⊂z∗3HGO×GO
• (Z).

(56)

Next, consider the diagram

Z ′ Rd
≤λ1+λ2

(GrK)≤λ1
×GO T d

≤λ2
T d
≤λ1+λ2

(GK)≤λ1
×GO C≤λ2

Cλ1+λ2
.

⊂

m′′

⊂

m′

m

z4 z5
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Here, Z ′ = Z/GO is the image of Z under the canonical map

(GrK)≤λ1
× T d

≤λ2
! (GrK)≤λ1

×GO T d
≤λ2

.

Hence,
m∗(q

∗)−1z∗3H
GO×GO
• (Z) = m∗z

∗
4H

GO
• (Z ′)

= z∗5(m
′)∗H

GO
• (Z ′)

⊂ z∗5H
GO
• (Rd

≤λ1+λ2
).

(57)

Combining (56) and (57), we obtain

m∗(q
∗)−1p∗z∗1H

GO×GO
• (Rd

≤λ1
×Rd

≤λ2
) ⊂ z∗5H

GO
• (Rd

≤λ1+λ2
),

as desired. □

Appendix B. Universal G-torsor

In this subsection, we will define in terms of functor of points an ind-scheme E equipped with an action of
GC[t−1] ⋊ C×

ℏ which is a G-torsor over GrG × P1. It is best to work in the language of functors of points, since the
algebraic loop group GK is highly non-reduced (see [Zhu17, Remark 1.3.10]).

Universal G-torsors on the loop group. Here GC[t−1] is the fppf sheaf which sends any C-algebra R to G(R[t−1]).
The space E is understood as the universal G-torsor.

Let R be a C-algebra, and γ ∈ G(R((t))). By the theorem of Beauville and Laszlo ([BL95]), there exists a unique
G-torsor ÊR,γ on P1

R, equipped with trivializations

φγ
0 : ÊR,γ |SpecR[[t]]

∼
−! SpecR[[t]]×G,

φγ
∞ : ÊR,γ |SpecR[t−1]

∼
−! SpecR[t−1]×G.

φγ
∞ = γ · φγ

0 on ÊR,γ |SpecR((t)). In simple terms, ÊR,γ is obtained by gluing trivial G-torsors over SpecR[[t]] and
SpecR[t−1] using γ as the transition function.

Moreover, if f : R ! S is a C-algebra homomorphism, and γ′ ∈ G(S((t))) is the image of γ under the map
GK(f) : G(R((t))) ! G(S((t))), then there is an isomorphism

ÊS,γ′ ∼= ÊR,γ ×R S (58)

such that φγ′

0 = φγ
0 ×R S and φγ′

∞ = φγ
∞ ×R S.

Conversely, ifP is aG-torsor overP1
R, with trivializationsφ0 andφ∞ over SpecR[[t]] and SpecR[t−1] respectively,

then there exists a unique γ ∈ GK(R) = G(R((t))) such that φ∞ = φ0 when restricted to SpecR((t)). The following
lemma summarizes the above discussion.

Lemma B.1. The loop group GK represents the functor

R 7−!


Isomorphism classes of the pair (P, φ0, φ∞) :
P is a G-torsor over P1

R,
φ0 is a trivialization of P over SpecR[[t]],
φ∞ is a trivialization of P over SpecR[t−1]

 .

By abstract nonsense, there exists a universal bundle Ê ! GK × P1 with trivializations φ0 and φ∞ of Ê over
GK × SpecC[[t]] and GK × SpecC[t−1] respectively. We will now describe them explcitly.

We understand schemes as functors from the category C−Alg of C-algebras to the category Set of sets, via the
functor of points construction. If f : R ! S is a C-algebra homomorphism, we let ÊR,γ(S)f denote the preimage of
f ∈ Spec(R)(S) under the natural projection ÊR,γ ! SpecR. In particular, the isomorphism (58) implies that

ÊS,GK(f)(γ)(S)idS
= ÊR,γ(S)f (59)

for any γ ∈ GK(R).
Now Ê : C−Alg ! Sets can be defined as follows. We set

Ê(R) = {(γ, x) | γ ∈ G(R((t))), x ∈ ÊR,γ(R)idR
}
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for each C-algebra R; and

Ê(f)(γ, x) =
(
GK(f)(γ), ÊR,γ(f)(x)

)
for each C-algebra homomorphism f : R! S. Note that ÊR,γ(f)(x) ∈ ÊS,GK(f)(γ)(S)idS

in view of (59).

The (GC[t−1] ×GO)⋊C×
ℏ -actions on Ê . We let C×

ℏ act onGO, GK, andGC[t−1] by loop rotations defined as follows.
Let R be a C-algebra. Each element z ∈ C×

ℏ (R) = R× induces an R-algebra automorphism m∗
z of R[[t]] by sending

t to z−1t. By abuse of notation, we denote the composition

GO(R) = G(R[[t]])
G(m∗

z)−−−−! G(R[[t]]) = GO(R),

also by m∗
z .

The action of C×
ℏ on GO is then given by

C×
ℏ (R)×GO(R) ! GO(R)

(z, g) 7! m∗−1
z (g).

It is notationally more instructive to write g = g(t) and m∗−1
z (g) = g(zt). The loop rotation actions on GK and

GC[t−1] are defined similarly.
We write (GC[t−1] ×GO)⋊C×

ℏ for the semidirect product in which C×
ℏ acts on GC[t−1] ×GO via loop rotation. It

is clear that (GC[t−1] ×GO)⋊C×
ℏ acts on GK by

(g(t), h(t), z) · γ(t) = g(t) γ(zt)h(t)−1

for any C-algebra R, any (g(t), h(t), z) ∈
(
G(R[t−1])×G(R[[t]])

)
⋊ R×, and any γ(t) ∈ G(R((t))). In view of

Lemma B.1, one can understand the action of G(R[t−1]) (resp. G(R[[t]])) as changing the trivialization φ∞ (resp.
φ0), and z ∈ R× acts via the pullback along m−1

z : P1
R ! P1

R.
We are going to show that this action lifts to an action of (GC[t−1] × GO) ⋊ C×

ℏ on Ê . Let R be a C-algebra,
(g(t), h(t), z) ∈ (G(R[t−1])×G(R[[t]]))⋊R×, and let γ(t) ∈ GK(R), γ′ = (g, h, z) · γ. Namely

γ′(t) = g(t)γ(zt)h(t)−1.

Note that φ′
0 = m∗

zh · φγ
0 and φ′

∞ = m∗
zg · φγ

∞ are local trivializations of ÊR,γ over SpecR[[t]] and SpecR[t−1],
respectively. One checks immediately that φ′

∞ = m∗
zγ

′ ·φ′
0 over SpecR((t)). By the theorem of Beauville and Laszlo,

there exists a unique isomorphism

ϑg,h,z : ÊR,γ
∼
−! m∗

zÊR,γ′ ,

such that m∗
zφ

γ′

0 ◦ ϑg,h,z = φ′
0 and m∗

zφ
γ′

∞ ◦ ϑg,h,z = φ′
∞.

Now let (g′(t), h′(t), z′) ∈ (G(R[t−1])×G(R[[t]]))⋊R×, then we have

(g′(t), h′(t), z′) · (g(t), h(t), z) = (g′(t)g(z′t), h′(t)h(z′t), z′z). (60)

We denote the right-hand side of (60) by (g′′, h′′, z′′), and write γ′′ = (g′′, h′′, z′′) · γ ∈ G(R((t))). We claim that

m∗
zϑg′,h′,z′ ◦ ϑg,h,z = ϑg′′,h′′,z′′ . (61)

To see this, it suffices to check that both sides of (61) agree with the unique isomorphism ϑ : ÊR,γ
∼
−! m∗

z′zÊR,γ′′

satisfying

m∗
z′zφ

γ′′

0 ◦ ϑ = m∗
z′zh

′′ · φγ
0 ,

m∗
z′zφ

γ′′

∞ ◦ ϑ = m∗
z′zg

′′ · φγ
∞.
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This is immediate for the right-hand side of (61). For the left-hand side, we compute

m∗
z′zφ

γ′′

0 ◦m∗
zϑg′,h′,z′ ◦ ϑg,h,z = m∗

z(m
∗
z′φ

γ′′

0 ◦ ϑg′,h′,z′) ◦ ϑg,h,z

= m∗
z(m

∗
z′h′ · φγ′

0 ) ◦ ϑg,h,z

= m∗
z′zh

′ ·m∗
zφ

γ′

0 ◦ ϑg,h,z
= m∗

z′zh
′ ·m∗

zh · φγ
0

= m∗
z′zh

′′ · φγ
0 .

The other equality m∗
z′zφ

γ′′

∞ ◦m∗
zϑg′,h′,z′ ◦ ϑg,h,z = m∗

z′zh
′′ · φγ

∞ can be checked in the same way.
Moreover, let f : R ! S be a C-algebra homomorphism. We write γS = GK(f)(γ), gS = GC[t−1](f)(g), etc.

Then we have
ϑgS ,hS ,zS = ϑg,h,z ×R S, (62)

because both sides agree with the unique isomorphism ϑ : ÊS,γS

∼
−! m∗

zS ÊS,γ′
S

withm∗
zS (φ

γ′

0 )S ◦ϑ = m∗
zShS · (φγ

0)S

and m∗
zS (φ

γ′

∞)S ◦ ϑ = m∗
zShS · (φγ

∞)S
Now we can define the action

ΦR : (GC[t
−1](R))×GO(R))⋊C×

ℏ (R)× Ê(R) −! Ê(R)

by
ΦR(g(t), h(t), z, γ(t), x) = (g(t)γ(zt)h−1(t), ϑ(g,h,z)(x)). (63)

By (61), this defines an action of (GC[t
−1](R)) × GO(R)) ⋊ C×

ℏ (R) on Ê(R). In view of (62), we obtain an action
of (GC[t

−1]×GO)⋊C×
ℏ on Ê .

Since the projection Ê ! GK is clearly (GC[t−1] ×GO)⋊C×
ℏ -equivariant, and GrG = GK/GO,

E = Ê/GO (64)

is a G-torsor over GrG. Moreover, there is a canonical trivialization φ∞ of E over GrG × SpecC[t−1]. Moreover,
there is a remaining action of GC[t−1] ⋊C×

ℏ on E .
The trivializations φ0 and φ∞ induce the isomorphisms

Ê |GK×{0} ∼= GK ×G, Ê |GK×{∞} ∼= GK ×G.

Since GO acts by changing the trivialization φ0, these identifications descend to isomorphisms

E|GrG×{0} ∼= GK ×GO G, E|GrG×{∞} ∼= GrG ×G. (65)

Appendix C. Regularity of M≤λ(G/P )

In this appendix, we show that the restriction of TE≤λ(G/P ) to any stable map σ : Σ ! E≤λ(G/P ) has vanishing
higher cohomology. By a standard argument (e.g. [Cho23]), this implies that the moduli space M≤λ(G/P ) is smooth
of the expected dimension.

Using semicontinuity of the dimension of cohomology, one may assume that σ is T -invariant. Moreover, since
G/P is convex, it suffices to verify the case where Σ ∼= P1, and σ(Σ) is a genuine section over some T -fixed point
p ∈ C̃≤λ lying over a point tµ ∈ C≤λ.

Under this assumption, there exists v ∈W/WP such that σ maps Σ isomorphically onto the constant section curve
Secp,v over the point p ∈ C̃≤λ, with value [v] ∈ G/P .

Let v(R+
P ) = {α1, . . . , αk}. Suppose that αi(µ) > 0 if and only if i ≤ r.

Consider the map

V = C
∑r

i=1(αi(µ)−1) ! C̃≤λ

s = (si,j) 1≤i≤r
1≤j<αi(µ)

7! exp

 r∑
i=1

αi(µ)−1∑
j=1

si,jt
jXαi

 · p.

Let EV (G/P ) be the pullback of E≤λ(G/P ) along V ! C̃≤λ.
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Since H1(Secp,v, TSecp,v) = 0, it suffices to show that the normal bundle to the curve Secp,v in EV (G/P ) has
vanishing higher cohomology.

In fact, EV (G/P ) is obtained by gluing V × SpecC[t] × G/P with V × SpecC[t−1] × G/P via the transition
function

(s, t, x) 7!

s, t, exp
 r∑

i=1

αi(µ)−1∑
j=1

si,jt
jXαi

 tµ · x

 .

The transition function for the normal bundle is therefore equivalent to a block-diagonal matrix with blocks
B1, . . . , Bk, where:

• For i ≤ r, the block Bi is the matrix Dαi(µ) defined below;
• For i > r, the block Bi is the 1× 1 matrix with entry tαi(µ).

We define

Dn :=


tn tn−1 · · · t
0
... In−1

0


We claim that the double coset GC[t−1]DnGO contains the scalar matrix t · In. To see this, observe that

t1−n −1 0 · · · 0
1 0 0 · · · 0
0 0 1 0
...

...
. . .

...
0 0 0 · · · 1

Dn


1 0 0 · · · 0
−t 1 0 · · · 0
0 0 1 0
...

...
. . .

...
0 0 0 · · · 1

 =


t 0 0 · · · 0
0 tn−1 tn−2 · · · t
0 0 1 0
...

...
. . .

...
0 0 0 · · · 1


The claim now follows by induction on n.
To conclude, the normal bundle is a direct sum of line bundles OP1(ℓ) with ℓ ≥ −1, and hence has vanishing higher

cohomology.
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