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Abstract. Given a toric Calabi-Yau orbifold X whose underlying toric variety is semi-
projective, we construct and study a non-toric Lagrangian torus fibration on X , which we
call the Gross fibration. We apply the Strominger-Yau-Zaslow recipe to the Gross fibration of
(a toric modification of) X to construct its instanton-corrected mirror, where the instanton
corrections come from genus 0 open orbifold Gromov-Witten invariants, which are virtual
counts of holomorphic orbi-disks in X bounded by fibers of the Gross fibration.

We explicitly evaluate all these invariants by first proving an open/closed equality and
then employing the toric mirror theorem for suitable toric (parital) compactifications of X .
Our calculations are then applied to

(1) prove a conjecture of Gross-Siebert on a relation between genus 0 open orbifold Gromov-
Witten invariants and mirror maps of X – this is called the open mirror theorem, which
leads to an enumerative meaning of mirror maps, and

(2) demonstrate how open (orbifold) Gromov-Witten invariants for toric Calabi-Yau orb-
ifolds change under toric crepant resolutions – this is an open analogue of Ruan’s crepant
resolution conjecture.
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1. Introduction

In this paper, we study mirror symmetry for toric Calabi-Yau orbifolds from the SYZ
perspective [100]. SYZ mirror symmetry for toric Calabi-Yau manifolds was studied in [20],
and it was conjectured that the SYZ map, which is defined in terms of genus 0 open Gromov-
Witten invariants, or disk invariants, is equal to the inverse of a mirror map [20, Conjecture
1.1] (see also [23, Conjecture 2]). Such a connection between disk invariants and mirror maps
was first envisioned by Gross and Siebert [67, Conjecture 0.2] where they expressed it in
terms of tropical, instead of holomorphic, disks. This conjecture leads to explicit formulas for
computing disk invariants, and also provides an enumerative meaning to mirror maps, which
was originally anticipated in the SYZ proposal.

The conjecture was proved in [23] for the total space of the canonical line bundle over a
compact toric Fano manifold in any dimension. In this paper, we generalize the SYZ construc-
tion and prove this conjecture for all semi-projective toric Calabi-Yau orbifolds (Theorems
7.2 and 7.3), and in particular all semi-projective toric Calabi-Yau manifolds (Corollary 7.4).
We call this the open mirror theorem. The main new ingredients in this generalization in-
clude the introduction of orbi-disk invariants defined in [28] (cf. also [18]) which are the
orbifold analogue of disk invariants, computation of these invariants by constructing various
toric (partial) compactifications of X , and a comparison of the mirror maps of these toric
compactifications and that of X . Roughly speaking, the use of orbifold techniques allow us
to extend the scheme of proof in [23] to all semi-projective toric Calabi-Yau manifolds.

On the other hand, it is natural to work in the orbifold setting since all the techniques
involved in [20, 23] adapt naturally to orbifolds. More importantly, the open mirror theorems
in this more general orbifold setting can be used to deduce an open crepant resolution theorem
(Theorem 8.1), which gives a precise relation between the orbi-disk invariants of X and the
(orbi-)disk invariants of its (partial) crepant resolutions. This gives an affirmative answer to
Ruan’s crepant resolution conjecture [96, 13, 34, 36] in the open sector.

A more detailed introduction and description of our main results are now in order.

1.1. Mirror symmetry for orbifolds. Mirror symmetry, which was discovered by string-
theoretic considerations, may be roughly understood as an equivalence between the symplectic
geometry (A-model) of a manifold X and the complex geometry (B-model) of another mani-
fold X̌ called the mirror of X, and vice versa. Originally formulated for Calabi-Yau manifolds,
mirror symmetry for non–Calabi-Yau geometries, such as Fano manifolds and manifolds of
general types, has also been investigated extensively, see e.g. [6, 54, 80, 70, 69, 76, 75, 98, 41,
63, 1].

The famous homological mirror symmetry (HMS) conjecture, proposed by Kontsevich in
his 1994 ICM address [79], formulates the mirror symmetry phenomenon mathematically
and intrinsically as an equivalence between the derived Fukaya category of Lagrangian sub-
manifolds in X and the derived category of coherent sheaves over the mirror X̌. The HMS
conjecture has been proven in various Calabi-Yau geometries, see e.g. [95, 97, 99].

On the other hand, an incredible geometric consequence of mirror symmetry is the compu-
tation of Gromov-Witten invariants for a generic quintic 3-fold in terms of Hodge-theoretic
data of its mirror. This is the famous mirror formula, predicted physically by [14], and proven



4 CHAN, CHO, LAU, AND TSENG

mathematically by independent works of Givental [55] and Lian-Liu-Yau [88]. Nowadays the
mirror formula has been generalized to various settings, including [56], [89, 90, 91], and [33].

In all these developments in mirror symmetry, orbifolds have been playing a significant
role, starting with the first constructions of mirrors for Calabi-Yau hypersurfaces in weighted
projective spaces [15, 61]. In recent years, it has become even clearer that orbifolds are
indispensable in the study of mirror symmetry. For instance, many known constructions of
mirrors naturally produce orbifolds. In dimension 3, crepant resolutions of these orbifolds
are taken as the mirrors. This, however, cannot be done in general in higher dimensions due
to the possibly non-existence of crepant resolutions. It is therefore very natural to consider
mirror symmetry for orbifolds.

Indeed, much progress in mirror symmetry for orbifolds has been made in recent years.
The HMS conjecture for orbifolds has been proved in various cases, e.g. weighted projective
planes [5], weighted projective spaces in general [8], toric orbifolds of toric del Pezzo surfaces
[102], toric Deligne-Mumford stacks [43], etc. On the other hand, mirror theorems showing
that the A-model (i.e. Gromov-Witten theory) of an orbifold is equivalent to the B-model
of its mirror have also been proven for various classes of orbifolds, e.g. P1-orbifolds [94],
weighted projective spaces [35], complete intersection orbifolds [32], toric Deligne-Mumford
stacks [31], and the mirror quintic orbifold [85].

1.2. SYZ mirror construction. In 1996, Strominger, Yau and Zaslow [100] proposed an
intrinsic and geometric way to understand mirror symmetry for Calabi-Yau manifolds via
T -duality. Roughly speaking, the Strominger-Yau-Zaslow (SYZ) conjecture asserts that for
a pair of Calabi-Yau manifolds X and X̌ which are mirror to each other, there exist special
Lagrangian torus fibrations

X

��

X̌

��
B

which are fiberwise dual to each other. Mathematical approaches to SYZ mirror symmetry
have since been extensively studied by many researchers including Kontsevich-Soibelman
[81, 82], Leung-Yau-Zaslow [87], Leung [86], Gross-Siebert [64, 65, 66, 67], Auroux [3, 4],
Chan-Leung [24], Chan-Lau-Leung [20] and Abouzaid-Auroux-Katzarkov [1].

A very important application of the SYZ conjecture is providing a geometric construction
of mirrors: It suggests that, given a Calabi-Yau manifold X, a mirror X̌ can be constructed
by finding a (special) Lagrangian torus fibration X → B and suitably modifying the complex
structure of the total space of the fiberwise dual by instanton corrections. For toric Calabi-
Yau manifolds, Gross [62] (and independently Goldstein [57]) constructed such a special
Lagrangian torus fibration which we call the Gross fibration. In [20], the SYZ construction
was applied to the Gross fibration to produce an instanton-corrected mirror family of a toric
Calabi-Yau manifold, following the Floer-theoretic approach pioneered by Auroux [3, 4].

In this paper we consider the SYZ mirror construction for toric Calabi-Yau orbifolds. A
toric Calabi-Yau orbifold is a (necessarily non-compact) Gorenstein toric orbifold X whose
canonical line bundle KX is trivial. We also assume that the coarse moduli space of X is a
semi-projective toric variety, or equivalently, that X is as in Setting 4.3. Following [62], we
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define in Definition 4.7 a special Lagrangian torus fibration

µ : X → B

which we again call the Gross fibration of X . A special Lagrangian torus fibration

µ′ : X ′ → B′

on a suitable toric modification X ′ of X is also defined; see Definitions 4.17 and 4.20 for
details.

As in the manifold case, the discriminant locus Γ′ ⊂ B′ (resp. Γ ⊂ B) can be described
explicitly. In particular, it is a real codimension 2 subset contained in a hyperplane which we
call the wall in the base B′ (resp. B). The wall divides the smooth locus B′0 = B′ \ Γ′ (resp.
B0 = B \ Γ) into two chambers B′+ and B′− (resp. B+ and B−). Over B′0, the fibration µ′

restricts to a torus bundle µ′ : X ′0 → B′0, and the dual torus bundle

µ̌′ : X̌ ′0 → B′0

admits a natural complex structure, producing the so-called semi-flat mirror of X .

This does not give the genuine mirror for X because the semi-flat complex structure cannot
be extended further to any partial compactification of X̌ ′0. This is due to nontrivial mon-
odromy of the affine structure around the discriminant locus Γ′. As instructed by the SYZ
proposal, we need to deform the semi-flat complex structure so that it becomes extendable to
a suitable partial compactification. More concretely, what we do is (following Auroux [3, 4])
to modify the gluing between the complex charts over the chambers B′+ and B′− by instanton
corrections, which in our case come from genus 0 open orbifold Gromov-Witten invariants, or
orbi-disk invariants, of X (cf. the manifold case [3, 4, 20, 1]). The latter are virtual counts
of holomorphic orbi-disks in the toric Calabi-Yau orbifold X with boundary lying on special
Lagrangian torus fibers of µ over the wall in B. A suitable partial compactification then
yields the following instanton-corrected mirror, or SYZ mirror, of X :

Theorem 1.1 (See Section 5.3). Let X be a toric Calabi-Yau orbifold as in Setting 4.3
and equipped with the Gross fibration in Definition 4.7. Then the SYZ mirror of X (with a
hypersurface removed) is the family of non-compact Calabi-Yau manifolds

X̌ := {(u, v, z1, . . . , zn−1) ∈ C2 × (C×)n−1 | uv = g(z1, . . . , zn−1)},

where the defining equation uv = g is given by

uv = (1 + δ0) +
n−1∑
j=1

(1 + δj)zj +
m−1∑
j=n

(1 + δj)qjz
bj +

∑
ν∈Box′(Σ)age=1

(τν + δν)q
−D∨ν zν .

Here 1+δj and τν +δν are generating functions of orbi-disk invariants of (X , Fr) (see Section
5.2 for the reasons why the generating functions are of these forms).

Remark 1.2.

(1) The SYZ mirror of the toric Calabi-Yau orbifold X itself (i.e. without removing a
hypersurface) is given by the Landau-Ginzburg model (X̌ ,W ) where W : X̌ → C is
the holomorphic function W := u; see [20, Section 4.6] and [1, Section 7] for related
discussions in the manifold case.



6 CHAN, CHO, LAU, AND TSENG

(2) Several explicit examples will be discussed in Section 6.5. For instance, when X =
[C2/Zm], the mirror is given by the equation

uv =
m−1∏
j=0

(z − κj),

where κj is explicitly defined in (6.22).

To the best of our knowledge, this is the first time the SYZ mirror construction is applied
systematically to construct mirrors for orbifolds.

1.3. Orbi-disk invariants. To demonstrate that X̌ is indeed mirror to the toric Calabi-Yau
orbifold X , we would like to show that the family X̌ is written in canonical coordinates. This
can be rephrased as the conjecture that the SYZ map, defined in terms of orbi-disk invariants,
is inverse to the toric mirror map of X (cf. [67, Conjecture 0.2], [20, Conjecture 1.1] and
[23, Conjecture 2]). To prove this conjecture, knowledge about the orbi-disk invariants is
absolutely crucial.

One major advance of this paper is the complete calculation of these orbi-disk invariants,
or genus 0 open orbifold Gromov-Witten invariants, for moment-map Lagrangian torus fibers
in toric Calabi-Yau orbifolds. Our calculation is based on the following open/closed equality:

Theorem 1.3 (See Theorem 6.12 and equation (6.1)). Let X be a toric Calabi-Yau orbifold
as in Setting 4.3 and equipped with a toric Kähler structure. Let L ⊂ X be a Lagrangian
torus fiber of the moment map of X , and let β ∈ π2(X , L) be a holomorphic (orbi-)disk class
of Chern-Weil Maslov index 2. Let X̄ be the toric partial compactification of X constructed
in Construction 6.1 which depends on β. Then we have the following equality between genus
0 open orbifold Gromov-Witten invariants of (X , L) and closed orbifold Gromov-Witten in-
variants of X̄ :

(1.1) nX1,l,β([pt]L; 1ν1 , . . . ,1νl) = 〈[pt],1ν̄1 , . . . ,1ν̄l〉X̄0,1+l,β̄.

This theorem is proved by showing that the relevant moduli space of stable (orbi-)disks
in X is isomorphic to the relevant moduli space of stable maps to X̄ as Kuranishi spaces.
The key geometric ingredient underlying the proof is that the toric compactification X̄ is
constructed in such a way that (orbi-)disks in X can be “capped off” in X̄ to obtain (orbi-
)spheres, and that the deformation and obstruction theories of the two moduli problems can
naturally be identified.

The closed orbifold Gromov-Witten invariants of X̄ appearing in (1.1) are encoded in the
J-function of X̄ . We will evaluate these invariants via the toric mirror theorem, but we
remark that this requires extra care since X̄ can be non-compact. Fortunately, X̄ is semi-
Fano (see Definition 2.8) and semi-projective, so the equivariant toric mirror theorem of [31]
still applies to give an explicit formula for the equivariant J-function of X̄ . Extracting the
relevant equivariant closed orbifold Gromov-Witten invariants from this formula and taking
non-equivariant limits then yield explicit formulas for the genus 0 open orbifold Gromov-
Witten invariants of X and hence the generating functions which appear in the defining
equation of the SYZ mirror X̌ :



GROSS FIBRATIONS, SYZ, AND OPEN GW FOR TORIC CY ORBIFOLDS 7

Theorem 1.4 (See Theorems 6.19 and 6.20). Let X be a toric Calabi-Yau orbifold as in
Setting 4.3. Let Fr be a Lagrangian torus fiber of the Gross fibration of X lying above a point
r in the chamber B+ ⊂ B0.

(1) Let 1+δi be the generating function of genus 0 open orbifold Gromov-Witten invariants

of X in classes βi(r) + α, with α ∈ Heff
2 (X ) satisfying c1(X ) · α = 0 and βi(r) ∈

π2(X , Fr) the basic smooth disk class corresponding to the primitive generator bi of a
ray in Σ. Then

1 + δi = exp
(
−AXi (y)

)
,

after inverting the toric mirror map (6.15).
(2) Let τν + δν be the generating function of genus 0 open orbifold Gromov-Witten in-

variants of X in classes βν(r) + α, with α ∈ Heff
2 (X ) satisfying c1(X ) · α = 0 and

βν(r) ∈ π2(X , Fr) the basic orbi-disk class corresponding to a Box element ν of age
one. Then

τν + δν = yD
∨
ν exp

(
−
∑
i/∈Iν

cνiA
X
i (y)

)
,

after inverting the toric mirror map (6.15).

Here the functions AXi (y)’s are given explicitly in (6.13).

These generalize the corresponding results in [23] to all semi-projective toric Calabi-Yau
orbifolds. In particular, this applies to the toric Calabi-Yau 3-fold X = KF2 which cannot be
handled by [23] (see Example (4) in Section 6.5).

1.4. Applications. We discuss two major applications of the explicit calculations of orbi-
disk invariants in this paper.

1.4.1. Open mirror theorems. The first application, as we mentioned above, is to show that
the mirror family X̌ is written in canonical coordinates. This concerns the comparison of
several mirror maps for a toric Calabi-Yau orbifold X . More precisely, the SYZ construction
yields what we call the SYZ map FSYZ, defined in terms of genus 0 open orbifold Gromov-
Witten invariants (see the precise definition in (7.2)). In closed Gromov-Witten theory, the
toric mirror theorem of [31] involves a combinatorially defined toric mirror map Fmirror (see
Section 2.4 and the formula (6.15)). We prove the following open mirror theorem:

Theorem 1.5 (See Theorem 7.2). For a toric Calabi-Yau orbifold X as in Setting 4.3, the
SYZ map is inverse to the toric mirror map, i.e. we have

FSYZ =
(
Fmirror

)−1

near the large volume limit of X .

We remark that an open mirror theorem was proved for compact semi-Fano toric manifolds
in [21, 22] and some examples of compact semi-Fano toric orbifolds in [18]. On the other hand,
open mirror theorems for 3-dimensional toric Calabi-Yau geometries relative to Aganagic-Vafa
type Lagrangian branes were proved in various degrees of generality in [60, 11, 42, 44].
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By combining the above open mirror theorem together with the analysis of the relations
between period integrals and the GKZ hypergeometric system associated to X done in [23], we
obtain another version of the open mirror theorem, linking the SYZ map to period integrals:

Theorem 1.6 (See Theorem 7.3). For a toric Calabi-Yau orbifold X as in Setting 4.3, there
exists a collection {Γ1, . . . ,Γr} ⊂ Hn(X̌ ;C) of linearly independent cycles such that

qa = exp

(
−
∫

Γa

Ω̌FSYZ(q,τ)

)
, a = 1, . . . , r′,

τbj =

∫
Γj−m+r′+1

Ω̌FSYZ(q,τ), j = m, . . . ,m′ − 1,

where qa’s and τbj ’s are the Kähler and orbifold parameters in the extended complexified
Kähler moduli space of X .

In particular, we have the following relation between disk invariants and period integrals
in the manifold case:

Corollary 1.7 (See Corollary 7.4). For a semi-projective toric Calabi-Yau manifold X , there
exists a collection {Γ1, . . . ,Γr} ⊂ Hn(X̌ ;C) of linearly independent cycles such that

qa = exp

(
−
∫

Γa

Ω̌FSYZ(q,τ)

)
, a = 1, . . . , r,

where qa’s are the Kähler parameters in the complexified Kähler moduli space of X .

Our results provide an enumerative meaning to period integrals, as conjectured by Gross
and Siebert in [67, Conjecture 0.2 and Remark 5.1]. One difference between our results and
their conjecture is that we use holomorphic disks while they considered tropical disks. On the
other hand, their conjecture is much more general and is expected to hold even when X is
a compact Calabi-Yau manifold. A more precise formulation of the Gross-Siebert conjecture
in the case of toric Calabi-Yau manifolds can be found in [20, Conjecture 1.1] (see also [23,
Conjecture 2]).

Corollary 1.7 proves a weaker form of [20, Conjecture 1.1], which concerns periods over
integral cycles in X̌ (while here the cycles Γ1, . . . ,Γr are allowed to have complex coefficients),
for all semi-projective toric Calabi-Yau manifolds. The case when X is the total space of the
canonical line bundle of a toric Fano manifold was previous proved in [23].1

1.4.2. Open crepant resolution conjecture. The second main application concerns how genus
0 open (orbifold) Gromov-Witten invariants change under crepant birational maps. String
theoretic considerations suggest that Gromov-Witten theory should remain unchanged as
the target space changes under a crepant birational map. This is known as the crepant

1As explained in [23, Section 5.2], to prove the original stronger form of the conjecture, what we need are
integral cycles whose periods have specific logarithmic terms. It turns out that such cycles have already been
constructed by Doran and Kerr in [40, Section 5.3 and Theorem 5.1], at least when X is a toric Calabi-Yau
3-fold of the form KY where Y is a toric del Pezzo surface. Doran suggested to us that it should not be
difficult to extend their construction to general toric Calabi-Yau varieties. Hence the stronger form of the
conjecture should follow from Corollary 1.7 and their construction; cf. the discussion in [39, Section 4]. We
thank Charles Doran for pointing this out.
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resolution conjecture and has been intensively studied in closed Gromov-Witten theory; see
e.g. [96, 13, 34, 30, 36] and references therein. In [18], a conjecture on how generating
functions of genus 0 open Gromov-Witten invariants behave under crepant resolutions was
formulated and studied for compact Gorenstein toric orbifolds. In this paper, we apply our
calculations to prove an analogous result for toric Calabi-Yau orbifolds:

Theorem 1.8 (See Theorem 8.1). Let X be a toric Calabi-Yau orbifold as in Setting 4.3,
and let X ′ be a toric orbifold which is a toric crepant partial resolution of X (such an X ′ will
automatically be as in Setting 4.3). Then we have

FSYZ
X = FSYZ

X ′ ,

after analytic continuation and a change of variables.

See Section 8 for more details.

We shall mention that there are recent works of Brini, Cavalieri and Ross [16, 12] on open
versions of the crepant resolution conjecture for Aganagic-Vafa type Lagrangian branes in 3-
dimensional toric Calabi-Yau orbifolds. Ke and Zhou also informed us that they have proved
the quantum McKay correspondence for disk invariants of outer Aganagic-Vafa branes in
semi-projective toric Calabi-Yau 3-orbifolds [77].

1.5. Organization. The rest of the paper is organized as follows. Section 2 contains a
review on the basic materials about toric orbifolds that we need. The mirror theorem for
toric orbifolds is discussed in Section 2.6. In Section 3 we give a summary on the theory of
genus 0 open orbifold Gromov-Witten invariants for toric orbifolds. In Section 4 we define
and study the Gross fibration of a toric Calabi-Yau orbifold. In Section 5 we construct the
instanton-corrected mirror of a toric Calabi-Yau orbifold by applying the SYZ recipe to the
Gross fibration of a suitable toric modification. The genus 0 open orbifold Gromov-Witten
invariants which are relevant to the SYZ mirror construction are computed in Section 6 via an
open/closed equality and an equivariant toric mirror theorem applied to various toric (partial)
compactifications. In Section 7 we apply our calculation of these invariants to deduce the
open mirror theorems which relate various mirror maps associated to a toric Calabi-Yau
orbifold. Our calculation is also applied in Section 8 to prove a relationship between genus 0
open orbifold Gromov-Witten invariants of a toric Calabi-Yau orbifold and those of its toric
crepant (partial) resolutions. Appendix A discusses some useful facts about Maslov indices.
Appendix B contains the technical discussions on the analytic continuations of mirror maps.

1.6. Acknowledgment. We are grateful to Conan Leung for continuous encouragement and
related collaborations. Discussions with L. Borisov, S. Hosono, Y. Konishi and S. Minabe on
GKZ systems and period integrals were very enlightening and useful, and we would like to
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2. Preliminaries on toric orbifolds

In this section we briefly review the construction and basic properties of toric orbifolds. We
also describe the closed mirror theorem for toric orbifolds due to [31]. We refer the readers
to [9, 74] for more details on the essential ingredients of toric orbifolds, and to [72, 44, 31] for
more details on mirror theorems for toric orbifolds.

2.1. Construction. A toric orbifold, as introduced in [9], is associated to a set of combina-
torial data called a stacky fan:

(Σ, b0, . . . , bm−1),

where Σ is a simplicial fan contained in the R-vector space NR := N ⊗Z R associated to a
lattice N of rank n, and {bi | 0 ≤ i ≤ m− 1} are integral generators of 1-dimensional cones
(or rays) in Σ. We call bi the stacky vectors. We denote by |Σ| ⊂ NR the support of Σ.

Let bm, . . . , bm′−1 ∈ N ∩ |Σ| be additional vectors such that the set {bi}m−1
i=0 ∪ {bj}m

′−1
j=m

generates N over Z. Following [74], the data

(Σ, {bi}m−1
i=0 ∪ {bj}m

′−1
j=m )

is called an extended stacky fan, and {bj}m
′−1

j=m are called extra vectors. We describe the
construction of toric orbifolds from extended stacky fans. The flexibility of choosing extra
vectors is important in the toric mirror theorem, see Section 2.6.

Consider the surjective group homomorphism, the fan map,

φ : Ñ :=
m′−1⊕
i=0

Zei → N, φ(ei) := bi for i = 0, . . . ,m′ − 1.

This gives an exact sequence (the “fan sequence”)

(2.1) 0 −→ L := Ker(φ)
ψ−→ Ñ

φ−→ N −→ 0.

Note that L ' Zm′−n. Tensoring with C× gives the following exact sequence:

(2.2) 0 −→ G := L⊗Z C× −→ Ñ ⊗Z C× ' (C×)m
′ φC×−→ T := N ⊗Z C× → 0.

Consider the set of “anti-cones”,

(2.3) A :=

{
I ⊂ {0, 1, . . . ,m′ − 1} |

∑
i/∈I

R≥0bi is a cone in Σ

}
.

For I ∈ A, let CI ⊂ Cm′ be the subvariety defined by the ideal in C[Z0, . . . , Zm′−1] generated
by {Zi | i ∈ I}. Put

UA := Cm′ \
⋃
I /∈A

CI .
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The algebraic torus G acts on Cm′ via the map G→ (C×)m
′

in (2.2). Since N is torsion-free,
the induced G-action on UA is effective and has finite isotropy groups. The global quotient

XΣ := [UA/G]

is called the toric orbifold associated to (Σ, {bi}m−1
i=0 ∪ {bj}m

′−1
j=m ).

By construction, the standard (C×)m
′
-action on UA induces a T-action on XΣ.

Remark 2.1. Let {vi ∈ N | i = 0, . . . ,m − 1} be the collection of primitive generators of
the rays in Σ. In general, for 0 ≤ i ≤ m − 1, we have bi = civi for some positive integer
ci ∈ Z>0. If ci = 1 for all 0 ≤ i ≤ m− 1, then the coarse moduli space of XΣ is a simplicial
toric variety and in this case we call XΣ a simplicial toric orbifold. Such a toric orbifold has
orbifold structures in at least codimension 2.

Definition 2.2. Let XΣ be the toric variety which is the coarse moduli space of a toric orbifold
XΣ. We say that XΣ is semi-projective if XΣ admits a T-fixed point, and the natural map
XΣ → Spec H0(XΣ,OXΣ

) is projective.

As we will see, toric orbifolds we consider in this paper all have semi-projective coarse
moduli spaces. We refer to [38, Section 7.2] for more detailed discussions on semi-projective
toric varieties.

Remark 2.3. By abuse of terminology, we say that the toric orbifold XΣ is (semi-)projective
when the underlying toric variety XΣ is (semi-)projective.

2.2. Twisted sectors. For a d-dimensional cone σ in Σ generated by bσ = (bi1 , . . . , bid), we
define

Boxbσ :=

{
ν ∈ N | ν =

d∑
k=1

tkbik , tk ∈ [0, 1) ∩Q

}
.

Let Nbσ be the submodule of N generated by lattice vectors {bi1 , . . . , bid}. Then Boxbσ is
in a one-to-one correspondence with the finite group Gbσ = N/Nbσ . It is easy to see that if
τ ≺ σ, then we have Boxbτ ⊂ Boxbσ . Define

Box◦bσ := Boxbσ −
⋃
τ�σ

Boxbτ ,

and
Box(Σ) :=

⋃
σ∈Σ(n)

Boxbσ =
⊔
σ∈Σ

Box◦bσ

where Σ(n) is the set of n-dimensional cones in Σ. We set Box′(Σ) = Box(Σ) \ {0}.
According to [9], Box′(Σ) is in a one-to-one correspondence with the twisted sectors, i.e.

non-trivial connected components of the inertia orbifold of XΣ. For ν ∈ Box(Σ), we denote
by Xν the corresponding twisted sector of X . Note that X0 = X as topological spaces. See
Figure 1a for an example illustrating Box′(Σ).

For the toric orbifold X , the Chen-Ruan orbifold cohomology H∗CR(X ;Q), as defined in [26],
is given by

Hd
CR(X ;Q) =

⊕
ν∈Box

Hd−2age(ν)(Xν ;Q),
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where age(ν) is the degree shifting number or age of the twisted sector Xν and the cohomology

groups on the right hand side are singular cohomology groups. If we write ν =
∑d

k=1 tkbik ∈
Box(Σ) where {bi1 , . . . , bid} generates a cone in Σ, then

age(ν) =
d∑

k=1

tk ∈ Q≥0.

The T-action on X induces T-actions on twisted sectors. This allows one to define the
T-equivariant Chen-Ruan orbifold cohomology H∗CR,T(X ;Q) as

Hd
CR,T(X ;Q) =

⊕
ν∈Box

H
d−2age(ν)
T (Xν ;Q),

where H∗T(−) denotes T-equivariant cohomology.

The trivial T-bundle over a point pt defines a map pt → BT. This induces a map
H∗T(pt,Q) = H∗(BT,Q) → H∗(pt). Let Y be a space with a T-action. By construction
the T-equvariant cohomology of Y admits a map H∗T(pt)→ H∗T(Y,Q). This defines a natural
map

H∗T(Y,Q)→ H∗T(Y,Q)⊗H∗T(pt) H
∗(pt) ' H∗(Y,Q).

For a class C ∈ H∗T(Y,Q), its image under this map, which is a class in H∗(Y,Q), is called
the non-equivariant limit of C. In Section 6, we will need to consider non-equivariant limits
of certain classes in H∗CR,T(X ;Q).

2.3. Toric divisors, Kähler cones, and Mori cones. Let X be a toric orbifold defined
by an extended stacky fan (Σ, {bi}m−1

i=0 ∪ {bj}m
′−1

j=m ). Let A be the set of anticones given in
(2.3). Applying HomZ(−,Z) to the fan sequence (2.1) gives the following exact sequence (the
“divisor sequence”):

0 −→M
φ∨−→ M̃

ψ∨−→ L∨ −→ 0.

Here M := N∨ = Hom(N,Z), M̃ := Ñ∨ = Hom(Ñ ,Z) and L∨ = Hom(L,Z) are dual lattices.

The map ψ∨ : M̃ → L∨ is surjective since N is torsion-free.

By construction, line bundles on X correspond to G-equivariant line bundles on UA. Be-
cause of (2.2), T-equivariant line bundles on X correspond to (C×)m

′
-equivariant line bundles

on UA. Because ∪I /∈ACI ⊂ Cm
′
is of codimension at least 2, we have the following descriptions

of the Picard groups:

Pic(X ) ' Hom(G,C×) ' L∨, P icT(X ) ' Hom((C×)m
′
,C×) ' Ñ∨ = M̃.

Moreover, the natural map PicT(X )→ Pic(X ) is identified with ψ∨ : M̃ → L∨.

Let {e∨i |i = 0, 1, . . . ,m′ − 1} ⊂ M̃ be the basis dual to {ei|i = 0, 1, . . . ,m′ − 1} ⊂ Ñ . For
i = 0, 1, . . . ,m′ − 1, we denote by DT

i the T-equivariant line bundle on X corresponding to

e∨i under the identification PicT(X ) ' M̃ . Also put

Di := ψ∨(e∨i ) ∈ L∨.

The collection {Di | 0 ≤ i ≤ m− 1} are toric prime divisors corresponding to the generators
{bi | 0 ≤ i ≤ m − 1} of rays in Σ, and {DT

i | 0 ≤ i ≤ m − 1} are their T-equivariant lifts.
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There is a natural commutative diagram

M̃ ⊗Q

��

ψ∨⊗Q // L∨ ⊗Q

��
H2
T(X ,Q) // H2(X ,Q).

Also, there are isomorphisms

H2(X ;Q) ' (L∨ ⊗Q)
/(m′−1∑

j=m

QDj

)
, H2

T(X ;Q) '
(
M̃ ⊗Q

)/(m′−1∑
j=m

QDT
j

)
.

Remark 2.4. By (standard) abuse of notation, we use Di (respective DT
i ) to denote

(1) an element in L∨ (respectively M̃);
(2) the corresponding line bundle on X (respectively T-equivariant line bundle on X );
(3) the corresponding divisor in X (respectively T-equivariant divisor in X );
(4) the first Chern class of the line bundle on X , taking values in H2(X ) (respectively

H2
T(X )).

As explained in [72, Section 3.1.2], there is a canonical splitting of the quotient map L∨ ⊗
Q → H2(X ;Q), which we now describe. For m ≤ j ≤ m′ − 1, bj is contained in a cone in
Σ. Let Ij ∈ A be the anticone of the cone containing bj. Then we can write the following
equation in N ⊗Q:

bj =
∑
i/∈Ij

cjibi, cji ∈ Q≥0.

By the fan sequence (2.1) tensored with Q, there exists a unique D∨j ∈ L⊗Q such that

(2.4) 〈Di, D
∨
j 〉 =

 1 if i = j,
−cji if i /∈ Ij,
0 if i ∈ Ij \ {j}.

Here and henceforth 〈−,−〉 denotes the natural pairing between L∨ and L (or relevant ex-
tensions of scalars). This defines a decomposition

(2.5) L∨ ⊗Q = Ker
((
D∨m, . . . , D

∨
m′−1

)
: L∨ ⊗Q→ Qm′−m

)
⊕

m′−1⊕
j=m

QDj.

Moreover, the term Ker
((
D∨m, . . . , D

∨
m′−1

)
: L∨ ⊗Q→ Qm′−m) is naturally identified with

H2(X ;Q) via the quotient map L∨⊗Q→ H2(X ;Q), which allows us to regard H2(X ;Q) as
a subspace of L∨ ⊗Q.

The extended Kähler cone is defined to be

C̃X :=
⋂
I∈A

(∑
i∈I

R>0Di

)
⊂ L∨ ⊗ R.
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The genuine Kähler cone CX is the image of C̃X under the quotient map L∨⊗R→ H2(X ;R).
The splitting of L∨ ⊗Q (2.5) induces a splitting of the extended Kähler cone:

C̃X = CX +
m′−1∑
j=m

R>0Dj

in L∨ ⊗ R.
Recall that the rank of L∨ is r := m′ − n while the rank of H2(X ;Z) is given by r′ :=

r − (m′ −m) = m− n. We choose an integral basis

{p1, . . . , pr} ⊂ L∨

such that pa is in the closure of C̃X for all a and pr′+1, . . . , pr ∈
∑m′−1

i=m R≥0Di. Then the
images {p̄1, . . . , p̄r′} of {p1, . . . , pr′} under the quotient map L∨ ⊗Q→ H2(X ;Q) gives a nef
basis for H2(X ;Q) and p̄a = 0 for r′ + 1 ≤ a ≤ r.

We choose {pT1 , . . . , pTr } ⊂ M̃ ⊗ Q such that ψ∨(pTa) = pa for each a, and p̄Ta = 0 for

a = r′ + 1, ..., r. Here, for p ∈ M̃ ⊗Q, we denote by p̄ ∈ H2
T(X ,Q) the image of p under the

natural map M̃ ⊗Q→ H2
T(X ,Q). By construction, for a = 1, ..., r′, p̄a is the non-equivariant

limit of p̄Ta .

We define a matrix (Qia) by

Di =
r∑

a=1

Qiapa, Qia ∈ Z.

Denote by D̄i the image of Di under L∨ ⊗ Q → H2(X ;Q). Then for i = 0, . . . ,m − 1, the
class D̄i of the toric prime divisor Di is given by

D̄i =
r′∑
a=1

Qiap̄a;

and for i = m, . . . ,m′ − 1, D̄i = 0 in H2(X ;R). Likewise, for i = 0, . . . ,m− 1, we have

D̄T
i =

r′∑
a=1

Qiap̄
T
a + λi,

where λi ∈ H2(BT;Q). For i = m, . . . ,m′ − 1, D̄T
i = 0.

Let 1 ∈ H0(X ,Q) be the fundamental class. For ν ∈ Box with age(ν) = 1, let 1ν ∈
H0(Xν ,Q) be the fundamental class. It is then straightforward to see that

H0
CR,T(X , KT) = KT1, H2

CR,T(X , KT) =
r′⊕
a=1

KTp̄
T
a ⊕

⊕
ν∈Box,age(ν)=1

KT1ν ,

where KT is the field of fractions of H∗T(pt,Q), and H∗T(−, KT) := H∗T(−,Q)⊗H∗T(pt,Q) KT.

The dual basis of {p1, . . . , pr} ⊂ L∨ is given by {γ1, . . . , γr} ⊂ L where

γa =
m′−1∑
i=0

Qiaei ∈ Ñ .
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Then {γ1, . . . , γr′} provides a basis of Heff
2 (X ;Q). In particular, we have Qia = 0 when

m ≤ i ≤ m′ − 1 and 1 ≤ a ≤ r′.

We set

K := {d ∈ L⊗Q | {j ∈ {0, 1, . . . ,m′ − 1} | 〈Dj, d〉 ∈ Z} ∈ A},
Keff := {d ∈ L⊗Q | {j ∈ {0, 1, . . . ,m′ − 1} | 〈Dj, d〉 ∈ Z≥0} ∈ A},

Roughly speaking Keff is the set of effective curve classes. In particular, the intersection
Keff ∩H2(X ;R) consists of classes of stable maps P(1,m) → X for some m ∈ Z≥0. See e.g.
[72, Section 3.1] for more details.

For a real number λ ∈ R, we let dλe, bλc and {λ} denote the ceiling, floor and fractional
part of λ respectively. Now for d ∈ K, we define

(2.6) ν(d) :=
m′−1∑
i=0

d〈Di, d〉ebi ∈ N,

and let Id := {j ∈ {0, 1, . . . ,m′ − 1} | 〈Dj, d〉 ∈ Z} ∈ A. Then since we can rewrite

ν(d) =
m′−1∑
i=0

({−〈Di, d〉}+ 〈Di, d〉)bi =
m′−1∑
i=0

{−〈Di, d〉}bi =
∑
i/∈Id

{−〈Di, d〉}bi,

we have ν(d) ∈ Box, and hence ν(d), if nonzero, corresponds to a twisted sector Xν(d) of X .

2.4. The I-function. In this subsection we define a combinatorial object called the (equi-
variant) I-function of X .

Definition 2.5. The T-equivariant I-function of a toric orbifold X is an H∗CR,T(X )-valued
power series defined by

IX ,T(y, z) = e
∑r
a=1 p̄

T
a log ya/z

(∑
d∈Keff

yd
m′−1∏
i=0

∏∞
k=d〈Di,d〉e(D̄

T
i + (〈Di, d〉 − k)z)∏∞

k=0(D̄T
i + (〈Di, d〉 − k)z)

1ν(d)

)
,

where yd = y
〈p1,d〉
1 · · · y〈pr,d〉r and 1ν(d) ∈ H0(Xν(d)) ⊂ H

2age(ν(d))
CR (X ) is the fundamental class of

the twisted sector Xν(d).

Definition 2.6. The I-function of a toric orbifold X is an H∗CR(X )-valued power series
defined by

IX (y, z) = e
∑r
a=1 p̄a log ya/z

(∑
d∈Keff

yd
m′−1∏
i=0

∏∞
k=d〈Di,d〉e(D̄i + (〈Di, d〉 − k)z)∏∞

k=0(D̄i + (〈Di, d〉 − k)z)
1ν(d)

)
,

where yd = y
〈p1,d〉
1 · · · y〈pr,d〉r and 1ν(d) ∈ H0(Xν(d)) ⊂ H

2age(ν(d))
CR (X ) is the fundamental class of

the twisted sector Xν(d).

Remark 2.7. It is clear from definitions that the non-equivariant limit of IX ,T is IX .

Definition 2.8. A toric orbifold X is said to be semi-Fano if ρ̂(X ) :=
∑m′−1

i=0 Di is contained

in the closure of the extended Kähler cone C̃X in L∨ ⊗ R.
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We remark that this condition depends on the choice of the extra vectors bm, . . . , bm′−1. It
holds if and only if the first class c1(X ) ∈ H2(X ;Q) of X is contained in the closure of the
Kähler cone CX (i.e. the anticanonical divisor −KX is nef) and age(bj) :=

∑
i/∈Ij cji ≤ 1 for

m ≤ j ≤ m′ − 1, because we have

ρ̂(X ) = c1(X ) +
m′−1∑
j=m

(1− age(bj))Dj;

see [72, Lemma 3.3]. In particular, when X is a toric manifold, the condition is equivalent to
requiring the anticanonical divisor −KX to be nef.

As we will see, the examples we consider in this paper will all satisfy the following assump-
tion.

Assumption 2.9. The set {b0, . . . , bm−1} ∪ {ν ∈ Box(Σ) | age(ν) ≤ 1} generates the lattice
N over Z.

Under this assumption, we choose the extra vectors bm, . . . , bm′−1 ∈ {ν ∈ Box(Σ) |
age(ν) ≤ 1} so that {b0, . . . , bm′−1} generates N over Z. Then the fan sequence (2.1) deter-
mines the elements D0, . . . , Dm′−1 and ρ̂(X ) = D0 + · · ·+Dm′−1 holds (see [72, Remark 3.4]).
Furthermore, we can then identify L∨ ⊗ C with the subspace

H2(X )⊕
m′−1⊕
j=m

H0(Xbj) ⊂ H≤2
CR(X ).

If X is semi-Fano, then its I-function is a convergent power series in y1, . . . , yr by [72,
Lemma 4.2]. Moreover, it can be expanded as

IX (y, z) = 1 +
τ(y)

z
+O(z−2),

where τ(y) is a (multi-valued) function with values in H≤2
CR(X ) which expands as

τ(y) =
r′∑
a=1

p̄a log ya +
m′−1∑
j=m

yD
∨
j 1bj + higher order terms.

We call q(y) = exp τ(y) the toric mirror map, and it defines a local embedding near y = 0 (it
is a local embedding if we further assume that {bm, . . . , bm′−1} = {ν ∈ Box(Σ) | age(ν) ≤ 1});
see [72, Section 4.1] for more details. Similar discussion is valid for equivariant I-functions.

2.5. Equivariant Gromov-Witten invariants. In this subsection we discuss the construc-
tion of equivariant Gromov-Witten invariants. We refer to [25] and [2] for the basics of
Gromov-Witten theory of orbifolds, and to e.g. [55] and [92] for generalities on equivariant
Gromov-Witten theory.

The T-action on X induces T-actions on moduli spaces of stable maps to X . It is well-
known that in this situation we can define T-equivariant Gromov-Witten invariants of X as
integrals against T-equivariant virtual fundamental classes of these moduli spaces.

LetMcl
n (X , d) be the moduli space of n-pointed genus 0 orbifold stable maps to X of degree

d ∈ H2(X ;Q). For i = 1, ..., n, there is an evaluation maps evi : Mcl
n (X , d) → IX , and a
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complex line bundle Li → Mcl
n (X , d) whose fibers are cotangent lines at the i-th marked

point of the coarse domain curves.

SupposeMcl
n (X , d) is compact. Then there is a virtual fundamental class [Mcl

n (X , d)]virt ∈
H∗(Mcl

n (X , d),Q). Genus 0 closed orbifold Gromov-Witten invariants of X can be defined as
follows. For cohomology classes φ1, ..., φn ∈ H∗CR(X ,Q) and integers k1, ..., kn ≥ 0, we define

(2.7)
〈
φ1ψ

k1
1 , ..., φnψ

kn
n

〉X
0,n,d

:=

∫
[Mcl

n (X ,d)]virt

n∏
i=1

(ev∗i φi ∪ ψ
ki
i ) ∈ Q,

where ψi := c1(Li) ∈ H2(Mcl
n (X , d),Q).

The T-action on X induces a T-action onMcl
n (X , d). WhenMcl

n (X , d) is compact, there is a
T-equivariant virtual fundamental class [Mcl

n (X , d)]virt,T ∈ H∗,T(Mcl
n (X , d),Q). T-equivariant

genus 0 closed orbifold Gromov-Witten invariants of X can be defined as follows. For coho-
mology classes φ1,T, ..., φn,T ∈ H∗CR,T(X ,Q) and integers k1, ..., kn ≥ 0, we define

(2.8)
〈
φ1,Tψ

k1
1 , ..., φnψ

kn
n,T
〉X ,T

0,n,d
:=

∫
[Mcl

n (X ,d)]virt,T

n∏
i=1

(ev∗i φi,T ∪ ψ
ki
i ) ∈ H∗T(pt,Q),

where ψi := cT1 (Li) ∈ H2
T(Mcl

n (X , d),Q) are T-equivariant first Chern classes.

Suppose again that Mcl
n (X , d) is compact. Suppose that φ1, ..., φn ∈ H∗CR(X ,Q) are non-

equivariant limits of φ1,T, ..., φn,T ∈ H∗CR,T(X ,Q). Then by construction of virtual fundamental

classes, the non-equivariant limit of
〈
φ1,Tψ

k1
1 , ..., φnψ

kn
n,T
〉X ,T

0,n,d
, i.e. its image under the natural

map H∗T(pt,Q)→ H∗(pt) = Q, is equal to
〈
φ1ψ

k1
1 , ..., φnψ

kn
n

〉X
0,n,d

.

SupposeMcl
n (X , d) is not compact, but the locusMcl

n (X , d)T ⊂Mcl
n (X , d) of T-fixed points

is compact. Then the T-equivariant invariant
〈
φ1,Tψ

k1
1 , ..., φnψ

kn
n,T
〉X ,T

0,n,d
can still be defined by

(2.8), with the integration
∫

[Mcl
n (X ,d)]virt,T

defined by the virtual localization formula [59].

Namely, ∫
[Mcl

n (X ,d)]virt,T

(−) :=
∑

F⊂Mcl
n (X ,d)T

∫
[F ]virt

ι∗F (−)

eT(N virt
F )

∈ KT,

where F runs through connected components of Mcl
n (X , d)T, ιF : F →Mcl

n (X , d)T is the in-
clusion, [F ]virt is the natural virtual fundamental class on F , and eT(N virt

F ) is the T-equivariant
Euler class of the virtual normal bundle N virt

F of F ⊂Mcl
n (X , d). It follows easily from virtual

localization formula that if bothMcl
n (X , d)T andMcl

n (X , d) are compact, the two definitions
of T-equivariant invariants agree.

Remark 2.10. If the toric orbifold X is projective, then Mcl
n (X , d) is compact. If X is not

projective but semi-projective, then it is straightforward to show that the locus Mcl
n (X , d)T ⊂

Mcl
n (X , d) of T-fixed points is compact. In this case, T-equvariant Gromov-Witten invariants

are still defined.

2.6. Toric mirror theorem. We give a review of the mirror theorem for toric orbifolds
proven in [31] in the case of semi-Fano toric orbifolds. Our exposition follows [72] and [44].

Let X be a toric orbifold as in Section 2.1.
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Definition 2.11. The T-equivariant (small) J-function of a toric orbifold X is an H∗CR,T(X )-
valued power series defined by

JX (q, z) = eτ0,2/z

1 +
∑
α

∑
(d,l)6=(0,0)

d∈Heff
2 (X )

qd

l!

〈
1, τtw, . . . , τtw,

φα
z − ψ

〉X ,T
0,l+2,d

φα

 ,

where τ0,2 =
∑r′

a=1 p̄
T
a log qa ∈ H2

T(X ), τtw =
∑m′−1

j=m τbj1bj ∈
⊕m′−1

j=m H0
T(Xbj), qd = e〈τ0,2,d〉 =

q
〈p̄1,d〉
1 · · · q〈p̄r′ ,d〉r′ , {φα}, {φα} are dual basis of H∗CR,T(X ).

Definition 2.12. The (small) J-function of a toric orbifold X is an H∗CR(X )-valued power
series defined by

JX (q, z) = eτ0,2/z

1 +
∑
α

∑
(d,l)6=(0,0)

d∈Heff
2 (X )

qd

l!

〈
1, τtw, . . . , τtw,

φα
z − ψ

〉X
0,l+2,d

φα

 ,

where τ0,2 =
∑r′

a=1 p̄a log qa ∈ H2(X ), τtw =
∑m′−1

j=m τbj1bj ∈
⊕m′−1

j=m H0(Xbj), qd = e〈τ0,2,d〉 =

q
〈p̄1,d〉
1 · · · q〈p̄r′ ,d〉r′ , {φα}, {φα} are dual basis of H∗CR(X ).

Remark 2.13. It is clear from definitions that the non-equivariant limit of JX ,T is JX .

Roughly speaking, the (equivariant) mirror theorem for the toric orbifold X states that the
(equivariant) J-function coincides with the (equivariant) I-function via the mirror map.

Theorem 2.14 (Equivariant mirror theorem for toric orbifolds [31]; see also [44], Conjec-
ture 4.1). Let X be a semi-projective toric Kähler orbifold which is semi-Fano, i.e. ρ̂(X ) is

contained in the closure of the extended Kähler cone C̃X . Then we have

eq0(y)1/zJX ,T(q, z) = IX ,T(y(q, τ), z),

where y = y(q, τ) is the inverse of the toric mirror map q = q(y), τ = τ(y) determined by the
expansion of the equivariant I-function:

IX ,T(y, z) = 1 +
q0(y)1 + τ(y)

z
+O(z−2), τ(y) ∈ H2

CR,T(X ).

Taking non-equivariant limits gives the following

Theorem 2.15 (Closed mirror theorem for toric orbifolds [31]; see also [72], Conjecture 4.3).
Let X be a compact toric Kähler orbifold which is semi-Fano, i.e. ρ̂(X ) is contained in the

closure of the extended Kähler cone C̃X . Then we have

JX (q, z) = IX (y(q, τ), z),

where y = y(q, τ) is the inverse of the toric mirror map q = q(y), τ = τ(y).

Remark 2.16. The non-equivariant limit of q0(y) is 0.
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3. Orbi-disk invariants

In this section we briefly review the construction of genus 0 open orbifold Gromov-Witten
invariants of toric orbifolds carried out in [28].

Let (X , ω) be a toric Kähler orbifold of complex dimension n, equipped with the standard
toric complex structure J0 and a toric Kähler structure ω. Suppose that X is associated
to the stacky fan (Σ, b), where b = (b0, . . . , bm−1) and bi = civi. As before, we let Di

(i = 0, . . . ,m− 1) be the toric prime divisor associated to bi.

Let L ⊂ X be a Lagrangian torus fiber of the moment map µ0 : X → MR := M ⊗Z R,
and consider a relative homotopy class β ∈ π2(X , L) = H2(X , L;Z). We are interested in
holomorphic orbi-disks in X bounded by L and representing the class β.

3.1. Holomorphic orbi-disks and their moduli spaces. A holomorphic orbi-disk in X
with boundary in L is a continuous map

w : (D, ∂D)→ (X , L)

such that the following conditions are satisfied:

(1) (D, z+
1 , . . . , z

+
l ) is an orbi-disk with interior orbifold marked points z+

1 , . . . , z
+
l . Namely

D is analytically the disk D2 ⊂ C, together with orbifold structure at each marked
point z+

j for j = 1, . . . , l. For each j, the orbifold structure at z+
j is given by a disk

neighborhood of z+
j which is uniformized by a branched covering map br : z → zmj

for some2 mj ∈ Z>0.
(2) For any z0 ∈ D, there is a disk neighborhood of z0 with a branched covering map

br : z → zm, and there is a local chart (Vw(z0), Gw(z0), πw(z0)) of X at w(z0) and a local
holomorphic lifting w̃z0 of w satisfying

w ◦ br = πw(z0) ◦ w̃z0 .
(3) The map w is good (in the sense of Chen-Ruan [25]) and representable. In particular,

for each marked point z+
j , the associated homomorphism

(3.1) hp : Zmj → Gw(z+
j )

between local groups which makes w̃z+
j

equivariant, is injective.

Denote by νj ∈ Box(Σ) the image of the generator 1 ∈ Zmj under hj and let Xνj be the
twisted sector of X corresponding to νj. Such a map w is said to be of type x := (Xν1 , . . . ,Xνl).

We recall the following classification result of orbi-disks:

Theorem 3.1 ([28], Theorem 6.2). Let X be a symplectic toric orbifold corresponding to a
stacky fan (Σ(P ), b) and L ⊂ X a Lagrangian torus fiber of the moment map. Consider a

fixed orbit L̃ ⊂ Cm \ Z(Σ) of the real m-torus Tm which projects to L. Suppose

w : (D, ∂D)→ (X , L)

is a holomorphic map with orbifold singularities at interior marked points z+
1 , . . . , z

+
l ∈ D.

Then

2If mj = 1, z+j is a smooth interior marked point.
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(1) For each orbifold marked point z+
j , we have a twisted sector νj =

∑
i/∈Ij tjibi ∈ Box◦bσj

where σj is a cone in Σ and Ij ∈ A is the anticone of σj, obtained via (3.1). (See
Section 2.2 for the definition of Box◦bσ .)

(2) For an analytic coordinate z on D2 = |D|, the map w can be lifted to a holomorphic
map

w̃ : (D2, ∂D2)→ ((Cm \ Z(Σ))/KC, L̃/(KC ∩ Tm)),

so that the homogeneous coordinate functions (modulo KC-action) w̃ = (w̃0, . . . , w̃m−1)
are given by

(3.2) w̃i = ai ·
di∏
s=1

z − αi,s
1− αi,sz

l∏
j=1

(
z − z+

j

1− z+
j z

)tji

for di ∈ Z≥0, (i = 0, . . . ,m− 1) and αi,s ∈ int(D2), ai ∈ C×. Here K is defined by the
following exact sequence

0→ K → Tm → T n → 0

where Tm → T n is induced by the map
⊕m−1

i=0 Zei → N by sending ei to bi for
i = 0, . . . ,m− 1. (We remark that K may have non-trivial torsion part.)

(3) The Chern-Weil Maslov index (see Appendix A) of the map w whose lift is given as
in (3.2) satisfies

µCW (w) =
m−1∑
i=0

2di +
l∑

j=1

2age(νj).

Setting l = 0 and di = 0 for all i except for one i0 where di0 = 1 in the above theorem gives
a holomorphic disk which is smooth and intersects the associated toric prime divisor Di0 ⊂ X
with multiplicity one; its homotopy class is denoted as βi0 . Given ν ∈ Box′(Σ), setting l = 1
and di = 0 for all i gives a holomorphic orbi-disk, whose homotopy class is denoted as βν .

Lemma 3.2 ([28], Lemma 9.1). For X and L as above, the relative homotopy group π2(X , L)
is generated by the classes βi for i = 0, . . . ,m− 1 together with βν for ν ∈ Box′(Σ).

We call these generators of π2(X , L) the basic disk classes. They are the analogue of Maslov
index two disk classes in toric manifolds. Basic disk classes were used in [28] to define the
leading order bulk orbi-potential, and it can be used to determine Floer homology of torus
fibers with suitable bulk deformations. Basic disks are classified as follows:

Corollary 3.3 ([28], Corollaries 6.3 and 6.4).

(1) The smooth holomorphic disks of Maslov index two (modulo T n-action and automor-
phisms of the domain) are in a one-to-one correspondence with the stacky vectors
{b0, . . . , bm−1}.

(2) The holomorphic orbi-disks with one interior orbifold marked point and desingularized
Maslov index zero (modulo T n-action and automorphisms of the domain) are in a one-
to-one correspondence with the twisted sectors ν ∈ Box′(Σ) of the toric orbifold X .

Let
Mmain

k+1,l(L, β,x)
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be the moduli space of good representable stable maps from bordered orbifold Riemann
surfaces of genus zero with k+1 boundary marked points z0, z1 . . . , zk and l interior (orbifold)
marked points z+

1 , . . . , z
+
l in the homotopy class β of type x = (Xν1 , . . . ,Xνl). Here, the

superscript “main” indicates that we have chosen a connected component on which the
boundary marked points respect the cyclic order of S1 = ∂D2. Let

Mmain,reg
k+1,l (L, β,x) ⊂Mmain

k+1,l(L, β,x)

be the subset consisting of all maps from an (orbi-)disk (i.e. without (orbi-)sphere/disk
bubbles). It was shown in [28] that Mmain

k+1,l(L, β,x) has a Kuranishi structure of real virtual
dimension

(3.3) n+ µCW (β) + k + 1 + 2l − 3− 2
l∑

j=1

age(νj).

According to [28, Proposition 9.4], if Mmain
1,1 (L, β) is non-empty and if ∂β is not in the

sublattice generated by b0, . . . , bm−1, then there exist ν ∈ Box′(Σ), ki ∈ N (i = 0, . . . ,m− 1)
and α ∈ Heff

2 (X ) such that

β = βν +
m−1∑
i=0

kiβi + α,

where α is realized by a union of holomorphic (orbi-)spheres. The Chern-Weil Maslov index
of β written in this way is given by

µCW (β) = 2age(ν) + 2
m−1∑
i=0

ki + 2c1(X ) · α.

3.2. The invariants. Let Xν1 , . . . ,Xνl be twisted sectors of the toric orbifold X . Consider
the moduli space Mmain

1,l (L, β,x) of good representable stable maps from bordered orbifold
Riemann surfaces of genus zero with one boundary marked point and l interior orbifold
marked points of type x = (Xν1 , . . . ,Xνl) representing the class β ∈ π2(X , L). According to
[28], the moduli space Mmain

1,l (L, β,x) carries a virtual fundamental chain, which vanishes
unless the following equality holds:

(3.4) µCW (β) = 2 +
l∑

j=1

(2age(νj)− 2).

Definition 3.4. An orbifold X is called Gorenstein if its canonical divisor KX is Cartier.

For a Gorenstein orbifold, the age of every twisted sector is a non-negative integer. Now
we assume that the toric orbifold X is semi-Fano (see Definition 2.8) and Gorenstein. Then
a basic orbi-disk class βν has Maslov index 2age(ν) ≥ 2 (see Lemma 4.13), and hence every
non-constant stable disk class has at least Maslov index two.

Let us further restrict to the case where all the interior orbifold marked points are mapped
to age-one twisted sectors, i.e. the type x consists of twisted sectors with age = 1. This
will be enough for our purpose of constructing the mirror over H2

CR(X ). In this case, the
virtual fundamental chain [Mmain

1,l (L, β,x)]vir is non-zero only when µCW (β) = 2, and in
fact we get even a virtual fundamental cycle because β attains the minimal Maslov index
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and thus disk bubbling does not occur. Therefore the following definition of genus 0 open
orbifold Gromov-Witten invariants (also termed orbi-disk invariants) is independent of the
choice of perturbations of the Kuranishi structures (in the general case one may restrict to
torus-equivariant perturbations to make sense of the following definition following the works
of Fukaya-Oh-Ohta-Ono [49, 50, 45]):

Definition 3.5 (Orbi-disk invariants). Let β ∈ π2(X , L) be a relative homotopy class with
Maslov index given by (3.4). Suppose that the moduli space M1,l(L, β,x) is compact. Then
we define nX1,l,β([pt]L; 1ν1 , . . . ,1νl) ∈ Q to be the push-forward

nX1,l,β([pt]L; 1ν1 , . . . ,1νl) := ev0∗
(
[M1,l(L, β,x)]vir

)
∈ Hn(L;Q) ∼= Q,

where ev0 :Mmain
1,l (L, β,x)→ L is evaluation at the boundary marked point, [pt]L ∈ Hn(L;Q)

is the point class of the Lagrangian torus fiber L, and 1νj ∈ H0(Xνj ;Q) ⊂ H
2age(νj)
CR (X ;Q) is

the fundamental class of the twisted sector Xνj .

Remark 3.6. For the cases we need in this paper, the required compactness of the disk moduli
space M1,l(L, β,x) will be proved in Proposition 6.10 and Corollary 6.11.

Remark 3.7. The Kuranishi structures in this paper are the same as those defined in [49, 50]
(we refer the readers to [47, 48, Appendix] and [46] for the detailed construction, and also to
[93] (and its forthcoming sequels) for a different approach). But we remark that the moduli
spaces we consider here are in fact much simpler than those in [49, 50] (and [47, 48]) because
we only need to consider stable disks with just one disk component which is minimal, and
hence disk bubbling does not occur. Also, we consider only disk counting invariants, but
not the whole A∞ structure; this reduces the problem to studying moduli spaces of virtual
dimensions 0 or 1, which simplifies several issues involved.

For a basic (orbi-)disk with at most one interior orbifold marked point, the corresponding
moduli spaceM1,0(L, βi) (orM1,1(L, βν , ν) when βν is a basic orbi-disk class) is regular and
can be identified with L. Thus the associated invariants are evaluated as follows [28]:

(1) For ν ∈ Box′, we have nX1,1,βν ([pt]L; 1ν) = 1.

(2) For i ∈ {0, . . . ,m− 1}, we have nX1,0,βi([pt]L) = 1.

When there are more interior orbifold marked points or when the disk class is not basic, the
corresponding moduli space is in general non-regular and virtual theory is involved in the
definition, making the invariant much more difficult to compute. One main aim of this paper
is to compute all these invariants for toric Calabi-Yau orbifolds.

4. Gross fibrations for toric Calabi-Yau orbifolds

In order to carry out the SYZ construction, the first ingredient we need is a Lagrangian
torus fibration. For a toric Calabi-Yau manifold, such fibrations were constructed by Gross
[62] and Goldstein [57] independently. In this section we generalize their constructions to
toric Calabi-Yau orbifolds; cf. the manifold case as discussed in [20, Sections 4.1-4.5].



GROSS FIBRATIONS, SYZ, AND OPEN GW FOR TORIC CY ORBIFOLDS 23

4.1. Toric Calabi-Yau orbifolds.

Definition 4.1. A Gorenstein toric orbifold X is called Calabi-Yau if there exists a dual
vector ν ∈M = N∨ = Hom(N,Z) such that (ν, bi) = 1 for all stacky vectors bi.

Let X be a toric Calabi-Yau orbifold associated to a stacky fan (Σ, b0, . . . , bm−1). Since
bi = civi for some primitive vector vi ∈ N and (ν, vi) ∈ Z, we have ci = 1 for all i =
0, . . . ,m− 1. Therefore toric Calabi-Yau orbifolds are always simplicial.

Example 4.2. For a compact toric orbifold X , the total space of the canonical line bundle
of X is a toric Calabi-Yau orbifold. Namely, if X is given by a fan Σ in the lattice N
of rank n − 1 with stacky vectors b0, . . . , bm−1, then the total space of the canonical line
bundle of X is given by a fan Σ′ in the lattice N ⊕ Z of rank n, whose rays are generated
by (0, 1), (b0, 1), . . . , (bm−1, 1) ∈ N ⊕ Z. If σ ∈ Σ is a cone generated by {bi1 , . . . , bik}, then
there is a corresponding cone σ′ ∈ Σ′ generated by {(0, 1), (bi1 , 1), . . . , (bik , 1)}. In this case
we can take ν = (0, 1) ∈ (N ⊕ Z)∨ ' N∨ ⊕ Z.

For the purpose of this paper, we will always assume that the coarse moduli space of the
toric Calabi-Yau orbifold X is semi-projective (Definition 2.2).

Setting 4.3 (Partial resolutions of toric Gorenstein canonical singularities). Let σ ⊂ NR
be a strongly convex rational polyhedral Gorenstein canonical cone with primitive generators
{b̃i} ⊂ N . Here, strongly convex means that the cone σ is convex in NR and does not contain
any whole straight line; while Gorenstein canonical means that there exists ν ∈ M such that(
ν , b̃i

)
= 1 for all i, and (ν , v) ≥ 1 for all v ∈ σ ∩ (N \ {0}). We denote by P ⊂ NR

the convex hull of {b̃i} ⊂ N in the hyperplane {v ∈ NR | (ν, v) = 1} ⊂ NR. P is an
(n− 1)-dimensional lattice polytope.

Let Σ ⊂ NR be a simplicial refinement of σ obtained by taking the cones over a triangulation
of P (where all vertices of the triangulation belong to P ∩ N). Then Σ together with the
collection

{bi | i = 0, . . . ,m− 1} ⊂ N

of primitive generators of rays in Σ is a stacky fan. The associated toric orbifold X = XΣ is
Gorenstein and Calabi-Yau.

By relabeling the bi’s if necessary, we assume that {b0, . . . , bn−1} generates a top-dimensional
cone in Σ and hence forms a rational basis of NQ := N ⊗Z Q.

Proposition 4.4. The coarse moduli space of a toric Calabi-Yau orbifold X is semi-projective
if and only if X satisfies Setting 4.3.

Proof. If X satisfies Setting 4.3, it is clear that its fan has full-dimensional convex support.
Moreover, X can be constructed by using its moment map polytope, so its coarse moduli
space is quasi-projective.

Conversely, suppose that the coarse moduli space of X is semi-projective. Since X is
Gorenstein, there exists ν ∈ M such that (ν , bi) = 1 for all primitive generators bi of rays
in Σ. Then the convex hull of bi’s in the hyperplane {(ν , ·) = 1} ⊂ NR defines a lattice
polytope P , and the support of the fan is equal to the cone σ over this lattice polytope by
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convexity of the fan. Obviously, the cone σ is strongly convex and Gorenstein. Also the fan
of X is obtained by a triangulation of the lattice polytope P . �

For the rest of this paper, we will assume that X is a toric Calabi-Yau orbifold X as in
Setting 4.3. This implies Assumption 2.9 is satisfied: If P has no interior lattice point, then
clearly {0} ∪ (P ∩N) generates the lattice N . Otherwise we can inductively find a minimal
simplex contained in P which does not contain any interior lattice point, and it follows that
{0} ∪ (P ∩N) generates the lattice N .

Without loss of generality we may assume that ν = (0, 1) ∈ M ' Zn−1 ⊕ Z so that P is
contained in the hyperplane {v ∈ NR | ((0, 1) , v) = 1}. We enumerate

Box′(Σ)age=1 := {ν ∈ Box′(Σ) | age(ν) = 1} = {bm, . . . , bm′−1}

and choose bm, . . . , bm′−1 to be the extra vectors so that

P ∩N = {b0, . . . , bm−1, bm, . . . , bm′−1}.

4.2. The Gross fibration. In this section we construct a special Lagrangian torus fibra-
tion on a toric Calabi-Yau orbifold X . This is a fairly straightforward generalization of the
constructions of Gross [62] and Goldstein [57] to the orbifold setting.

To begin with, notice that the vector ν ∈ M corresponds to a holomorphic function on X
which we denote by w : X → C. The following two lemmas are easy generalizations of the
corresponding statements for toric Calabi-Yau manifolds [20].

Lemma 4.5 (cf. [20], Proposition 4.2). The function w on X corresponding to ν ∈ M is
holomorphic, and its zero divisor (w) is precisely given by the anticanonical divisor −KX =∑m−1

i=0 Di.

Proof. Let bi1 , . . . , bin be the primitive generators of a top-dimensional cone σ in Σ, which
span a sublattice Nσ ⊂ N of rank n. Consider the dual basis {uj}nj=1 of MQ which gives rise

to coordinate functions {ζj}nj=1 on the uniformizing cover Ũσ, with an action of finite abelian
group Gσ = N/Nσ.

Then the corresponding function w is given by the product of coordinate functions

w =
n∏
j=1

ζj

which is regular. We need to show that this function is invariant under N/Nσ action. The
group action defined for the coordinate functions on the uniformizing cover

(4.1) g · ζi = exp(2π
√
−1〈ui, g〉)ζi

is based on the pairing

N/Nσ ×Mσ/M → Q/Z.
Since ν ∈ M , (g , ν) ∈ Z for all g ∈ N . Thus g · w = w for all g ∈ N/Nσ. This proves our
claim. �
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Lemma 4.6 (cf. [20], Proposition 4.3). For the dual basis {u0, . . . , un−1} ⊂ MQ := M ⊗Z Q
of the basis {b0, . . . , bn−1}, denote by ζj the corresponding meromorphic function to uj. Then

dζ0 ∧ · · · ∧ dζn−1

extends to a nowhere-zero holomorphic n-form Ω on X .

Proof. Notice that

dζ0 ∧ · · · ∧ dζn−1 = wd log ζ0 ∧ · · · ∧ d log ζn−1.

w is invariant under N/Nσ (see the proof of Lemma 4.5). Moreover N/Nσ acts on log ζi by
adding constants, and hence d log ζi are also invariant under the action. It is easy to see
that wd log ζ0 ∧ · · · ∧ d log ζn−1 extends to be nowhere-zero holomorphic n-form in all other
charts. �

Next, we equip X with a toric Kähler structure ω and consider the associated moment map
µ0 : X → P , where P is the moment polytope defined by a system of inequalities:

(bi, ·) ≥ ci, i = 0, . . . ,m− 1.

Consider the subtorus T⊥ν := N⊥νR /N⊥ν ⊂ NR/N . The moment map of the T⊥ν action is
given by composing µ0 with the natural quotient map:

[µ0] : X µ0−→MR →MR/R〈ν〉.

The following is a generalization of the Gross fibration for toric Calabi-Yau manifolds [57, 62],
which gives a Lagrangian torus fibration (SYZ fibration).

Definition 4.7. Fix K2 > 0. A Gross fibration of X is defined to be

µ : X → (MR/R〈ν〉)× R≥−K2
2

x 7→ ([µ0(x)], |w(x)−K2|2 −K2
2).

We denote by B := (MR/R〈ν〉)× R≥−K2
2

the base of the Gross fibration µ.

Since the holomorphic function w vanishes on the toric prime divisors Di ⊂ X , the images
of Di ⊂ X under the map µ have second coordinate zero. Moreover, the hypersurface defined
by w(x) = K2 maps to the boundary of the image of µ.

The following proposition can be proved in exactly the same way as in the manifold case
(cf. [62, Theorem 2.4] or [20, Proposition 4.7]). It follows from the construction of symplectic
reduction: the function w descends to the symplectic reduction X//T⊥ν → C; since the circles
centered at K2 are special Lagrangian with respect to the volume form d log(w−K2), it follows
that their preimages are also special Lagrangian in X with respect to the holomorphic volume
form Ω/(w −K2).

Proposition 4.8. With respect to the holomorphic volume form Ω/(w − K2) defined on
µ−1(Bint) and the toric Kähler form ω, the map µ is a special Lagrangian torus fibration.
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4.2.1. Discriminant locus and local trivialization. For each ∅ 6= I ⊂ {0, . . . ,m− 1} such that
{bi | i ∈ I} generates a cone in Σ, we define

(4.2) TI := {ξ ∈ P | (bi, ξ) = ci, i ∈ I} ⊂ ∂P.

TI is a codimension-(|I| − 1) face of ∂P . Let [TI ] := [µ0](TI).

Let Γ := {r ∈ B | r is a critical value of µ} ⊂ B be the discriminant locus of µ. Put
B0 := B \ Γ.

Proposition 4.9. The discriminant locus of the Gross fibration µ is given by

Γ = ∂B ∪

⋃
|I|=2

[TI ]

× {0}
 .

Proof. This is similar to the manifold case ([20, Proposition 4.9]). A fiber degenerates when
the T⊥ν-orbit degenerates or |w − K2| = 0. An T⊥ν-orbit degenerates if and only if w = 0

and [µ0] ∈
(⋃

|I|=2[TI ]
)

; |w−K2| = 0 implies that the base point is located in ∂B. It follows

that the discriminant locus is of the above form. �

By the arguments in [20, Section 2.1], the restriction µ : X0 := µ−1(B0) → B0 is a torus
bundle. For facets T0, . . . , Tm−1 of P , consider the following open subsets of B0:

Ui := B0 \
⋃
k 6=i

([Tk]× {0}).

The torus bundle µ over each Ui can be explicitly trivialized. Without loss of generality we
describe this explicit trivialization over U0.

Definition 4.10. We choose v1, . . . , vn−1 ∈ N such that

(1) {b0} ∪ {v1, . . . , vn−1} is an integral basis of N ;
(2) (vi, ν) = 0 for 1 ≤ i ≤ n− 1.

Let {ν0, . . . , νn−1} ⊂M be the dual basis of {b0} ∪ {v1, . . . , vn−1}.

Definition 4.11. Denote

T⊥b0 :=
NR/R〈b0〉
N/Z〈b0〉

.

Then, over U0, we have a trivialization

µ−1(U0) ∼= U0 × T⊥b0 × (R/2πZ).

Here the first map is given by µ, the last map is given by arg(w−K2), and the second map is
given by the argument over 2π of the meromorphic functions corresponding to ν1, . . . , νn−1.

4.2.2. Generators of homotopy groups. Fix r0 := (q1, q2) ∈ U0 with q2 > 0. Consider the fiber
Fr0 := µ−1(q1, q2). By the trivialization in Definition 4.11, we have Fr0 ' T⊥b0 × (R/2πZ).
Hence π1(Fr0) ' N/Z〈b0〉 × Z has the following basis (over Q)

{λi | 0 ≤ i ≤ n− 1},
where λ0 = (0, 1) and λi = ([vi], 0) for 1 ≤ i ≤ n− 1.
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As mentioned in Section 3.1, for a regular Lagrangian torus fiber L of the moment map
X → P , the basic disk classes form a natural basis of π2(X , L). We now construct a basis
for π2(X , Fr0) by exhibiting a Lagrangian isotopy between Fr0 and L and using this natural
basis of π2(X , L). The following is an explicit Lagrangian isotopy between Fr0 and L:

(4.3) Lt := {x ∈ X | [µ0(x)] = q1, |w(x)− t|2 = K2
2 + q2}, t ∈ [0, K2].

This allows us to identify π2(X , Fr0) with π2(X , L) and view the basic disk classes in π2(X , L)
as classes in π2(X , Fr0). By abuse of notation, we still denote these classes by β0, . . . , βm−1

and {βν | ν ∈ Box′(Σ)}.
For a general r ∈ U0, a basis for π2(X , Fr) may be obtained by identifying Fr with Fr0

using the trivialization in Definition 4.11.

The boundaries of the classes β0, . . . , βm−1 and {βν | ν ∈ Box′(Σ)} can be described as
follows.

Lemma 4.12. For a fiber Fr of πK where r ∈ U0, the boundary of the disk classes are
described as follows:

∂βj = λ0 +
n−1∑
i=1

(νi, bj)λi, 0 ≤ j ≤ m− 1

∂βν = λ0 +
n−1∑
i=1

(νi, ν)λi, ν =
n−1∑
i=1

(νi, ν)vi ∈ Box′(Σ).

Proof. Under the Lagrangian isotopy given by Equation (4.7) and identification between Fr
and Fr0 using the trivialization over U0, λ0 ∈ π1(Fr) is identified with ∂β0 ∈ π1(T ) of a
toric fiber, and λi = ([vi], 0) has the same expression under such identification. We have
the required equalities for a toric fiber, and these equalities are preserved under Lagrangian
isotopy. �

The intersection numbers of these basic disk classes with toric prime divisors can be de-
scribed as follows.

Lemma 4.13. Consider βi ∈ π2(X,Fr) for r ∈ U0 defined as above. We have

β0 ·Dj = 0, 1 ≤ j ≤ m− 1

βi ·Dj = δij, 1 ≤ i ≤ m− 1, 1 ≤ j ≤ m− 1

βi · D̃0 = 1, 0 ≤ i ≤ m− 1,

where D̃0 := {w(x) = K2} ⊂ X . For a twisted sector ν ∈ Box◦bσ , ν =
∑

k tkbik where
tk ∈ Q∩ [0, 1) and bik ’s are the primitive generators of σ. Then the intersection number of a
basic orbi-disk class βν with a divisor can be expressed in terms of that of β0, . . . , βm−1:

βν ·D =
∑
k

tk(βik ·D)

for any divisor D. In particular, we have

βν · D̃0 = age(ν)

and so µ(βν) = 2 age(ν).
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Proof. The proof is similar to that of Lemma 4.12: we use Lagrangian isotopy to reduce
the calculations for Fr to that for a toric fiber. Since the Lagrangian submanifolds in the
isotopy given by Equation (4.7) never intersect the divisors Dj for j = 1, . . . ,m− 1 and D̃0,
the intersection numbers of the disk classes with these divisors remain unchanged under the
isotopy. Moreover, Lagrangians over U0 also never hit these divisors (notice that this is not
true for D0), and hence the inersection numbers are independent of the base point r ∈ U0. �

4.2.3. Wall-crossing of orbi-disk invariants. Like the manifold case, the behavior of disk
invariants with boundary conditions on a fiber Fr depends on the location of the fiber. In
this section we examine this behavior for orbi-disks in the Gross fibration µ : X → B of a
toric Calabi-Yau orbifold.

Let β ∈ π2(X , Fr) be a class represented by a stable disk. Then it must be of the form
β =

∑
i ui + α where ui’s are disk classes and α is the class of a rational curve. So we have

µCW (β) =
∑

i µCW (ui) + 2c1(X ) · α. Since X is Calabi-Yau, we have c1(X ) · α = 0. The
fiber Fr ⊂ X is a special Lagrangian submanifold with respect to the meromorphic form
Ω/(w −K2). Since the pole divisor of Ω/(w −K2) is D̃0 := {w(x) = K2} ⊂ X , Lemma A.3
implies that µCW (ui) = 2ui · D̃0 ≥ 0. Thus we have

Lemma 4.14. If a class β ∈ π2(X , Fr) is represented by a stable disk, then µCW (β) ≥ 0.

The following result describes when the minimal Maslov index 0 can be achieved.

Lemma 4.15. Let r = (q1, q2) ∈ B0.

(1) The fiber Fr bounds a non-constant stable disk of Chern-Weil Maslov index 0 if and
only if q2 = 0.

(2) If q2 6= 0, then the fiber Fr has minimal Chern-Weil Maslov index at least 2, i.e. Fr
does not bound any non-constant stable disks with Chern-Weil Maslov index less than
2.

Proof. The proof of the corresponding result in the manifold case (see [20, Lemma 4.27 and
Corollary 4.28]) applies, provided that we make the following observation: given a holomor-
phic orbi-disk u : D → X , the composition w ◦ u : D → C is a holomorphic function on
every local chart of D and is invariant under the action of the local groups. Therefore w ◦ u
descends to a holomorphic function w ◦ u : |D| → C on the smooth disk |D| underlying D.

Then we can apply maximal principle on w ◦ u −K as in the manifold case: Since u has
Maslov index zero, it never intersects the boundary divisor D0 by Lemma A.3. Thus w ◦ u−K
is never zero, and hence w ◦ u is constant. Thus the image of u lies in a level set of w, and
for topological reason this forces w = 0. Thus q2 = 0. Thus if q2 6= 0, Fr has minimal Maslov
index two. �

By definition, the wall of a Lagrangian fibration µ : X → B is the locus H ⊂ B0 of all
r ∈ B0 such that the Lagrangian fiber Fr bounds a non-constant stable disk of Chern-Weil
Maslov index 0. The above lemma shows that

H = MR/R〈ν〉 × {0}.
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The complement B0 \H is the union of two connected components

B+ := MR/R〈ν〉 × (0,+∞), B− := MR/R〈ν〉 × (−K2
2 , 0).

For r ∈ B0 \ H, orbi-disk invariants with arbitrary numbers of age-one insertions are well-
defined for relative homotopy classes with Chern-Weil Maslov index 2. We need to consider
the two possibilities, namely r ∈ B+ and r ∈ B−.

Case 1: r ∈ B+. Let r = (q1, q2) ∈ B+, namely q2 > 0. Then (4.3) gives a Lagrangian isotopy
between the fiber Fr and a regular Lagrangian torus fiber L. Furthermore, since q2 > 0, for
each t ∈ [0, K2], w is never 0 on Lt. It follows that the Lagrangians Lt in the isotopy do not
bound non-constant disks of Chern-Weil Maslov index 0. Hence for r ∈ B+, the orbi-disk
invariants of (X , Fr) with arbitrary numbers of age-one insertions and Chern-Weil Maslov
index 2 coincide with those of (X , L), which are reviewed in Section 3.2.

Case 2: r ∈ B−. In this case we have the following

Proposition 4.16. Let r = (q1, q2) ∈ B−, namely q2 < 0. Let β ∈ π2(X , Fr). Sup-
pose 1ν1 , . . . ,1νl ∈ H∗CR(X ) are fundamental classes of twisted sectors Xν1 , . . . ,Xνl such that
age(ν1) = · · · = age(νl) = 1. Then we have

nX1,l,β([pt]Fr ; 1ν1 , . . . ,1νl) =

{
1 if β = β0 and l = 0
0 otherwise .

Proof. By dimension reason, we may assume that µCW (β) = 2.

Let u : (D, ∂D)→ (X , Fr) be a non-constant holomorphic orbi-disk. Then the composition

(w − K2) ◦ u descends to a holomorphic function (w −K2) ◦ u : |D| → C on the smooth
disk |D| underlying D. Since r ∈ B−, |w − K2| is constant on Fr with value less than

K2. Since u(∂|D|) = u(∂D) ⊂ Fr, we have |(w −K2) ◦ u| < K2 on ∂|D|. By maximal

principle, |(w −K2) ◦ u| < K2 on the whole |D|. Hence the image of u is contained in S− :=
µ−1({(q1, q2) ∈ B | q2 < 0}). Also observe that u(D) must intersect D̃0 := {w(x) = K2} ⊂ X .
Since the hypersurface w(x) = K2 does not contain orbifold points, we have u(D) · D̃0 ∈ Z>0.
By Lemma A.3, this implies that the Chern-Weil Maslov index of u is at least 2.

Let h : C → X be a non-constant holomorphic map from an orbifold sphere C. Then
h(C) ∩ S− = ∅. To see this, we consider w ◦ h, which descends to a holomorphic function
w ◦ h on the P1 underlying C. Since w ◦ h must be a constant function, the image h(C) is
contained in a level set w−1(c) for some c ∈ C. For c 6= 0, we have w−1(c) ' (C×)n−1 which
does not support non-constant holomorphic spheres, so c = 0. Now we conclude by noting
that w−1(0) ∩ S− = ∅.

Now let v ∈ Mmain
1,l (Fr, β, (Xν1 , . . . ,Xνl)) be a stable orbi-disk of Chern-Weil Maslov in-

dex 2. As explained above, each orbi-disk component contributes at least 2 to the Maslov
index. Hence v only has one orbi-disk component. Also by above discussion, a non-constant
holomorphic orbi-sphere in X cannot meet an orbi-disk. Therefore v does not have any orbi-
sphere components. This shows that for any β ∈ π2(X , Fr) of Maslov index 2, the moduli
spaceMmain

1,l (Fr, β, (Xν1 , . . . ,Xνl)) parametrizes only orbi-disks. Also, all these orbi-disks are
contained in S− and do not meet the toric divisors D1, . . . , Dm−1. Since each orbifold point
on the orbi-disk of type ν ∈ Box′(Σ) contributes 2age(ν) to the Chern-Weil Maslov index
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µCW (β), and since we assume age(ν) = 1 and µCW (β) = 2, we cannot have any orbifold
marked points on the disk.

Recall that relative homotopy classes βν can be written as (fractional) linear combinations
of β0, . . . , βm−1 with non-negative coefficients. Thus, the class β of any orbi-disk can be
written as a linear combination of β0, . . . , βm−1 with non-negative coefficients. Hence, from
the fact that intersection numbers of β with the divisors D1, . . . , Dm−1 are zero, we may
conclude that β = kβ0 for some k ≥ 0, and µ(β) = 2 implies that k = 1 and β = β0.
Holomorphic smooth disks representing the class β0 are confined in an affine toric chart. The
argument analogous to that in [20, Proof of Proposition 4.32] then shows that the invariant
is 1 in this case. This concludes the proof. �

4.3. Toric modification. In this section we describe a toric modification of X . As ex-
plained in [20, Section 4.3], considering certain toric modification provides a way to construct
sufficiently many coordinate functions on the mirror of X by disk counting.

Let X be a toric Calabi-Yau orbifold as in Setting 4.3. Pick a top-dimensional cone in
Σ with primitive generators {bi | i = 0, . . . , n − 1} ⊂ N . Let {v1, . . . , vn−1} ⊂ N and
{ν0, . . . , νn−1} ⊂M be as in Definition 4.10.

Definition 4.17. Fix K1 > 0. Define

P (K1) := {ξ ∈ P | (vj, ξ) ≥ −K1 for all j = 1, . . . , n− 1} ⊂ P.

We assume that K1 is sufficiently large so that none of the defining equations is redundant.
Let Σ(K1) ⊂ N be the inward normal fan to P (K1) which consists of rays generated by {bi | i =
0, . . . ,m−1}∪{vj | j = 1, . . . , n−1}. This gives a stacky fan. Let X (K1) be the corresponding
toric orbifold with moment map

µ
(K1)
0 : X (K1) → P (K1).

To simplify notation, we denote the above moment map by µ′0 : X ′ → P ′.

We now describe various properties of the toric modification X ′, whose proofs are similar
to those of the corresponding statements in the manifold case (cf. [20, Sections 4.3–4.4]) and
are omitted.

The element ν ∈M = N∨ corresponds to a holomorphic function denoted by w′ : X ′ → C.

For 0 ≤ i ≤ m− 1, let
Di ⊂ X ′

be the toric prime divisor corresponding to bi. For 1 ≤ j ≤ n− 1, let

D′j ⊂ X ′

be the toric prime divisor corresponding to vj. We have the following result analogous to its
counterpart in toric Calabi-Yau case:

Lemma 4.18. The zero divisor of the function w′ is given by

(w′) =
m−1∑
i=0

Di.

In particular, w′ is non-zero on D′j, 1 ≤ j ≤ n− 1.
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We observe that X ′ is no longer Calabi-Yau. But X ′ still admits a natural meromorphic
n-form:

Lemma 4.19. For the dual basis {u0, . . . , un−1} ⊂MQ of the basis {b0, . . . , bn−1}, denote by
ζj the corresponding meromorphic function to uj.Then

dζ0 ∧ · · · ∧ dζn−1

extends to a meromorphic n-form Ω′ on X ′. Moreover, we have

(Ω′) = −
n−1∑
j=1

D′j.

We now define the Gross fibration for X ′.

Definition 4.20. Consider

E(K1) := {q ∈MR/R〈ν〉 | (vj, q) ≥ −K1 for all 1 ≤ j ≤ n− 1}.

Define the Gross fibration to be the following map

µ(K1) : X (K1) → B(K1) := E(K1) × R≥−K2

x 7→ ([µ
(K1)
0 (x)], |w′(x)−K2|2 −K2

2).

For simplicity, we omit (K1) in the notation and write E and µ′ : X ′ → B′ instead.

The base B′ is a manifold with the following n connected codimension-1 boundary strata:

Ψ0 := {(q1, q2) ∈ B′ | q2 = −K2}, and

Ψj := {(q1, q2) ∈ B′ | (vj, q1) = −K1}, 1 ≤ j ≤ n− 1.

Their pre-images

D̃j := (µ′)−1(Ψj), 0 ≤ j ≤ n− 1

are divisors in X ′.

Proposition 4.21.

(a) The quotient map MR →MR/R〈ν〉 gives a homeomorphism from

(4.4) {ξ ∈ ∂P ′ | (vj, ξ) > −K1, 1 ≤ j ≤ n− 1}

to

(4.5) Eint = {q ∈MR/R〈ν〉 | (vj, q) > −K1, 1 ≤ j ≤ n− 1}.

Consequently µ′ : X ′ → B′ is surjective.
(b) µ′ : X ′ → B′ is a special Lagrangian torus fibration with respect to the toric Kähler

form and the holomorphic volume form Ω′/(w′ −K2) defined on X ′ \
⋃n−1
j=0 D̃j.

One observes that as K1 → +∞, the divisors D̃j, 1 ≤ j ≤ n− 1 tend to infinity. Hence as
K1 → +∞, µ′ tends to µ.
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4.3.1. Discriminant locus and local trivialization.

Definition 4.22. Let ∅ 6= I ⊂ {0, . . . ,m − 1} such that {bi | i ∈ I} generates a cone in Σ′.
Define

T ′I := TI ∩ {ξ ∈ P ′ | (vj, ξ) > −K1, 1 ≤ j ≤ n− 1}.
Here TI is a face of P defined in (4.2). T ′I is a codimension-(|I| − 1) face of the set given by
(4.4).

Proposition 4.23. The discriminant locus of µ′ is

Γ′ = ∂B′ ∪

⋃
|I|=2

[T ′I ]

× {0}
 .

The restriction of µ′ to B′0 := B′ \ Γ′ is a Lagrangian fibration µ′ : X ′0 := (µ′)−1(B′0)→ B′0.
We may trivialize the fibration over each of the following open sets

U ′i := B′0 \
⋃
k 6=i

([T ′k]× {0}).

Without loss of generality we describe this explicit trivialization over U ′0. One can check that

[T ′0] = {q ∈ Eint|(vj, q) ≥ cj − c0, 1 ≤ j ≤ m− 1}.
So U ′0 can be described as

(4.6) U ′0 = {(q1, q2) ∈ Eint × R>−K2 | q2 6= 0 or (vj, q1) > cj − c0, 1 ≤ j ≤ m− 1}.
A trivialization of µ′ over U ′0 may be given in a way similar to Definition 4.11:

(µ′)−1(U ′0) ∼= U ′0 × T⊥b0 × (R/2πZ).

4.3.2. Generators of homotopy groups. Fix r := (q1, q2) ∈ U ′0 with q2 > 0. Consider the fiber
Fr := (µ′)−1(q1, q2). By the trivialization discussed above, we have Fr ' T⊥b0 × (R/2πZ).
Hence π1(Fr) ' N/Z〈b0〉 × Z has the following basis (over Q)

{λi | 0 ≤ i ≤ n− 1},
where λ0 = (0, 1) and λi = ([vi], 0) for 1 ≤ i ≤ n− 1.

As mentioned in Section 3.1, for a regular Lagrangian torus fiber L of the moment map
X ′ → P ′, basic disk classes for a natural basis of π2(X ′, L). We construct basis for π2(X ′, Fr)
by exhibiting a Lagrangian isotopy between Fr and L and using this natural basis of π2(X ′, L).
The following is an explicit Lagrangian isotopy between Fr and L:

(4.7) Lt := {x ∈ X ′ | [µ′0(x)] = q1, |w′(x)− t|2 = K2
2 + q2}.

This allows us to identify π2(X ′, Fr) with π2(X ′, L) and view basic disk classes in π2(X , L)
as classes in π2(X , Fr). By abuse of notations, we denote these classes by β0, . . . , βm−1,
β′1, . . . , β

′
n−1 and {β′ν | ν ∈ Box′(Σ′)}.

Remark 4.24. For a general r′ ∈ B′0, a basis for π2(X ′, Fr′) may be obtained by identifying
Fr′ with Fr using the trivialization mentioned above.

The boundaries of the classes β0, . . . , βm−1, β′1, . . . , β
′
n−1 and {β′ν | ν ∈ Box′(Σ′)} can be

described as follows.
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Lemma 4.25.

∂βj = λ0 +
n−1∑
i=1

(νi, bj)λi, 0 ≤ j ≤ m− 1

∂β′k = λk, 1 ≤ k ≤ n− 1

∂β′ν = λ0 +
n−1∑
i=1

c′νiλi, ν =
n−1∑
i=0

c′νivi ∈ Box′(Σ′).

The intersection numbers of these basic disk classes with toric divisors can be described as
follows.

Lemma 4.26.

β0 ·Dj = 0, 1 ≤ j ≤ m− 1

βi ·Dj = δij, 1 ≤ i ≤ m− 1, 1 ≤ j ≤ m− 1

βi ·D′k = 0, 1 ≤ i ≤ m− 1, 1 ≤ k ≤ n− 1

βi · D̃0 = 1, 0 ≤ i ≤ m− 1

β′l · D̃0 = 0, 1 ≤ l ≤ n− 1

β′l · D̃k = δlk, 1 ≤ l ≤ n− 1, 1 ≤ k ≤ n− 1.

The intersection number of a basic orbi-disk class β′ν with the above divisors can be com-
puted from the above by expressing β′ν as a linear combination of β0, . . . , βm−1 and β′1, . . . , β

′
n−1

with rational coefficients.

4.3.3. Wall-crossing of orbi-disk invariants after modification. The discussion of orbi-disk
invariants of (X ′, Fr) is similar to the manifold case. Observe that the fiber Fr ⊂ X ′ is a
special Lagrangian submanifold with respect to the meromorphic form Ω′/(w′−K2), and the
pole divisor of Ω′/(w′ −K2) is

∑n−1
j=0 D̃j.

Lemma 4.27. Let r = (q1, q2) ∈ B′0.

(1) The fiber Fr of µ′ bounds a non-constant stable disk of Chern-Weil Maslov index 0 in
X ′ if and only if q2 = 0.

(2) If q2 6= 0, then the fiber Fr has minimal Chern-Weil Maslov index at least 2.

The wall of the fibration µ′, which is the locus H ′ ⊂ B′0 of all r ∈ B′0 such that the fiber
Fr bounds a non-constant stable disk of Chern-Weil Maslov index 0, may be described by

H ′ = Eint × {0},

where Eint is given in (4.5). The complement B′0\H ′ is the union of two connected components

B′+ := Eint × (0,+∞), B′− := Eint × (−K2, 0).

For r ∈ B′0\H ′, orbi-disk invariants with arbitrary numbers of age 1 insertions are well-defined
for classes with Chern-Weil Maslov index 2. We need to consider the two possibilities, namely
r ∈ B′+ and r ∈ B′−.
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Case 1: r ∈ B′+. Let r = (q1, q2) ∈ B′+, namely q2 > 0. Then (4.7) gives a Lagrangian isotopy
between the fiber Fr and a regular Lagrangian torus fiber L. Furthermore, since q2 > 0, for
each t ∈ [0, K2], w is never 0 on Lt. It follows that Lt does not bound non-constant disks
of Chern-Weil Maslov index 0. Hence for r ∈ B′+, the orbi-disk invariants of (X ′, Fr) with
arbitrary numbers of age-one insertions and Chern-Weil Maslov index 2 coincide with those
of (X ′, L), which are reviewed in Section 3.2.

Case 2: r ∈ B′−. In this case we have

Proposition 4.28. Let r = (q1, q2) ∈ B′−, namely q2 < 0. Let β ∈ π2(X ′, Fr). Sup-
pose 1ν1 , . . . ,1νl ∈ H∗CR(X ′) are fundamental classes of twisted sectors X ′ν1

, . . . ,X ′νl such that
age(ν1) = · · · = age(νl) = 1. Then we have

nX
′

1,l,β([pt]Fr ; 1ν1 , . . . ,1νl) =

{
1 if β ∈ {β0, β

′
1, . . . , β

′
n−1} and l = 0

0 otherwise .

4.4. Examples.

(1) X = [C2/Zm]. This is known as the 2-dimensional Am−1 singularity. The stacky fan
is a cone generated by (0, 1) and (m, 1) in N = Z2. See Figure 1a. By subdividing the
cone by the rays generated by (k, 1) for k = 1, . . . ,m− 1, one obtains a resolution of
the singularity. The age-one twisted sectors of X are in a one-to-one correspondence
with the lattice points (k, 1) ∈ Box′ for k = 1, . . . , n− 1. The Gross fibration and the
wall of this orbifold is depicted in Figure 1b.

(m,1)(0,1)

(m,1)(0,1)

(a) Fan picture for [C2/Zm]
and its resolution. The
crosses represent the twisted
sectors.

(b) Gross fibration on
[C2/Zm]. The dotted line
is the wall at which fibers
bound stable disks of Maslov
index zero, and the cross
is the discriminant locus at
which the fiber degenerates.

Figure 1. [C2/Zm].

(2) X = [C3/Z2g+1] for g ∈ N. Let N be the lattice

Z3 + Z
〈

(1, 1, 2g − 1)

2g + 1

〉
.

The stacky fan is a cone generated by (1, 0, 0), (0, 1, 0), (0, 0, 1) ∈ N , which is a cone
over the convex hull of these 3 vectors in the hyperplane {(a, b, c) ∈ NR : a+b+c = 1}.
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Using the triangulation of the polygon by the lattice points (k, k, 2g+1−2k)/(2g+1)
as depicted in Figure 2a, one obtains a resolution of the orbifold singularity, which
is the mirror manifold of a Riemann surface of genus g (see [75, 41]).3 The age-
one twisted sectors of X are in a one-to-one correspondence with the lattice points
(k, k, 2g + 1− 2k)/(2g + 1) ∈ Box′ for k = 1, . . . , g. The Gross fibration and the wall
of this orbifold is depicted in Figure 2b.

(0,1,0)

(1,0,0)(0,0,1)

(0,1,0)

(1,0,0)(0,0,1)

(a) [C3/Z2g+1] and its reso-
lution. Cone over the poly-
topes give the corresponding
fans. The crosses represents
the twisted sectors. This fig-
ure is for g = 3.

(b) Gross fibration on
[C3/Z2g+1]. The base is an
upper-half-space. The plane
in the middle is the wall at
which fibers bound stable
disks of Maslov index zero.
The dotted line and the
plane in the bottom are the
discriminant loci, with the
singular fibers as shown in
the diagram.

Figure 2. [C3/Z2g+1].

(3) X = [Cn/Zn] for n ∈ Z. This gives an example in any dimension. The stacky fan is
a cone generated by (e1, 1), . . . , (en, 1), (−e1 − · · · − en, 1) ∈ N = Zn × Z, where {ei}
denotes the standard basis of Zn. One obtains a resolution of the orbifold singularity
by subdividing the cone using the ray generated by (0, 1) ∈ N , and the resulting
manifold is the total space of canonical line bundle over Pn. There is only one age-one
twisted sector, namely the lattice point (0, 1) ∈ Box′. The Gross fibration and the
wall of this orbifold is similar to that depicted in Figure 2b in dimension 3.

3The mirror of a Riemann surface of genus g is a Landau-Ginzburg model, which is a holomorphic function
defined on the manifold described here [75, 41].
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5. SYZ mirror construction

In this section we carry out the SYZ mirror construction for toric Calabi-Yau orbifolds.
The procedure may be summarized as follows. Let X be a toric Calabi-Yau orbifold as in
Setting 4.3, and let X ′ be its toric modification introduced in Definition 4.17. Let µ : X → B
and µ′ : X ′ → B′ be the Gross fibrations introduced in Definition 4.7 and Definition 4.20
respectively.

Step 1. Consider the torus bundle µ′ : X ′0 → B′0. Take the dual torus bundle µ̌′ : X̌ ′0 → B′0.
The total space X̌ ′0 together with its canonical complex structure is called the semi-
flat mirror of X . The problem with the semi-flat mirror is that its complex structure
is not extendable to any partial compactification of X̌ ′0 because monodromy of the
integral affine structure around the discriminant loci in B′0 is nontrivial.

Step 2. Construct instanton corrections to the semi-flat complex coordinates by taking family
Fourier transforms of generating functions of genus 0 open orbifold Gromov-Witten in-
variants which count (virtually) orbi-disks with the minimal Chern-Weil Maslov index
(which is 2). The wall-crossing of orbi-disk counting we discuss in the previous section
modifies the gluing between charts in X̌ ′0 and resolves the nontrivial monodromy of
the affine structure so that the complex structure becomes extendable.

Step 3. (Partially) compactifying the resulting geometry to obtain the mirror.

This procedure was pioneered by Auroux in [3, 4], and was generalized to all toric Calabi-
Yau manifolds in [20]; see also the recent work of Abouzaid-Auroux-Katzarkov [1]. We are
going to carry out this construction for toric Calabi-Yau orbifolds in the remainder of this
section.

5.1. The semi-flat mirror. We construct the semi-flat mirror of X as follows. Consider
the torus bundle µ′ : X ′0 := (µ′)−1(B′0) → B′0. Let X̌ ′0 be the space of pairs (Fr,∇), where
Fr := (µ′)−1(r), r ∈ B′0 and ∇ is a flat U(1)-connection on the trivial complex line bundle

over Fr up to gauge. There is a natural projection map µ̌′ : X̌ ′0 → B′0. We write F̌r := µ̌′
−1

(r)
for r ∈ B′0. According to [20, Proposition 2.5], µ̌′ : X̌ ′0 → B′0 is a torus bundle.

Recall that B′0 has an open cover {U ′i}. Let U ′ := U ′0 ⊂ B′0 be the open set described in

(4.6). We describe the semi-flat complex coordinates on the chart µ̌′
−1

(U ′). Fix a base point
r0 ∈ U ′. For r ∈ U ′, consider the class λi ∈ π1(Fr) defined in Section 4.3.2. Define cylinder
classes

[hi(r)] ∈ π2((µ′)−1(U ′), Fr0 , Fr)

as follows. Recall the following trivialization defined in Section 4.3.1:

(µ′)−1(U ′) ∼= U ′ × T⊥b0 × (R/2πZ).

Pick a path γ : [0, 1]→ U ′ with γ(0) = r0 and γ(1) = r. For j = 1, . . . , n− 1, define

hj : [0, 1]× R/Z→ U ′ × T⊥b0 × (R/2πZ), hj(R,Θ) :=

(
γ(R),

Θ

2π
[vj], 0

)
,
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also define

h0 : [0, 1]× R/Z→ U ′ × T⊥b0 × (R/2πZ), h0(R,Θ) := (γ(R), 0, 2πΘ).

The classes [hi(r)] are independent of the choice of γ. Now the semi-flat complex coordinates
of (µ′)−1(U ′) are z0, z1, . . . , zn−1 where

(5.1) zi(Fr,∇) := exp(ρi + 2π
√
−1θ̌i),

where exp(2π
√
−1θ̌i) := Hol∇(λi(r)) and ρi := −

∫
[hi(r)]

w. The semi-flat holomorphic volume

form is the following nowhere vanishing form on (µ′)−1(U ′):

dz1 ∧ dz2 ∧ · · · ∧ dzn−1 ∧ dz0.

Semi-flat complex coordinates on the other charts µ̌′
−1

(U ′j) can be similarly described.

5.2. Instanton corrections. Let 0 ≤ i ≤ n− 1. The instanton corrections of the semi-flat
complex coordinate zi are obtained by taking a family version of Fourier transformations of
generating functions of genus 0 open orbifold Gromov-Witten invariants which count orbi-
disks with Chern-Weil Maslov index 2. The result is a complex-valued function

z̃i : (µ̌′)−1(B′0 \H ′)→ C.

For (Fr,∇) ∈ (µ̌′)−1(B′0 \H ′), the value of z̃i is schematically given by

(5.2) z̃i =
∑

β∈π2(X ′,Fr)

∑
l≥0

1

l!
(β · D̃i)n

X ′
1,l,β([pt]Fr ; τ, . . . , τ) exp

(
−
∫
β

ω

)
Hol∇(∂β)

where τ ∈ H∗CR(X ) ⊂ H∗CR(X ′) and µCW (β) = 2.

We consider the class

τ =
∑
i

τνi1νi ∈ H2
CR(X ) ⊂ H2

CR(X ′),

which is a linear combination of fundamental classes of age-one twisted sectors νi of X . By
the discussion in Section 4.3.3, we know that the above genus 0 open orbifold Gromov-Witten
invariants nX

′

1,l,β([pt]Fr ; τ, . . . , τ) vanish except in one of the following situations:

(1) β = β′j for some 1 ≤ j ≤ n− 1;
(2) β = βk + α for some 0 ≤ k ≤ m − 1 and α ∈ H2(X ′) has Chern number 0 (which

implies α ∈ H2(X ));
(3) β = βν + α for some ν ∈ Box′(Σ) of age 1 and α ∈ H2(X ′) has Chern number 0.

First we consider z̃i, 1 ≤ i ≤ n − 1. For each 1 ≤ i ≤ n − 1, we have the following
observations:

(1) β′j · D̃i = δji for any 1 ≤ j ≤ n− 1;

(2) (βk +α) · D̃i = 0 for 0 ≤ k ≤ m− 1 and α ∈ H2(X ) with Chern number 0, by Lemma
4.26;

(3) (βν + α) · D̃i = 0 for ν ∈ Box′(Σ) of age 1 and α ∈ H2(X ) with Chern number 0,
because βν can be written as a linear combination of β0, . . . , βm−1 with coefficients in
Q.
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Therefore, only the class β′i contributes to z̃i and (5.2) becomes

z̃i =(β′i · D̃i)n1,0,β′i
exp

(
−
∫
β′i

ω

)
Hol∇(∂β′i)

= exp

(
−
∫
β′i

ω

)
Hol∇(∂β′i) (because β′i · D̃i = 1, nβ′i = 1)

= exp

(
−
∫
β′i(r)

ω

)
Hol∇(λi(r)) (because ∂β′i = λi)

= exp

(
−
∫
β′i(r)

ω

)
exp

(∫
[hi(r)]

ω

)
zi (by the definition of zi)

= exp

(
−
∫
β′i(r0)

ω

)
zi (because [hi(r)] = β′i(r)− β′i(r0)).

To simplify notations, we put C ′i := exp
(
−
∫
β′i(r0)

ω
)

.

The situation for z̃0 is more complicated, as it depends on the chamber in the decomposition
B′0 \H ′ = B′+ ∪B′− to which the image of the Lagrangian torus fiber belongs.

When r ∈ B′−, Proposition 4.28 shows that the only non-vanishing genus 0 open Gromov-
Witten invariants are n1,0,β = 1 where β = β0 or β′1, . . . , β

′
n−1. On the other hand, we have

β0 · D̃0 = 1, β′i · D̃0 = 0 for i = 1, . . . , n− 1. Therefore again (5.2) only has one term:

z̃0 =(β0 · D̃0)n1,0,β0 exp

(
−
∫
β0(r)

ω

)
Hol∇(∂β0)

= exp

(
−
∫
β0(r)

ω

)
Hol∇(∂β0) (because β0 · D̃0 = 1, n1,0,β0 = 1)

= exp

(
−
∫
β0(r)

ω

)
Hol∇(λ0(r)) (because ∂β0 = λ0)

= exp

(
−
∫
β0(r)

ω

)
exp

(∫
[h0(r)]

ω

)
z0 (by the definition of z0)

= exp

(
−
∫
β0(r0)

ω

)
z0 (because [h0(r)] = β0(r)− β0(r0)).

Again, to simplify notation, we put C0 := exp
(
−
∫
β0(r0)

ω
)

.

We then consider the case when r ∈ B′+. Since β′l · D̃0 = 0 for 1 ≤ l ≤ n − 1, open
orbifold Gromov-Witten invariants in class β′l do not contribute to (5.2). On the other hand,

given α ∈ H2(X ′) with Chern number 0, we have (βi + α) · D̃0 = 1 for 0 ≤ i ≤ m − 1 and



GROSS FIBRATIONS, SYZ, AND OPEN GW FOR TORIC CY ORBIFOLDS 39

(β′ν + α) · D̃0 = age(ν) = 1 for ν ∈ Box′(Σ) with age(ν) = 1. Therefore (5.2) reads

z̃0 =
m−1∑
j=0

∑
α

∑
l≥0

∑
ν1,...,νl∈Box′(Σ)age=1

∏l
i=1 τνi
l!

n1,l,βj(r)+α([pt]Fr ;
l∏

i=1

1νi)

× exp

(
−
∫
βj(r)+α

ω

)
Hol∇(∂βj(r))

+
∑

ν∈Box′(Σ)age=1

∑
α

∑
l≥0

∑
ν1,...,νl∈Box′(Σ)age=1

∏l
i=1 τνi
l!

n1,l,β′ν(r)+α([pt]Fr ;
l∏

i=1

1νi)

× exp

(
−
∫
β′ν(r)+α

ω

)
Hol∇(∂β′ν(r))

=
m−1∑
j=0

(1 + δj) exp

(
−
∫
βj(r0)

ω −
∫

[h0(r)]

ω −
n−1∑
i=1

(νi, bj)

∫
[hi(r)]

ω

)

× Hol∇

(
λ0 +

n−1∑
i=1

(νi, bj)λi

)

+
∑

ν∈Box′(Σ)age=1

(τν + δν) exp

(
−
∫
βν(r0)

ω −
∫

[h0(r)]

ω −
n−1∑
i=1

(νi, ν)

∫
[hi(r)]

ω

)

× Hol∇

(
λ0 +

n−1∑
i=1

(νi, ν)λi

)

=z0

m−1∑
j=0

Cj(1 + δj)
n−1∏
i=1

z
(νi,bj)
i + z0

∑
ν∈Box′(Σ)age=1

Cν(τν + δν)
n−1∏
i=1

z
(νi,ν)
i ,

where

Cj := exp

(
−
∫
βj(r0)

ω

)
, 0 ≤ j ≤ m− 1,

Cν := exp

(
−
∫
βν(r0)

ω

)
, ν ∈ Box′(Σ)age=1,

and

1 + δj :=
∑
α

∑
l≥0

∑
ν1,...,νl∈Box′(Σ)age=1

∏l
i=1 τνi
l!

n1,l,βj(r)+α([pt]L;
l∏

i=1

1νi) exp

(
−
∫
α

ω

)
,

(0 ≤ j ≤ m− 1),

τν + δν :=
∑
α

∑
l≥0

∑
ν1,...,νl∈Box′(Σ)age=1

∏l
i=1 τνi
l!

n1,l,βν(r)+α([pt]L;
l∏

i=1

1νi) exp

(
−
∫
α

ω

)
,

(ν ∈ Box′(Σ)age=1)

(5.3)
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are generating functions of genus 0 open orbifold Gromov-Witten invariants. Here we use the
relation

−βj(r) = −βj(r0)− [h0(r)]−
n−1∑
i=1

(νi, bj)[hi(r)].

Also, the generating functions can be written as in the left-hand-sides of (5.3) because

n1,0,βj(r)([pt]L) = n1,1,βν(r)([pt]L; 1ν) = 1

for any j and ν. Notice that n1,l,βν(r)+α([pt]L;
∏l

i=1 1νi) is nonzero only when l ≥ 1, so the
generating function τν + δν has no constant term.

The above discussion may be summarized as follows. For 0 ≤ j ≤ m − 1 and ν ∈
Box′(Σ)age=1 we put zbj :=

∏n−1
i=1 z

(νi,bj)
i and zν :=

∏n−1
i=1 z

(νi,ν)
i .

Proposition 5.1.

(1) For 1 ≤ i ≤ n− 1, we have

z̃i = C ′izi,

(2) For r ∈ B′+, we have

z̃0 = z0

m−1∑
j=0

Cj(1 + δj)z
bj + z0

∑
ν∈Box′(Σ)age=1

Cν(τν + δν)z
ν ,

and for r ∈ B′−, we have

z̃0 = C0z0.

5.3. The mirror. Let C[[q, τ ]] be the ring of formal power series in the variables

{q1, . . . , qr′} ∪ {τν | ν ∈ Box′(Σ)age=1},

which are parameters in the complexified extended Kähler moduli space of X (see Section
7.1.1 for precise definitions of these parameters) with coefficients in C. Consider R+ = R− :=
C[[q, τ ]][z±0 , . . . , z

±
n−1]. Let R0 be the localization of C[[q, τ ]][z±0 , . . . , z

±
n−1] at

g :=
m−1∑
j=0

Cj(1 + δj)z
bj +

∑
ν∈Box′(Σ)age=1

Cν(τν + δν)z
ν .

Let [Id] : R− → R0 be the localization map. Also define R+ → R0 by zk 7→ [zk] for
k = 1, . . . , n− 1 and z0 7→ [g−1z0].

Using these two maps, we define

R := R− ×R0 R+.

We identify z̃0 with u := (C0z0, z0g) ∈ R. For j = 1, . . . , n − 1, we identify z̃j with
(C ′jzj, C

′
jzj) ∈ R. Put

v := (C−1
0 z−1

0 g, z−1
0 ) ∈ R.

Then we have

R ' C[[q, τ ]][u±, v±, z±1 , . . . , z
±
n−1]/〈uv − g〉.
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The relative spectrum Spec(R) over C[[q, τ ]] can be described as

{(u, v, z1, . . . , zn−1) ∈ (Spec(C[[q, τ ]][u±, v±]))2 × (Spec(C[[q, τ ]][z1, . . . , zn−1]))n−1) |
uv = g(z1, . . . , zn−1)},

which admits an obvious partial compactification

X̌ :={(u, v, z1, . . . , zn−1) ∈ (Spec(C[[q, τ ]][u, v]))2 × (Spec(C[[q, τ ]][z1, . . . , zn−1]))n−1) |
uv = g(z1, . . . , zn−1)}.

This gives the SYZ mirror of the complement of the hypersurface {w(x) = K2} in X . The
SYZ mirror of the toric Calabi-Yau orbifold X itself is given by the Landau-Ginzburg model
(X̌ ,W ), where W : X̌ → C is the Fourier transformation of the generating function orbi-
disk invariants for classes with Chern-Weil Maslov index 2, which is simply the holomorphic
function defined by W := u; see Chan-Lau-Leung [20, Section 4.6] and Abouzaid-Auroux-
Katzarkov [1, Section 7] for related discussions in the manifold case.

There is a canonical map

(5.4) ρ0 : µ̌−1(B0 \H)→ X̌

given by

u :=

{
C0z0 on (µ̌′)−1(B−)
z0g on (µ̌′)−1(B+).

v :=

{
C−1

0 z−1
0 g on (µ̌′)−1(B−)

z−1
0 on (µ̌′)−1(B+).

Proposition 5.2. There exists a coordinate change such that under the new coordinates the
defining equation uv = g of X̌ can be written as

uv = (1 + δ0) +
n−1∑
j=1

(1 + δj)zj +
m−1∑
j=n

(1 + δj)qjz
bj +

∑
ν∈Box′(Σ)age=1

(τν + δν)q
−D∨ν zν ,

where for j = n, . . . ,m−1, qj := qξj and ξj ∈ H2(X ;Q) is the class defined by bj =
∑n−1

i=0 ajibi,

while q−D
∨
ν :=

∏r′

a=1 q
−〈pa,D∨ν 〉
a for ν ∈ Box′(Σ)age=1.

Proof. We need to introduce a new set of coordinates ẑ0, . . . , ẑn−1 such that

Cjz
bj = C0ẑj, j = 0, . . . , n− 1,

where zbj =
∏n−1

i=0 z
(νi,bj)
i . Since b0, . . . , bn−1 is a basis of NQ, the n × n matrix with entries

(νi, bj) is invertible. Hence the system

logC0 + log ẑj = logCj +
n−1∑
i=0

(νi, bj) log zi, j = 0, . . . , n− 1

may be solved to express {log z0, . . . , log zn−1} in terms of {log ẑ0, . . . , log ẑn−1}. Hence the
coordinates ẑ0, . . . , ẑn−1 exist.
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For j = n, . . . ,m− 1, we can write bj =
∑n−1

i=0 ajibi. Then we have

zbj = z
∑n−1
i=0 ajibi =

n−1∏
i=0

(
C0

Ci
ẑi

)aji
= C

∑n−1
i=0 aji

0

n−1∏
i=0

ẑ
aji
i

(
n−1∏
i=0

C
aji
i

)−1

.

We put ẑbj :=
∏n−1

i=0 ẑ
aji
i . Applying (−, v) to bj =

∑n−1
i=0 ajibi gives

∑n−1
i=0 aji = 1. Also,

n−1∏
i=0

C
aji
i = exp

(
−
∫
∑n−1
i=0 ajiβi(r0)

ω

)
.

Therefore

Cjz
bj = C0qj ẑ

bj , where qj = exp

(
−
∫
βj(r0)−

∑n−1
i=0 ajiβi(r0)

ω

)
.

For ν =
∑n−1

j=0 cνjbj ∈ Box′(Σ)age=1, we have

zν = z
∑n−1
j=0 cνjbj =

n−1∏
j=0

(zbj)cνj

=

(
n−1∏
j=0

(C0ẑj)
cνj

)(
n−1∏
j=0

C
cνj
j

)−1

= C
∑n−1
j=0 cνj

0

n−1∏
j=0

ẑ
cνj
j

(
n−1∏
j=0

C
cνj
j

)−1

= C0C
−1
ν q−D

∨
ν ẑν ,

where we define ẑν :=
∏n−1

j=0 ẑ
cνj
j and use the following calculations and notations:

n−1∑
j=0

cνj = 1,
n−1∏
j=0

C
cνj
j = exp

(
−
∫
∑n−1
j=0 cνjβj(r0)

ω

)
= Cνq

−D∨ν −1
,

q−D
∨
ν = exp

(
−
∫
βν(r0)−

∑n−1
j=0 cνjβj(r0)

ω

)
.

Therefore we have

Cνz
ν = C0q

−D∨ν ẑν , ν =
n−1∑
j=0

cνjbj ∈ Box′(Σ)age=1.

Now put û := u/C0. Then uv = g is transformed into

ûv = (1 + δ0) +
n−1∑
j=1

(1 + δj)ẑj +
m−1∑
j=n

(1 + δj)qj ẑ
bj +

∑
ν∈Box′(Σ)age=1

(τν + δν)q
−D∨ν ẑν .

�
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Composing the canonical map ρ0 in (5.4) with the coordinate change in Proposition 5.2
yields a map

ρ : µ̌−1(B0 \H)→ X̌
given by

u :=

{
z0 on (µ̌′)−1(B−)
z0G on (µ̌′)−1(B+).

v :=

{
z−1

0 G on (µ̌′)−1(B−)
z−1

0 on (µ̌′)−1(B+),

where

G(z1, . . . , zn−1) := (1 + δ0) +
n−1∑
j=1

(1 + δj)zj +
m−1∑
j=n

(1 + δj)qjz
bj +

∑
ν∈Box′(Σ)age=1

(τν + δν)q
−D∨ν zν .

Proposition 5.3. There exists a holomorphic volume form Ω̌ on X̌ such that

ρ∗Ω̌ = d log z0 ∧ · · · ∧ d log zn−1 ∧ du ∧ dv.
More precisely, in coordinates, we have

Ω̌ = Res

(
1

uv −G(z1, . . . , zn−1)
d log z0 ∧ · · · ∧ d log zn−1 ∧ du ∧ dv

)
.

Proof. The proof is similar to the proof of the analogous statement in the manifold case [20,
Proposition 4.44] and is omitted. �

Remark 5.4 (Dependence on choices). The construction of the mirror X̌ depends on the
choice of an integral basis in Definition 4.10. By arguments similar to those in [20, Section
4.6.5] it is straightforward to check that different choices yield the same mirror manifold X̌
up to biholomorphisms which preserve the holomorphic volume form Ω̌. We omit the details.

Remark 5.5 (Convergence). A priori the Kähler parameters qa’s and the variables τν’s keep-
ing track of stacky insertions in the generating functions (5.3) are only formal. However in
our case they are not formal, since the generating functions can be shown to be convergent,
see Corollary 6.22 below.

5.4. Examples.

(1) X = [C2/Zm]. The stacky fan and Gross fibration are shown in Figure 1a and 1b
respectively. It has m − 1 twisted sectors of age one which are in one-to-one corre-
spondence with the vectors νi = (i, 1) for i = 1, . . . ,m− 1. Each twisted sector νi has
a corresponding basic orbi-disk class βνi .

The SYZ mirror constructed in this section is

(5.5) uv = 1 + zm +
m−1∑
j=1

(τj + δνj(τ))zj

where

τj + δνj(τ) =
∑

k1,...,km−1≥0

τ k1
1 . . . τ

km−1

m−1

(k1 + . . .+ km−1)!
n1,l,βνj

([pt]L; (1ν1)k1 × . . .× (1νm−1)km−1),
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l = k1 + . . . + kg and τ =
∑m−1

i=1 τi1νi ∈ H2
CR(X ). All Kähler parameters τi are

contributed from twisted sectors in this case, and the non-triviality of the orbi-disk
invariants is also due to the presence of twisted sectors.

The Am−1 singularity X = C2/Zm has a resolution X̃ whose fan and Gross fibration
are shown in Figure 1a and 1b. It has m − 1 irreducible (−2) curves li’s which have
Chern number zero, and they are in one-to-one correspondence with the primitive
generators (i, 1), i = 1, . . . ,m− 1.

The SYZ mirror of the resolution X̃ is

(5.6) uv = 1 + zm +
m−1∑
j=1

(1 + δj(q))z
j

where

1 + δj(q) =
∑

k1,...,km−1≥0

n1,0,βj+αkq
αk

and αk =
∑m−1

i=1 kili in the above expression. The Kähler parameters qli ’s are given
by exp(−

∫
li
ω), and the non-triviality of the disk invariants is due to the presence of

rational curves of Chern number zero. The SYZ mirror construction for toric Calabi-
Yau surfaces X̃ has been studied in [84], where δj has been computed explicitly.

(2) X = [C3/Z2g+1] for g ∈ N. See Figure 2a and 2b for the fan and Gross fibration.
It has g twisted sectors of age one which are in one-to-one correspondence with the
vectors νi = (i, i, 2g + 1− 2i)/(2g + 1) ∈ N for i = 1, . . . , g.

Let z1 be the affine complex coordinate corresponding to the vector (1, 0,−1) ∈ N ,
z2 to (1, 1,−2)/(2g + 1) and u to (0, 0, 1). Then the SYZ mirror of X = [C3/Z2g+1] is

uv = 1 + z1 + z−1
1 z2g+1

2 +

g∑
j=1

(τj + δνj(τ))zj2

where

τj + δνj(τ) =
∑

k1,...,kg≥0

τ k1
1 . . . τ

kg
g

(k1 + . . .+ kg)!
n1,l,βνj

([pt]L; (1ν1)k1 × . . .× (1νg)
kg),

l = k1 + . . .+ kg and τ =
∑g

i=1 τi1νi ∈ H2
CR(X ).

The orbifoldX = C3/Z2g+1 has a toric resolution X̃. Figure 3 shows the codimension-
two skeleta of its moment map polytope, which is also the discriminant locus of Gross
fibration. Its Mori cone of effective curve classes is generated by C1, . . . , Cg as shown

in Figure 3. The SYZ mirror of the resolution X̃ is

uv = 1 + z1 + q
∑g
i=1(2i−1)Ciz−1

1 z2g+1
2 +

g∑
j=1

(1 + δj(q))q
∑j−2
i=0 (j−1−i)Cg−izj2

where

1 + δj(q) =
∑

k1,...,kg≥0

n1,0,βj+αkq
αk ,
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αk =
∑g

i=1 kiCi, and βj is the basic disk class corresponding to the toric divisor Dj

as shown in Figure 3.

C1

C2

Cg

D1

Dg-1

Dg

Figure 3. A toric resolution of C3/Z2g+1. The diagram shows the 1-strata
of its moment map polytope. Ci’s are labelling the holomorphic spheres which
are mapped to the corresponding edges by the moment map. Di’s are labelling
the toric divisors which are mapped to the corresponding facets.

(3) X = [Cn/Zn] for n ∈ Z. Its fan has been described in Section 4.4. It has a twisted
sector of age one, which corresponds to ν = (0, 1) ∈ Zn × Z. Its SYZ mirror is

uv = (τ + δν(τ)) + z1 + . . .+ zn + z−1
1 . . . z−1

n

where

τ + δν(τ) =
∑
k≥1

τ k

k!
n1,k,βν ([pt]L; (1ν)

k).

The total space of the canonical line bundle KPn−1 of the projective space Pn−1 gives
its crepant resolution, whose SYZ mirror is

uv = (1 + δ) + z1 + . . .+ zn + qz−1
1 . . . z−1

n

where

1 + δ =
∑
k≥0

qkn1,k,β0+kl

where l is the line class in KPn−1 and its corresponding Kähler parameter is q. When
n = 3, this serves as one of the first nontrivial examples for the SYZ mirror construc-
tion for toric Calabi-Yau 3-folds in [20].

We note that in all the above examples, the mirror of X and its crepant resolution almost
have the same expressions, except that they have different coefficients. This motivates the
Open Crepant Resolution Theorem 8.1 in Section 8 which gives a precise relation between
their mirrors.
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6. Computation of orbi-disk invariants

In this section we compute the orbi-disk invariants of a toric Calabi-Yau orbifold relative
to a Lagrangian torus fiber of the moment map.

Let X be a toric Calabi-Yau orbifold as in Setting 4.3. Let L ⊂ X be a Lagrangian torus
fiber of the moment map. Let β ∈ π2(X , L) be such that µCW (β) = 2. Let x = (Xν1 , . . . ,Xνl)
be a collection of twisted sectors of X such that νi ∈ Box′ satisfies age(νi) = 1 for all i.
Suppose that the moduli space Mmain

1,l (L, β,x) is non-empty. We would like to compute the
corresponding orbi-disk invariant or genus 0 open orbifold Gromov-Witten invariant

nX1,l,β([pt]L; 1ν1 , . . . ,1νl)

defined in Definition 3.5.

The approach we take here is to construct a suitable toric partial compactification X̄ of
X for each β ∈ π2(X , L) with µCW (β) = 2, and prove that the above invariants are equal to
certain genus 0 closed orbifold Gromov-Witten invariants of X̄ , which can then be evaluated
by toric mirror theorems; this generalizes the approach in [23]. The proof of this open/closed
equality, which is geometric in nature, is by comparing moduli spaces of stable (orbi-)disks to
X with moduli spaces of stable orbi-maps to X̄ , as Kuranishi spaces. The key geometric idea,
namely, “capping off” the disk component to form a genus 0 closed Riemann surface, was
first employed in [17, 83] and subsequently in [84] (for toric Calabi-Yau surfaces) and [19, 22]
(for compact semi-Fano toric manifolds). It was also applied in [18] to calculate orbi-disk
invariants for certain compact toric orbifolds.

6.1. Toric (partial) compactifications. We begin with the construction of the toric (par-
tial) compactification X̄ . According to our discussion in Section 3.1, the class β ∈ π2(X , L)
must be of the form

β = β′ + α,

where β′ ∈ π2(X , L) is a basic (orbi) disk class with Chern-Weil Maslov index 2 and α ∈
Heff

2 (X ) is an effective curve class such that c1(X ) · α = 0. We have ∂β′ = bi0 ∈ N for some
i0 ∈ {0, 1, . . . ,m′ − 1}.

Construction 6.1. Let
b∞ := −bi0 ∈ N.

Let Σ̄ ⊂ NR be the smallest complete simplicial fan that contains Σ and the ray R≥0b∞ ⊂ NR.
More concretely, the fan Σ̄ consists of cones in Σ together with additional cones, each is
spanned by the ray R≥0b∞ together with a cone over a face of the polytope P (recall the
definition of P in Setting 4.3). The data

(Σ̄, {bi}m−1
i=0 ∪ {b∞})

gives a stacky fan. Let
X̄ := XΣ̄

be the associated toric orbifold. We choose the extra vectors to be the same as that for X ,
namely, {bm, . . . , bm′−1} ⊂ N .

Remark 6.2. We emphasize that, although not reflected in the notation, the toric (partial)
compactification X̄ depends on the class β ∈ π2(X , L).
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Since Σ satisfies the Assumption 2.9, the stacky fan Σ̄ satisfies it as well. The fan Σ̄
has more primitive generators than Σ. We also have X ⊂ X̄ and the toric prime divisor
D∞ := X̄ \ X corresponding to b∞.

The inclusion X ⊂ X̄ divides the toric prime divisors of X̄ into two kinds: the set of
generators {bi}m−1

i=0 is a disjoint union {bi} = I
∐
J , where for bi ∈ I the corresponding toric

prime divisor Di ⊂ X̄ is contained entirely in X (these correspond to the compact toric prime
divisors in X ), and for bj ∈ J the corresponding toric prime divisor Dj ⊂ X̄ has non-empty
intersection with D∞ (these correspond to the non-compact toric prime divisors in X ).

Let β∞ ∈ π2(X̄ , L) be the basic disk class corresponding to b∞. Then since ∂(β′ + β∞) =
bi0 + b∞ = 0 ∈ N , the class β̄′ := β′ + β∞ belongs to H2(X̄ ;Q) (see [28, Section 9.1]), and
we have c1(X̄ ) · β̄′ = 2. Moreover we have the decompositions

H2(X̄ ;Q) = H2(X ;Q)⊕Qβ̄′ and Heff
2 (X̄ ) = Z≥0β̄

′ ⊕Heff
2 (X ).

Denote by L̄, K̄ and K̄eff respectively the counterparts for X̄ of the spaces L, K and Keff for
X . Then we have the corresponding decompositions

L̄ = L⊕ Zd∞, K̄ = K⊕ Zd∞, K̄eff = Keff ⊕ Z≥0d∞,

where d∞ = ei0 + e∞ ∈ Ñ ⊕ Ze∞ =
⊕m′−1

i=0 Zei ⊕ Ze∞.

Since the class α can be represented by a holomorphic map to X̄ whose image is contained
entirely in X and misses D∞ = X̄ \ X , we have D∞ · α = 0 and hence c1(X̄ ) · α = 0.
Moreover, each νi ∈ Box′(Σ) with age(νi) = 1 determines uniquely an element ν̄i ∈ Box′(Σ̄)
with age(ν̄i) = 1.

We make some important observations about X̄ .

Proposition 6.3. The toric orbifold X̄ with the extra vectors {bm, . . . , bm′−1} is semi-Fano
in the sense of Definition 2.8.

Proof. To show that X̄ is semi-Fano, we need to prove that

c1(X̄ ) =
m−1∑
i=0

Di +D∞

is nef (since age(bj) = 1 for j = m, . . . ,m′ − 1). In other words, every rational orbi-curve C
satisfies

(D0 + . . .+Dm−1 +D∞) · C ≥ 0.

Let C · D∞ = k ∈ Z. We must have k ≥ 0. Otherwise, C has a component contained in
D∞ whose intersection with D∞ is negative. Now D∞ = {ν = ∞} is linearly equivalent to
the divisor D̃ = {ν = c} for any c 6= 0.4 A rational curve in D∞ has transverse intersections
with D̃, and hence the intersection number is non-negative. Since intersection number is
topological, this implies D∞ has non-negative intersection with any curve contained in D∞
itself. Thus k cannot be negative.

4Two divisors D1 and D2 are said to be linear equivalent if there exists a meromorphic function φ such
that D1 and D2 are the zero and pole divisors of φ respectively. In such a case given a rational curve C, the
intersection number of C with D1 is the same as that with D2. In our situation we take the meromorphic
function φ to be ν − c for a fixed complex number c.
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Now consider C − kC0, where C0 is a holomorphic sphere representing the class β′ + β∞
which has Chern number c1(X̄ ) · C0 = 2. C − kC0 has zero intersection with the divisor
D∞. Moreover it can be written as a linear combination of one-dimensional toric strata of
X . Since X is Calabi-Yau, (C − kC0) · (D0 + . . .+Dm−1) = 0. Then

(D0 + . . .+Dm−1 +D∞) · C = (D0 + . . .+Dm−1 +D∞) · (C − kC0) + 2k = 2k ≥ 0.

This completes the proof. �

Proposition 6.4. The toric variety X̄ underlying X̄ is semi-projective.

Proof. By [38, Proposition 7.2.9], the toric variety X is semi-projective, as its moment map
image is a full-dimensional lattice polyhedron P . The toric variety X̄ corresponds to in-
tersecting P with a half space normal to b∞. The result is still a full dimensional lattice
polyhedron. Hence X̄ is semi-projective again by [38, Proposition 7.2.9]. �

If bi0 ∈ N lies in the interior of the support |Σ|, then in fact X̄ is projective:

Proposition 6.5. Suppose that bi0 ∈ N lies in the interior of the support |Σ|. Then the fan
Σ̄ is complete, and hence the toric variety X̄ underlying X̄ is projective.

Proof. To prove that Σ̄ is complete, it suffices to see that any vector v ∈ NR can be written
as a non-negative linear combination of generators of the fan Σ̄. Since bi0 lies in the interior
of the support |Σ|, there exists t ∈ R>0 large enough such that v+ tbi0 ∈ |Σ|. Thus v+ tbi0 =∑m−1

i=0 aibi for ai ∈ R≥0. Then

v =
m−1∑
i=0

aibi − tbi0 =
m−1∑
i=0

aibi + tb∞.

�

Remark 6.6. Suppose that bi0 ∈ N lies on the boundary of the support |Σ|. In this case, the
fan Σ̄ in Construction 6.1 is not complete, and hence the toric orbifold X̄ is not projective,
but only semi-projective.

We will need the following lemma when we analyze the curve moduli.

Lemma 6.7. Given a generic point in X̄ , there exists a unique non-constant holomorphic
sphere of Chern number two passing through the point.

Proof. Choose local toric coordinates (ν, z1, . . . , zn−1) such that z1, . . . , zn−1 are not identically
zero when restricted on Di0 . We take the point to be in the open toric orbit (C×)n ⊂ X̄ .
Suppose it has coordinates (c0, c1, . . . , cn−1), where ci 6= 0 for all i = 0, . . . , n − 1. Then the
holomorphic sphere defined by zi = ci for all i = 1, . . . , n − 1 passes through the point, and
it only intersects Di0 and D∞ once but not any other divisors. Thus it intersects with the
anti-canonical divisor (which is the sum over all toric prime divisors) twice and hence has
Chern number two.

To show uniqueness, suppose we have a non-constant holomorphic sphere of Chern number
two passing through a point in the open toric orbit. It must intersect D∞, since otherwise, it
will be entirely contained in the toric Calabi-Yau X , and by the maximal principle applied
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to the holomorphic function ν on the sphere, the sphere must lie entirely in the toric divisors
of X , and hence cannot pass through a point in the open toric orbit. Since it has Maslov
index two, it intersects D∞ at most two times (counted with multiplicity). The meromorphic
function ν on the sphere must have both zeroes and poles, and thus it must have one zero and
one pole. This means that the sphere intersects both D0 and D∞ once, and that it cannot
intersect other divisors since it only has Maslov index two. Thus the functions zi’s on the
sphere have neither poles nor zeroes, and hence can only be constants. We conclude that it
is precisely the holomorphic sphere defined by zi = ci for all i = 1, . . . , n− 1. �

Example 6.8. The fan of the Hirzebruch surface F2 has primitive generators (−1, 1), (0, 1),
(1, 1), (0,−1). The total space of the canonical line bundle X = KF2 is again a toric manifold,
whose fan has primitive generators b0 = (0, 0, 1), b1 = (−1, 1, 1), b2 = (0, 1, 1), b3 = (1, 1, 1)
and b4 = (0,−1, 1). The polytope P is the convex hull of (−1, 1), (1, 1), (0,−1) in the plane
R2. The generator (0, 1) lies in the boundary of P but is not a vertex of P. The toric
compactification X̄ corresponding to b2 (see Construction 6.1) is not compact because b2 lies
in the boundary of the support |Σ|.

The toric prime divisor D2 in X corresponding to b2 is non-compact and is biholomorphic
to P1 × C. The inclusion (z, c) : P1 ↪→ P1 × C ∼= D2 for any constant c ∈ C gives a (0,−2)
rational curve in X = KF2, whose class is denoted by l ∈ H2(X ;Z). It has Chern number
zero and does contribute to sphere bubbling. Thus the open Gromov-Witten invariants nXβ2+kl

for k ∈ Z≥0 are non-trivial. We will see in Section 6.5 that in fact nXβ2+kl = 1 when k = 0, 1
and zero otherwise. Hence

nXβ2+kl = nF2
β2+kl

where β2 and l on the right hand side of the equality denotes the basic disk class corresponding
to D2 ⊂ F2 and the class of the (−2) curve in F2 respectively.

6.2. An open/closed equality. We now consider three moduli spaces. We first let ι :
{p} → L be the inclusion of a point.

Definition 6.9. Let X and X̄ be as in Construction 6.1.

(1) Let Mop
1,l(X , β,x) :=Mmain

1,l (L, β,x) be the moduli space of stable maps from genus 0
bordered orbifold Riemann surfaces with one boundary component to (X , L) of class
β = β′+α such that there is one boundary marked point and l interior marked points
of type x = (Xν1 , . . . ,Xνl). Let ev0 :Mop

1,l(X , β,x)→ L denote the evaluation map at
the boundary marked point. Consider the fiber product

Mop
1,l(X , β,x, p) :=Mop

1,l(X , β,x)×ev0,ι {p}.

(2) Let Mop
1,l(X̄ , β,x′) := Mmain

1,l (L, β,x′) be the moduli space of stable maps from genus

0 bordered orbifold Riemann surfaces with one boundary component to (X̄ , L) of class
β such that there is one boundary marked point and l interior marked points of type
x′ = (X̄ν1 , . . . , X̄νl). Let ev0 : Mop

1,l(X̄ , β,x′) → L denote the evaluation map at the
boundary marked point. Consider the fiber product

Mop
1,l(X̄ , β,x

′, p) :=Mop
1,l(X̄ , β,x

′)×ev0,ι {p}.

(3) Let Mcl
1+l(X̄ , β̄, x̄) be the moduli space of stable maps from genus 0 orbifold Riemann

surfaces to X̄ of class β̄ := β̄′ + α such that the 1 + l interior marked points of are
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type x̄ = (X̄ , X̄ν1 , . . . , X̄νl). Let ev0 : Mcl
1+l(X̄ , β̄, x̄) → X̄ denote the evaluation map

at the first marked point. Consider the fiber product

Mcl
1+l(X̄ , β̄, x̄, p) :=Mcl

1+l(X̄ , β̄, x̄)×ev0,ι {p}.

We need the following compactness result.

Proposition 6.10.

(a) Let D be a toric prime divisor of the toric Calabi-Yau orbifold X , α ∈ H2(D;Z) and
p ∈ D. Then the moduli space of rational curves in D representing α with one marked
point passing through p is compact.

(b) Let α ∈ H2(X ;Z) and p ∈ X . Then the moduli space of rational curves in X repre-
senting α with one marked point passing through p is compact.

(c) The disk moduli Mop
1,l(X , βi + α,x) for every i = 0, . . . ,m′ − 1 and α ∈ H2(X ;Z) is

compact.

Proof.

(a) The statement certainly holds when the divisor D is compact. Now suppose that D
is a non-compact divisor. We are going to prove that all rational curves representing
α with one marked point passing through p must lie in a compact subvariety of D,
and hence the moduli space is compact.

The toric divisor D ⊂ X itself is a toric orbifold, whose fan ΣD is given by the
quotient of Σ in the v-direction and localization at zero, where v is the primitive
generator of Σ corresponding to D. Since D is non-compact, v lies in the boundary
of the polytope P . Thus there exists a half space defined by {ν ≥ 0} ⊂ (N/〈v〉)R
for some ν ∈ M⊥v containing |ΣD|. Then the function on D corresponding to ν
is holomorphic, and by abuse of notation we also denote it by ν. By the maximal
principle, ν is constant on each sphere component of a rational curve in D. Since the
rational curve is connected, ν takes the same constant on the whole rational curve.
Let ν(p) = c ∈ C. Then any rational curve with one marked point passing through p
lies in the level set {ν = c} ⊂ D.

The above is true for all ν ∈ M⊥v such that the corresponding half space {ν ≥
0} contains |ΣD|. Let ν1, . . . , νk be the extremal ones, meaning that each of the
corresponding half spaces contains |ΣD| and a codimension-one face of |ΣD|. Then
there exist c1, . . . , ck ∈ C such that any rational curve with one marked point passing
through p lies in {νi = ci for all i = 1, . . . , k}, which is a compact subvariety of D.
Hence the moduli space of rational curves representing α with one marked point and
passing through p is compact.

(b) We may assume that p lies in a toric divisor of X , or otherwise the moduli space
is empty since X is a toric Calabi-Yau orbifold. All rational curves in X lie in toric
divisors of X . Thus the moduli space can be written as a fiber product of moduli spaces
of rational curves in prime divisors of X . By part (a) the moduli space of rational
curves in a toric prime divisor passing through a fixed target point is compact. Hence
the fiber product is also compact.

(c) The disk moduli Mop
1,l(X , βi + α,x) is equal to the fiber product Mop

1,1(X , βi) ×ev
Mcl
•+l(X , α,x), whereMop

1,1(X , βi) is the moduli space of stable disks in X representing
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the basic disks class βi with one interior marked point and one boundary marked point,
Mcl
•+l(X , α,x) is the moduli space of rational curves in X representing α with one

marked point • and l other marked points of type x, and the fiber product is over
evaluation maps at the interior marked point of the disk and the marked point • of
the rational curve. Now, the moduli space Mop

1,1(X , βi) is known to be compact by

the classification result of Cho-Poddar [28]. By part (b), Mcl
•+l(X , α,x) ×ev {pt} is

compact. Thus the fiber product Mop
1,1(X , βi)×evMcl

•+l(X , α,x) is also compact.

�

Corollary 6.11. The moduli space Mop
1,l(X , β,x, p) in Definition 6.9 is compact. Hence,

the open orbifold Gromov-Witten invariant nX1,l,β([pt]L; 1ν1 , . . . ,1νl) in Definition 3.5 is well-
defined.

The following is the main result of this subsection.

Theorem 6.12.

(a) The moduli spaces Mop
1,l(X , β,x, p) and Mop

1,l(X̄ , β,x′, p) are isomorphic as Kuranishi
spaces. Hence we have the following equality between genus 0 open orbifold Gromov-
Witten invariants:

nX1,l,β([pt]L; 1ν1 , . . . ,1νl) = nX̄1,l,β([pt]L; 1ν̄1 , . . . ,1ν̄l).

(b) The moduli spacesMop
1,l(X̄ , β,x′, p) andMcl

1+l(X̄ , β̄, x̄, p) are isomorphic as Kuranishi
spaces. Hence we have the following equality between genus 0 open and closed orbifold
Gromov-Witten invariants, called the open/closed equality:

(6.1) nX1,l,β([pt]L; 1ν1 , . . . ,1νl) = 〈[pt],1ν̄1 , . . . ,1ν̄l〉X̄0,1+l,β̄.

Proof. We begin with part (a). The inclusion X ⊂ X̄ gives a natural map

Mop
1,l(X , β,x, p)→M

op
1,l(X̄ , β,x

′, p),

which is clearly injective. To show that this map is surjective, we need to prove that a stable
disk in Mop

1,l(X̄ , β,x′, p) is indeed contained in X . This means there are no stable disk maps

f : (C, ∂C)→ (X̄ , L) of class β = β′ + α such that

C = D ∪ C0 ∪ C∞
is a union where D is the disk component; C0 is a closed (orbifold) Riemann surface whose
components are contained in

⋃
bi∈I Di; and C∞ is a non-empty closed (orbifold) Riemann

surface whose components are contained in D∞∪
⋃

bj∈J Dj and have non-negative intersections

with divisors Di, bi ∈ I (via f).

Suppose there is such a stable disk map. Let A := f∗[C0] and B := f∗[C∞]. Then α = A+B.
Since c1(X̄ ) · α = 0 and −KX̄ is nef, we have

c1(X̄ ) · A = 0 = c1(X̄ ) ·B.
Writing B =

∑
k bkBk as an effective linear combination of the classes Bk of irreducible 1-

dimensional torus-invariant orbits in X̄ , we have c1(X̄ ) · (bkBk) = 0 for all k (again using the
fact that −KX̄ is nef). Each Bk corresponds to an (n− 1)-dimensional cone σk ∈ Σ̄, and by
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our construction, either σk contains b∞, or σk and b∞ together span an n-dimensional cone
in Σ̄.

Since f(C∞) ⊂ D∞∪
⋃

bj∈J Dj, we see that if bi ∈ I then bi /∈ σk. Also, since D ·(bkBk) ≥ 0

for every toric prime divisor of X̄ not corresponding to a ray in σk, we have by5 [58, Lemma
4.5] that D · (bkBk) = 0 for every toric prime divisor D corresponding to an element in
({bi} ∪ {b∞}) \ F (σk); here F (σk) is the minimal face in the fan polytope of Σ̄ that contains
rays in σk. As the divisors D corresponding to ({bi} ∪ {b∞}) \ F (σk) span H2(X̄ ), we must
have bkBk = 0. We conclude that B = 0.

Therefore we have a bijection between moduli spaces

Mop
1,l(X , β,x, p) ∼=M

op
1,l(X̄ , β,x

′, p).

Since every stable disk in Mop
1,l(X̄ , β,x′, p) is supported in (a compact region of) X , it is

clear that it has the same deformations and obstructions as the corresponding stable disk in
Mop

1,l(X , β,x, p). By the same arguments as in Part(C) of the proof of [22, Propostion 5.6]
(which can be adapted to the orbifold setting here in a straightforward way), it follows that
the above bijection gives an isomorphism of Kuranishi structures. This proves (a).

The proof of part (b) is basically the same as that of [18, Theorem 35]. First of all,
for a stable disk map in Mop

1,l(X̄ , β,x′, p), it consists of a unique disk component u0 and a
rational curve component C ′. We denote such a stable disk by u0 +C ′. The disk component
represents a basic (orbi-)disk class and hence is regular by [28, Propositions 8.3 and 8.6].
Thus the obstruction merely comes from the rational curve component.

On the other hand, by Lemma 6.7, there is a unique holomorphic sphere C0 with Chern
number two in X̄ passing through a generic point p ∈ X̄ . So for a stable curve inMcl

1+l(X̄ , β̄, x̄, p),
since it passes through p and it has Chern number two, it has C0 as one of its components,
and the rest is a rational curve C ′ with Chern number zero contained in the toric divisors.
We denote such a rational curve by C0 +C ′. Since C0 is a holomorphic sphere whose normal
bundle is trivial, it is unobstructed. Thus the obstruction of C0 + C ′ merely comes from C ′.
A bijective map between Mop

1,l(X̄ , β,x′, p) and Mcl
1+l(X̄ , β̄, x̄, p) is given by sending u0 + C ′

to C0 + C ′ and vice versa. They have the same deformations and obstructions (which are
contributed from the same rational curve component C ′), and hence

Mop
1,l(X̄ , β,x

′, p) ∼=Mcl
1+l(X̄ , β̄, x̄, p)

as Kuranishi structures.

The identification of the two Kuranishi structures can be done as explained in Step 3 of
the proof of [18, Theorem 35], except that the choices of obstruction bundles have to be
suitably modified in order to obtain smoothly compatible Kuranishi charts which can be
glued together to obtain a global structure (see [93, 46]).

Recall that in the general scheme developed by Fukaya, Oh, Ohta and Ono in constructing
Kuranishi structures of a moduli space, one first constructs a Kuranishi neighborhood for
each point of the moduli space. To obtain a global Kuranishi structure which is smoothly
compatible, one then chooses a sufficiently dense finite set of points in the moduli space, and
redefines the Kuranishi neighborhood by considering a new obstruction bundle obtained as

5Their argument extends to the simplicial cases needed here.
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the direct sum of parallel transports of the obstruction bundles over the finite set of points.
When the domain of the stable map is not stable, however, one has to further consider a
stabilization of the domain and extra care is needed in choosing the obstruction bundles. We
refer the readers to [46, Section 3.2] for a brief description and to [46, Sections 15-18] for the
detailed construction.

The construction of Kuranishi neighborhoods given in the proof [18, Theorem 35] corre-
sponds to the case where the domain of a stable map is also stable, in which the above
description of the obstruction bundles already suffices. But for the moduli spaces we consider
here, the domain of a stable map may not be stable, so we need the general construction as
described in [46, Part 4]. Nevertheless, we emphasize that all these (or any such) construc-
tions can be carried out in the same way for the open and closed moduli spaces because the
obstruction bundles on the disk component u0 and the sphere component C0 both vanish,
and therefore the Kuranishi structures are naturally identified with each other. �

Remark 6.13. The proof of Theorem 6.12 identifies the moduli space Mcl
1+l(X̄ , β̄, x̄, p) with

Mop
1,l(X , β,x, p), which is compact by Corollary 6.11. Therefore Mcl

1+l(X̄ , β̄, x̄, p) is also

compact and hence the closed orbifold Gromov-Witten invariant 〈[pt],1ν̄1 , . . . ,1ν̄l〉X̄0,1+l,β̄
is

well-defined, even when X̄ is not compact.

6.3. Calculation via mirror theorem. By the open/closed equality (6.1), the open orbifold
Gromov-Witten invariants of X we need may be computed by evaluating the genus 0 closed
orbifold Gromov-Witten invariants of X̄ :

〈[pt],1ν̄1 , . . . ,1ν̄l〉X̄0,1+l,β̄.

These closed orbifold Gromov-Witten invariants are certain coefficients in the J-function of
X̄ . We evaluate these invariants by extending the approach developed in [23] to the orbifold
setting.

The idea is to use closed mirror theorem for toric orbifolds to explicitly compute these
coefficients using the combinatorially defined I-function of X̄ . However, since X̄ may not
be compact, we cannot directly apply the closed mirror theorem (Theorem 2.15) to X̄ as in
[23]. We get around this by first applying the equivariant mirror theorem (Theorem 2.14) to
evaluate the genus 0 equivariant closed orbifold Gromov-Witten invariants of X̄ :

〈[pt]T,1ν̄1 , . . . ,1ν̄l〉
X̄ ,T
0,1+l,β̄

,

where [pt]T ∈ H∗T(X̄ ) is the equivariant lift of [pt] ∈ H∗(X̄ ) represented by a T-fixed point,

and then evaluating 〈[pt],1ν̄1 , . . . ,1ν̄l〉X̄0,1+l,β̄
by taking non-equivariant limits.

6.3.1. Identifying the invariants. We now begin the computation of the relevant equivariant
orbifold Gromov-Witten invariants.
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The T-equivariant J-function of X̄ (cf. Definition 2.11) expands as a series in 1/z as follows:

JX̄ ,T(q, z) =eτ0,2/z

1 +
∑
α

∑
(d,l)6=(0,0)

d∈Heff
2 (X̄ )

qd

l!

1

z

∑
k≥0

〈
1, τtw, . . . , τtw, φαψ

k
〉X̄ ,T

0,l+2,d

φα

zk



=

(
1 +

τ0,2

z
+O

(
1

z2

))1 +
∑
α

∑
(d,l)6=(0,0)

d∈Heff
2 (X̄ )

qd

l!

1

z

∑
k≥0

〈
τtw, . . . , τtw, φαψ

k−1
〉X̄ ,T

0,l+1,d

φα

zk

 ,

where we use the string equation in the second equality. Note that τ0,2 ∈ H2
T(X̄ ). Also note

that φα = [pt]T if and only if φα = 1 ∈ H0(X̄ ). If we consider

τtw =
∑

ν∈Box′(Σ)age=1

τν1ν̄ ,

then the closed equivariant orbifold Gromov-Witten invariants 〈[pt]T,1ν̄1 , . . . ,1ν̄l〉
X̄ ,T
0,1+l,β̄

occur

as the coefficients of qβ̄τν1 · · · τνl in the 1/z2-term of JX̄ ,T(q, z) that takes values in H0(X̄ ).

Since X̄ is semi-Fano (by Proposition 6.3) and semi-projective (by Proposition 6.4), we can
apply the equivariant toric mirror theorem (Theorem 2.14) which says that

eq0(y)/zJX̄ ,T(q, z) = IX̄ ,T(y(q, τ), z)

via the inverse y = y(q, τ) of the toric mirror map. Recall that the equivariant I-function
here is the one defined using the extended stacky fan

(Σ̄, {bi | 0 ≤ i ≤ m− 1} ∪ {b∞} ∪ {bj | m ≤ j ≤ m′ − 1}),

where

{bj | m ≤ j ≤ m′ − 1} = {ν ∈ Box′(Σ) | age(ν) = 1}.

Therefore our next task is to explicitly identify the part of the 1/z2-term of the equivariant
I-function of X̄ that takes values in H0(X̄ ). According to the definition of the equivariant
I-function in Definition 2.6, the part taking values in H0(X̄ ) arises from terms with d ∈ K̄eff

such that

(6.2) ν(d) = 0, i.e. 1ν(d) = 1 ∈ H0(X̄ ).

And for d ∈ K̄eff to satisfy (6.2), we must have

〈Di, d〉 ∈ Z, for i ∈ {0, . . . ,m′ − 1} ∪ {∞}.

This follows from the definition of ν(d).

Let d ∈ K̄eff be such that ν(d) = 0. We examine the (1/z)-series expansion of the corre-
sponding term in the equivariant I-function of X̄ :

(6.3) yd
∏

i∈{0,...,m′−1}∪{∞}

∏∞
k=d〈Di,d〉e(D̄

T
i + (〈Di, d〉 − k)z)∏∞

k=0(D̄T
i + (〈Di, d〉 − k)z)

.



GROSS FIBRATIONS, SYZ, AND OPEN GW FOR TORIC CY ORBIFOLDS 55

Recall that D̄T
0 , . . . , D̄

T
m−1, D̄

T
∞ ∈ H2(X̄ ) are T-divisor classes corresponding to b0, . . . , bm−1, b∞,

and D̄T
j = 0 in H2

T(X̄ ) for m ≤ j ≤ m′ − 1. We may factor out copies of z to rewrite (6.3) as

(6.4)
yd

z〈ρ̂(X̄ ),d〉

∏
i∈{0,...,m′−1}∪{∞}

∏∞
k=d〈Di,d〉e(D̄

T
i /z + (〈Di, d〉 − k))∏∞

k=0(D̄T
i /z + (〈Di, d〉 − k))

.

where ρ̂(X̄ ) =
∑m−1

i=0 Di +D∞ +
∑m′−1

j=m Dj. So we need

(6.5) 〈ρ̂(X̄ ), d〉 =
m−1∑
i=0

〈Di, d〉+ 〈D∞, d〉+
m′−1∑
j=m

〈Dj, d〉 ≤ 2.

Since we need the part taking values in H0(X̄ ), we need the terms in (6.4) in which the
divisor classes D̄T

0 , . . . , D̄
T
m−1, D̄

T
∞ do not occur. For 0 ≤ i ≤ m− 1 or i =∞, the fraction∏∞
k=d〈Di,d〉e(D̄

T
i /z + (〈Di, d〉 − k))∏∞

k=0(D̄T
i /z + (〈Di, d〉 − k))

is proportional to D̄T
j if 〈Dj, d〉 = d〈Dj, d〉e < 0. Thus we need

(6.6) 〈Di, d〉 ≥ 0, i ∈ {0, . . . ,m− 1} ∪ {∞}.

Also observe that since d ∈ K̄eff , 〈Dj, d〉 ≥ 0 for m ≤ j ≤ m′ − 1. So there are only two
possible cases: either

• there is exactly one j such that 〈Dj, d〉 = 2 in (6.5) and 〈Di, d〉 = 0 for i 6= j; or

• there are j1, j2 such that 〈Dj1 , d〉 = 〈Dj2 , d〉 = 1 in (6.5) and 〈Di, d〉 = 0 for i 6= j1, j2.

By the fan sequence (2.1), an element d ∈ K̄eff corresponds to an element∑
0≤i≤m−1

〈Di, d〉ei + 〈D∞, d〉e∞ +
∑

m≤j≤m′−1

〈Dj, d〉ej ∈
⊕

0≤j≤m−1

Zej ⊕ Ze∞ ⊕
⊕

m≤j≤m′−1

Zej

such that ∑
0≤i≤m−1

〈Di, d〉bi + 〈D∞, d〉b∞ +
∑

m≤j≤m′−1

〈Dj, d〉bj = 0.

In order for this equality to hold, we cannot have 〈Di, d〉 = 0 for all but one i. So we must be
in the other case, namely, there are exactly two indices j1, j2 such that 〈Dj1 , d〉 = 〈Dj2 , d〉 = 1,
and 〈Di, d〉 = 0 for i 6= j1, j2. Since the vectors b0, . . . , bm−1, bm, . . . , bm′−1 belong to the half-
space in NR ⊕ R opposite to the half-space containing b∞, we must have ∞ ∈ {j1, j2}. As
noted in Remark 6.2, the fan Σ̄ depends on the disk class β ∈ π2(X , L) in question. There
are two possibilities:

• Case 1: β is a smooth disk class. This means that β = β′ + α with α ∈ H2(X )
and β′ ∈ π2(X , L) is the class of a basic smooth disk. In this case ∂β′ = bi0 for some
0 ≤ i0 ≤ m− 1 and b∞ = −bi0 . So the only possible d ∈ K̄eff comes from the relation
bi0 + b∞ = 0. In this case the necessary term in the equivariant I-function of X̄ is
yd∞ , where d∞ = ei0 + e∞ = β̄′ ∈ H2(X̄ ;Q).
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• Case 2: β is an orbi-disk class. This means that β = β′ + α with α ∈ H2(X )
and β′ = βνj0 ∈ π2(X , L) is the class of a basic orbi-disk corresponding to bj0 ∈
Box′(Σ)age=1 for some m ≤ j0 ≤ m′− 1. In this case ∂β′ = bj0 and b∞ = −bj0 . So the
only possible d ∈ K̄eff comes from the relation bj0 +b∞ = 0. In this case the necessary
term in the equivariant I-function of X̄ is yd∞ , where d∞ = ej0 + e∞. Note that in
this case, d∞ is not a class in H2(X̄ ;Q).

Equating the relevant 1/z2-terms in the equivariant I-function and equivariant J-function
yields the following

(6.7) yd∞ =
q0(y)2

2
+

∑
d∈Heff

2 (X̄ )

∑
l≥0

∑
ν1,...,νl∈Box′(Σ)age=1

∏l
i=1 τνi
l!

〈[pt]T,
l∏

i=1

1ν̄i〉
X̄ ,T
0,l+1,dq

d.

6.3.2. Computing toric mirror maps. In order to explicitly evaluate (6.7), we will compute
the toric mirror map for X̄ , which is part of the 1/z-term in the expansion of the equivariant
I-function.

Let d ∈ K̄eff . Similar to the calculations in the previous section, we first examine the
(1/z)-series expansion of the corresponding term in the equivariant I-function of X̄ :

yd
∏

i∈{0,...,m′−1}∪{∞}

∏∞
k=d〈Di,d〉e(D̄

T
i + (〈Di, d〉 − k)z)∏∞

k=0(D̄T
i + (〈Di, d〉 − k)z)

1ν(d)

=
yd

z〈ρ̂(X̄ ),d〉+age(ν(d))

∏
i∈{0,...,m′−1}∪{∞}

∏∞
k=d〈Di,d〉e(D̄

T
i /z + (〈Di, d〉 − k))∏∞

k=0(D̄T
i /z + (〈Di, d〉 − k))

1ν(d).

What we need is the 1/z-term that takes value in H≤2
CR,T(X̄ ). There are three types.

• degree 0 term: This requires that ν(d) = 0. As noted above, this implies 〈Di, d〉 ∈ Z
for all i. Furthermore, we must have 〈Di, d〉 ≥ 0 for all i in order for the term to be
of cohomological degree 0. Also, we need 1/z〈ρ̂(X̄ ),d〉+age(ν(d)) = 1/z, which means that
〈ρ̂(X̄ ), d〉 = 1. All together this implies that 〈Di, d〉 = 1 for exactly one Di and = 0
otherwise. As we have seen, such a class d ∈ K̄eff does not exist. So there is no
H0(X̄ )-term.

• degree 2 term from untwisted sector: This means terms proportional to T-
divisors D̄T

i . Again this requires that ν(d) = 0, which implies 〈Di, d〉 ∈ Z for all i.
Furthermore, we must have exactly one D̄T

j /z, which requires 〈Dj, d〉 < 0 for this j

and 〈Di, d〉 ≥ 0 for all i 6= j. To get the 1/z-term, we need 〈ρ̂(X̄ ), d〉+ age(ν(d)) = 0,
so we should have 〈ρ̂(X̄ ), d〉 = 0.

For each j ∈ {0, 1, . . . ,m− 1} ∪ {∞}, we define

ΩX̄j := {d ∈ K̄eff | 〈ρ̂(X̄ ), d〉 = 0, ν(d) = 0, 〈Dj, d〉 ∈ Z<0 and 〈Di, d〉 ∈ Z≥0 ∀i 6= j},

and set

AX̄j (y) :=
∑
d∈ΩX̄j

yd
(−1)−〈Dj ,d〉−1(−〈Dj, d〉 − 1)!∏

i 6=j〈Di, d〉!
.



GROSS FIBRATIONS, SYZ, AND OPEN GW FOR TORIC CY ORBIFOLDS 57

Then the degree 2 term from untwisted sector is given by

m−1∑
j=0

AX̄j (y)D̄T
j /z + AX̄∞(y)D̄T

∞/z.

• degree 2 term from twisted sectors: This requires that ν(d) = ν. Since age(ν) =
1, we must have 〈ρ̂(X̄ ), d〉 = 0. In order to avoid being proportional to a T-divisor,
〈Di, d〉 cannot be a negative integer for any i.

For each j ∈ {m,m+ 1, . . . ,m′ − 1}, we define

ΩX̄j := {d ∈ K̄eff | 〈ρ̂(X̄ ), d〉 = 0, ν(d) = bj and 〈Di, d〉 /∈ Z<0 ∀i},

and set

AX̄j (y) :=
∑
d∈ΩX̄j

yd
∏

i∈{0,...,m′−1}∪{∞}

∏∞
k=d〈Di,d〉e(〈Di, d〉 − k)∏∞

k=0(〈Di, d〉 − k)
.

Then the degree 2 term from twisted sectors is

m′−1∑
j=m

AX̄j (y)1bj/z.

The fan sequence of X̄ is given by

0→ ker→ Ñ− := Ñ ⊕ Z→ N → 0,

and the divisor sequence of X̄ is given by

0→M → M̃− := (Ñ−)∨ → L̄∨ → 0.

Observe that rk(L̄∨) = rk(L∨) + 1 = r + 1 = m′ + 1− n and rk(H2(X̄ )) = rk(H2(X )) + 1 =
r′ + 1 = m+ 1− n. We choose an integral basis

{p1, . . . , pr, p∞} ⊂ L̄∨

such that pa is in the closure of C̃X̄ for all a and pr′+1, . . . , pr ∈
∑m′−1

i=m R≥0Di so that the
images {p̄1, . . . , p̄r′ , p̄∞} of {p1, . . . , pr′ , p∞} under the quotient L̄∨ ⊗ Q → H2(X̄ ;Q) form a

nef basis of H2(X̄ ;Q) and p̄a = 0 for a = r′ + 1, . . . , r. And we pick {pT1 , ..., pTr , pT∞} ⊂ M̃−

in the way described in Section 2.3. We further assume that {p1, . . . , pr} gives the original
basis of L∨ which we chose for X .

Expressing Di in terms of the basis {pa} defines an integral matrix (Qia) by

Di =
∑

a∈{1,...,r}∪{∞}

Qiapa, Qia ∈ Z.

As above, the image of Di under the quotient L̄∨ ⊗ Q → H2(X̄ ;Q) is denoted by D̄i. Then
for i ∈ {0, . . . ,m− 1} ∪ {∞}, the class D̄T

i of the toric prime T-divisor DT
i is given by

D̄T
i = λi +

∑
a∈{1,...,r′}∪{∞}

Qiap̄
T
a , λi ∈ H2

T(pt);

and for i = m, . . . ,m′ − 1, D̄T
i = 0 in H2(X ;R).
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Hence the coefficient of the 1/z-term in the equivariant I-function can be expressed as

∑
a∈{1,...,r′}∪{∞}

p̄Ta log ya +
∑

j∈{0,...,m−1}∪{∞}

AX̄j (y)D̄T
j +

m′−1∑
j=m

AX̄j (y)1bj

=
∑

a∈{1,...,r′}∪{∞}

p̄Ta log ya +
∑

j∈{0,...,m−1}∪{∞}

AX̄j (y)

λj +
∑

a∈{1,...,r′}∪{∞}

Qjap̄
T
a

+
m′−1∑
j=m

AX̄j (y)1bj

=
∑

a∈{1,...,r′}∪{∞}

log ya +
∑

j∈{0,...,m−1}∪{∞}

QjaA
X̄
j (y)

 p̄Ta +
m′−1∑
j=m

AX̄j (y)1bj +
∑

j∈{0,...,m−1}∪{∞}

λjA
X̄
j (y).

(6.8)

On the other hand, the coefficient of the 1/z-term in the J-function is given by

(6.9)
∑

a∈{1,...,r′}∪{∞}

p̄Ta log qa + τtw =
r∑

a=1

p̄Ta log qa +
m′−1∑
j=m

τbj1bj .

The toric mirror map for X̄ is obtained by comparing (6.8) and (6.9):

log qa = log ya +
∑

j∈{0,...,m−1}∪{∞}

QjaA
X̄
j (y), a ∈ {1, . . . , r′} ∪ {∞},

τbj = AX̄j (y), j = m, . . . ,m′ − 1,

(6.10)

and set q0(y) :=
∑

j∈{0,...,m−1}∪{∞} λjA
X̄
j (y).

Let us have a closer look at the toric mirror map (6.10) for X̄ . First of all, recall that
K̄eff = Keff ⊕ Z≥0d∞, so we can decompose any d ∈ K̄eff as

d = d′ + kd∞,

where d′ ∈ Keff and k ∈ Z≥0. Suppose that 〈ρ̂(X̄ ), d〉 = 0. Then we have

0 =
m′−1∑
i=0

〈Di, d
′〉+ 〈D∞, d〉 = 〈ρ̂(X ), d′〉+ k.

But X is semi-Fano, so 〈ρ̂(X ), d′〉 ≥ 0. This implies that 〈D∞, d〉 = k = 0, and hence
d = d′ ∈ Keff.

As an immediate consequence, we have AX̄∞ = 0, since d ∈ ΩX̄∞ implies that 〈ρ̂(X̄ ), d〉 = 0
and 〈D∞, d〉 < 0 which is impossible and so ΩX̄ = ∅. Also for j ∈ {0, 1, . . . ,m−1,m, . . . ,m′−
1}, d ∈ ΩX̄j implies that 〈ρ̂(X̄ ), d〉 = 0, so d lies in Keff and hence we have ΩX̄j = ΩXj , where

ΩXj := {d ∈ Keff | ν(d) = 0, 〈Dj, d〉 ∈ Z<0 and 〈Di, d〉 ∈ Z≥0 ∀i 6= j}

for j = 0, 1, . . . ,m− 1, and

ΩXj := {d ∈ Keff | ν(d) = bj and 〈Di, d〉 /∈ Z<0 ∀i}

for j = m,m+ 1, . . . ,m′ − 1. Here we have made use of the fact that ρ̂(X ) = 0.



GROSS FIBRATIONS, SYZ, AND OPEN GW FOR TORIC CY ORBIFOLDS 59

Proposition 6.14. The toric mirror map of the toric compactification X̄ is of the form

log qa = log ya +
m−1∑
j=0

QjaA
X
j (y), a = 1, . . . , r′,

log q∞ = log y∞ + AXi0(y),

τbj =AXj (y), j = m, . . . ,m′ − 1,

(6.11)

when β = βi0 + α is a smooth disk class, and of the form

log qa = log ya +
m−1∑
j=0

QjaA
X
j (y), a = 1, . . . , r′,

log q∞ = log y∞,

τbj =AXj (y), j = m, . . . ,m′ − 1,

(6.12)

when β = βνj0 + α is an orbi-disk class, where

(6.13) AXj (y) :=
∑
d∈ΩXj

yd
(−1)−〈Dj ,d〉−1(−〈Dj, d〉 − 1)!∏

i 6=j〈Di, d〉!

for j = 0, 1, . . . ,m− 1, and

(6.14) AXj (y) :=
∑
d∈ΩXj

yd
m′−1∏
i=0

∏∞
k=d〈Di,d〉e(〈Di, d〉 − k)∏∞

k=0(〈Di, d〉 − k)

for j = m,m+ 1, . . . ,m′ − 1.

Proof. We already have ΩX̄∞ = ∅ and ΩX̄j = ΩXj for j = 0, . . . ,m′ − 1. Also, d ∈ ΩX̄j = ΩXj
implies that 〈D∞, d〉 = 0. Thus we have AX̄∞ = 0 and AX̄j = AXj for j = 0, . . . ,m′−1. Finally,
when β = βi0 + α is a smooth disk class, we have Qj∞ = 1 for j ∈ {i0,∞} and Qj∞ = 0 for
j /∈ {i0,∞}; whereas when β = βνj0 +α is an orbi-disk class, we have Qj∞ = 1 for j ∈ {j0,∞}
and Qj∞ = 0 for j /∈ {j0,∞}, and in particular, Qj∞ = 0 for all j = 0, . . . ,m− 1. The result
now follows from the formula (6.10). �

A key observation is that in both cases (6.11) and (6.12), the toric mirror map of X̄ contains
parts which depend only on X :

Proposition 6.15. The toric mirror map for the toric Calabi-Yau orbifold X is given by

log qa = log ya +
m−1∑
j=0

QjaA
X
j (y), a = 1, . . . , r′,

τbj =AXj (y), j = m, . . . ,m′ − 1,

(6.15)

where the functions AXj (y) are defined in (6.13) and (6.14) in Proposition 6.14.

Proof. This can be seen by exactly the same calculations as in this subsection applied to the
equivariant I-function of X ; see also [44, Section 4.1]. �

Remark 6.16.
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(1) In the non-equivariant limit H∗T(pt) → H∗(pt), we have λi → 0. Hence q0(y) → 0 in
the non-equivariant limit.

(2) It is clear from the description that (6.11), (6.12), (6.15) do not depend on T-actions,
and remain unchanged in the non-equivariant limit H∗T(pt)→ H∗(pt).

(3) Also note that, for j = m,m+ 1, . . . ,m′ − 1,

AXj (y) = yD
∨
j + higher order terms,

where D∨j ∈ Keff is the class described in (2.4).

6.4. Explicit formulas. In this subsection we put together previous discussions to derive
explicit formulas for generating functions of genus 0 open orbifold Gromov-Witten invariants
of X .

First we discuss non-equivariant limits.

Proposition 6.17. The non-equivariant limit of 〈[pt]T,
∏l

i=1 1ν̄i〉
X̄ ,T
0,l+1,d is 〈[pt],

∏l
i=1 1ν̄i〉X̄0,l+1,d.

Proof. If X̄ is projective (this is the case when bi0 ∈ N lies in the interior of the support
|Σ| by Proposition 6.5), then moduli spaces of stable maps to X̄ of fixed genus, degree, and
number of marked points is compact. In this case the result follows by the discussion in
Section 2.5.

Suppose that X̄ is semi-projective but not projective. As noted in Remark 6.13, the moduli
spaceMcl

1+l(X̄ , β̄, x̄, p) used to define the invariant 〈[pt],
∏l

i=1 1ν̄i〉X̄0,l+1,d is compact for p ∈ L.

In fact it is straightforward to check that Mcl
1+l(X̄ , β̄, x̄, p) is compact for any p, using the

arguments in the proof of Proposition 6.10. A standard cobordism argument shows that the
invariant 〈[pt],

∏l
i=1 1ν̄i〉X̄0,l+1,d does not depend on the choice of p. If p ∈ X̄ is a T-fixed point,

then T acts on Mcl
1+l(X̄ , β̄, x̄, p) and for such p the moduli space Mcl

1+l(X̄ , β̄, x̄, p) can be

used to define T-equivariant Gromov-Witten invariant 〈[pt]T,
∏l

i=1 1ν̄i〉
X̄ ,T
0,l+1,d. Choose p ∈ X̄

to be a T-fixed point and argue as in Section 2.5, the result follows. �

This proposition allows us to obtain the following

Proposition 6.18. Using the notations in Section 6.2, we have

(6.16) yd∞ = qβ̄
′ ∑
α∈Heff

2 (X )

∑
l≥0

∑
ν1,...,νl∈Box′(Σ)age=1

∏l
i=1 τνi
l!

nX1,l,β′+α([pt]L;
l∏

i=1

1νi)q
α.

Proof. In view of Remark 6.16 and Proposition 6.17, the non-equivariant limit of (6.7) gives

(6.17) yd∞ =
∑

d∈Heff
2 (X̄ )

∑
l≥0

∑
ν1,...,νl∈Box′(Σ)age=1

∏l
i=1 τνi
l!

〈[pt],
l∏

i=1

1ν̄i〉X̄0,l+1,dq
d.

By dimension reason, the invariant 〈[pt],
∏l

i=1 1ν̄i〉X̄0,l+1,d vanishes unless c1(X̄ ) · d = 2. Now

we have Heff
2 (X̄ ) = Z≥0β̄

′⊕Heff
2 (X ). Also X̄ is semi-Fano and c1(X̄ ) · β̄′ = 2. So c1(X̄ ) ·d = 2

implies that d must be of the form β̄′+α where α ∈ Heff
2 (X ) has Chern number c1(X̄ ) ·α = 0.

The formula (6.16) then follows from the open/closed equality (6.1). �
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The formula (6.16) can also be written in a more succinct way as

yd∞ = qβ̄
′ ∑
α∈Heff

2 (X )

∑
l≥0

1

l!
nX1,l,β′+α([pt]L;

l∏
i=1

τtw)qα,

where τtw =
∑

ν∈Box′(Σ)age(ν)=1 τν1ν̄ .

Recall that (4.3) gives a Lagrangian isotopy between a moment map fiber L and a fiber Fr
of the Gross fibration when r lies in the chamber B+. Hence the formula (6.16) also gives a
computation of the generating functions of genus 0 open orbifold Gromov-Witten invariants
defined in (5.3):

yd∞ = qβ̄
′
(1 + δj),

when β′ corresponds to βj(r) under the isotopy (4.3), and

yd∞ = qβ̄
′
τν(1 + δν),

when β′ corresponds to βν(r) under the isotopy (4.3).

The formula (6.16) identifies the generating function of genus 0 open orbifold Gromov-

Witten invariants with yd∞q−β̄
′
. We can now derive an even more explicit formula for com-

puting the orbi-disk invariants using our results in the previous subsection.

Theorem 6.19. If β′ = βi0 is a basic smooth disk class corresponding to the ray generated
by bi0 for some i0 ∈ {0, 1, . . . ,m− 1}, then we have
(6.18)∑

α∈Heff
2 (X )

∑
l≥0

∑
ν1,...,νl∈Box′(Σ)age=1

∏l
i=1 τνi
l!

nX1,l,βi0+α([pt]L;
l∏

i=1

1νi)q
α = exp

(
−AXi0(y(q, τ))

)
,

via the inverse y = y(q, τ) of the toric mirror map (6.15) of X .

Proof. Recall that in this case, we have d∞ = β̄′. Also, D∞ = p∞. So 〈p∞, d∞〉 = 1. On
the other hand, since d∞ ∈ H2(X̄ ;Q), we have 〈D̄i, d∞〉 = 〈Di, d∞〉 for any i and 〈p̄a, d∞〉 =
〈pa, d∞〉 for any a. Using the toric mirror map (6.11) for X̄ , we have

log qd∞ =
r′∑
a=1

〈p̄a, d∞〉 log qa + 〈p̄∞, d∞〉 log q∞

=
r′∑
a=1

〈p̄a, d∞〉

(
log ya +

m−1∑
i=0

QiaA
X
i (y)

)
+
(
log y∞ + AXi0(y)

)
=

r′∑
a=1

〈p̄a, d∞〉 log ya + log y∞ +
m−1∑
i=0

(
r′∑
a=1

Qia〈p̄a, d∞〉

)
AXi (y) + AXi0(y)

= log yd∞ + AXi0(y) +
m−1∑
i=0

(〈Di, d∞〉 −Qi∞)AXi (y).

But 〈Di, d∞〉 = Qi∞ for i = 0, . . . ,m− 1, so we arrive at the desired formula. �
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Theorem 6.20. If β′ = βνj0 is a basic orbi-disk class corresponding to νj0 ∈ Box′(Σ)age=1 for
some j0 ∈ {m,m+ 1, . . . ,m′ − 1}, then we have
(6.19)∑
α∈Heff

2 (X )

∑
l≥0

∑
ν1,...,νl∈Box′(Σ)age=1

∏l
i=1 τνi
l!

nX1,l,βνj0 +α([pt]L;
l∏

i=1

1νi)q
α = yD

∨
j0 exp

−∑
i/∈Ij0

cj0iA
X
i (y(q, τ))

 ,

via the inverse y = y(q, τ) of the toric mirror map (6.15) of X , where D∨j0 ∈ Keff is the
class defined in (2.4), Ij0 ∈ A is the anticone of the minimal cone containing bj0 = νj0 and
cj0i ∈ Q ∩ [0, 1) are rational numbers such that bj0 =

∑
i/∈Ij0

cj0ibi.

Proof. In this case, the class β̄′ ∈ H2(X̄ ;Q) is given by

β̄′ =

∑
i/∈Ij0

cj0iei

+ e∞ ∈ Ñ ⊕ Ze∞ =
m′−1⊕
i=0

Zei ⊕ Ze∞;

while d∞ = ej0 +e∞ (recall that this d∞ is not a class in H2(X̄ ;Q)). Hence d∞− β̄′ is precisely

the class D∨j0 ∈ Keff. So we can write yd∞q−β̄
′
= yD

∨
j0yβ̄

′
q−β̄

′
.

Now,

log yβ̄
′
=

r∑
a=1

〈pa, β̄′〉 log ya + 〈p∞, β̄′〉 log y∞,

and using the toric mirror map (6.12) for X̄ , we have

log qβ̄
′
=

r′∑
a=1

〈p̄a, β̄′〉 log qa + 〈p̄∞, β̄′〉 log q∞

=
r′∑
a=1

〈p̄a, β̄′〉

(
log ya +

m−1∑
i=0

QiaA
X
i (y)

)
+ 〈p̄∞, β̄′〉 log y∞

=
r′∑
a=1

〈p̄a, β̄′〉 log ya +
m−1∑
i=0

(
r′∑
a=1

Qia〈p̄a, β̄′〉

)
AXi (y) + 〈p̄∞, β̄′〉 log y∞.

Since Qi∞ = 0 for i = 0, . . . ,m − 1, we have
∑r′

a=1Qia〈p̄a, β̄′〉 = 〈D̄i, β̄
′〉. Also, since β̄′ ∈

H2(X̄ ;Q), we have 〈D̄i, β̄
′〉 = 〈Di, β̄

′〉 for any i (and 〈p̄a, β̄′〉 = 〈pa, β̄′〉 for any a), so

m−1∑
i=0

(
r′∑
a=1

Qia〈p̄a, β̄′〉

)
AXi (y) =

∑
i/∈Ij0

cj0iA
X
i (y),

and hence

log yβ̄
′ − log qβ̄

′
= −

∑
i/∈Ij0

cj0iA
X
i (y).

The formula follows. �
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Corollary 6.21. Let Fr be a Lagrangian torus fiber of the Gross fibration over a point r in
the chamber B+. Then we have the following formulas for the generating functions of genus
0 open orbifold Gromov-Witten invariants defined in (5.3):

(6.20) 1 + δi = exp
(
−AXi (y(q, τ))

)
,

for i = 0, 1, . . . ,m− 1 when β′ is a basic smooth disk class corresponding to βi(r) under the
isotopy (4.3), and

(6.21) τνj + δνj = yD
∨
j exp

−∑
i/∈Ij

cjiA
X
i (y(q, τ))


for j = m,m+ 1, . . . ,m′ − 1 when β′ is a basic orbi-disk class corresponding to βνj(r) under
the isotopy (4.3).

As a by-product of our calculations, we also obtain the following convergence result:

Corollary 6.22. The generating series of genus 0 open orbifold Gromov-Witten invariants

∑
α∈Heff

2 (X )

∑
l≥0

∑
ν1,...,νl∈Box′(Σ)age=1

∏l
i=1 τνi
l!

nX1,l,β′+α([pt]L;
l∏

i=1

1νi)q
α.

appearing in (6.16) and hence those in (5.3) are convergent power series in the variables qa’s
and τνi’s.

Proof. As already noted in [72, Section 4.1], the toric mirror map (6.15) is a local isomorphism
near y = 0. The inverse of the toric mirror map is therefore also analytic near q = 0, which
allows us to express the variables ya’s as convergent power series in the variables qa’a and
τνi ’s. Also note that the expressions in (6.18) and (6.19) are convergent power series in the
variables ya. The result follows. �

6.5. Examples. In this subsection we present some examples.

(1) X = [C2/Zm]. See Example (1) of Section 5.4. There are m − 1 twisted sectors νj,
j = 1, . . . ,m− 1, and each corresponds to a basic orbi-disk class βνj . The generating
functions of genus 0 open orbifold Gromov-Witten invariants are

τj + δνj(τ) =
∑

k1,...,km−1≥0

τ k1
1 . . . τ

km−1

m−1

(k1 + . . .+ km−1)!
n1,l,βνj

([pt]L; (1ν1)k1 × . . .× (1νm−1)km−1)

where l = k1 + . . . + kg and τ =
∑m−1

i=1 τi1νi ∈ H2
CR(X ) for j = 1, . . . ,m − 1. By

Theorem 6.20, this is equal to the inverse of the toric mirror map. The toric mirror
map for X was computed explicitly in [32]:

τr = gr(y)
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where

gr(y) =
∑

k1,...,km−1≥0
〈b(k)〉=r/m

yk1
1 . . . y

km−1

n−1

k1! . . . km−1!

Γ(〈D0(k)〉)
Γ(1 +D0(k))

Γ(〈Dm(k)〉)
Γ(1 +Dm(k))

,

b(k) =
m−1∑
i=1

i

n
ki, D0(k) = − 1

m

m−1∑
i=1

(m− i)ki, Dm(k) = − 1

m

m−1∑
i=1

iki,

and 〈r〉 denotes the fractional part of a rational number r. Denote the inverse of
(g1(y), . . . , gm−1(y)) by (f1(τ), . . . , fm−1(τ)). Then

fj(τ) = τj + δνj(τ), j = 1, ...,m− 1.

Furthermore, the inverse mirror maps (f1(τ), . . . , fm−1(τ)) have been computed in [32,
Proposition 6.2]:

fj(τ) = (−1)m−jem−j(κ0, ..., κm−1), j = 1, ...,m− 1,

where ej is the j-th elementary symmetric polynomial inm variables, ζ := exp(π
√
−1/m),

and

(6.22) κk(τ1, ..., τm−1) = ζ2k+1

m−1∏
r=1

exp

(
1

m
ζ(2k+1)rτr

)
.

From these calculations, we find that quantum corrected mirror of C2/Zm can be
written in the following nice form. Recall that the mirror curve is given by (5.5)

uv = 1 + zm +
m−1∑
j=1

(τj + δνj(τ))zj

As we have

τj + δνj(τ) = fj(τ) = (−1)m−jem−j(κ0, ..., κm−1),

and also it is easy to check that

1 = (−1)mκ0 · · ·κm−1.

Hence, SYZ mirror of [C2/Zm] from Gross fibration is given as

(6.23) uv =
m−1∏
j=0

(z − κj).

For the crepant resolution Y ofX = C2/Zm, its genus 0 open Gromov-Witten invari-
ants have been computed in [84]. The result can be stated as follows. Let D0, . . . , Dm

be the toric prime divisors corresponding to the primitive generators (0, 1), . . . , (m, 1)
of the fan, β1, . . . , βm be the corresponding basic disks, and qi for i = 1, . . . ,m − 1
be the Kähler parameters corresponding to the (−2)-curves Di. It turns out that the
generating functions of genus 0 open Gromov-Witten invariants

qj−1q
2
j−2 . . . q

j−1
1 (1 + δj(q)) = qj−1q

2
j−2 . . . q

j−1
1

(∑
α

nβj+αq
α

)



GROSS FIBRATIONS, SYZ, AND OPEN GW FOR TORIC CY ORBIFOLDS 65

are equal to the coefficients of zj of the following polynomial

(1 + z)(1 + q1z)(1 + q1q2z) . . . (1 + q1 . . . qm−1z).

(2) X = [C3/Z2g+1]. See Example (2) of Section 5.4. In this case [C3/Z2g+1] is obtained
as the quotient orbifold of C3 by the action of Z2g+1 with weights (1, 1, 2g − 1). The
standard (C∗)3 action on C3 commutes with this Z2g+1 action and induces a (C∗)3-
action on the quotient [C3/Z2g+1].

There is an alternative route to derive the mirror map of [C3/Z2g+1], as follows.
The J-function of (C∗)3-equivariant Gromov-Witten theory of [C3/Z2g+1] coincides
with a suitable twisted J-function of the orbifold BZ2g+1, considered in [101] and [32].
The J-function of BZ2g+1 has been computed in [73] (see also [32, Proposition 6.1],
and the answer is

JBZ2g+1(y, z) =
∑

k0,...,k2g≥0

1

zk0+...+k2g

yk0
0 ...y

k2g

2g

k0!...k2g!
1〈∑2g

i=0 i
ki

2g+1
〉.

The twisted Gromov-Witten theory we need is the Gromov-Witten theory of BZ2g+1

twisted by the inverse (C∗)3-equivariant Euler class and the vector bundle L1 ⊕ L1 ⊕
L2g−1, where Lk is the line bundle on BZ2g+1 defined by the 1-dimensional repre-

sentation Ck of Z2g+1 on which 1 ∈ Z2g+1 acts with eigenvalue exp(2π
√
−1k

2g+1
). The

generalities of twisted Gromov-Witten theory are developed in [101]. The J-function
of the twisted Gromov-Witten theory can be computed by applying [32, Theorem 4.8].
The answer is

I tw(y, z) =
∑

k0,...,k2g≥0

M1,kM2,kM3,k

zk0+...+k2g

yk0
0 ...y

k2g

2g

k0!...k2g!
1〈∑2g

i=0 i
ki

2g+1
〉,

where

M1,k :=

bb(k)c−1∏
m=0

(λ1 − (〈b(k)〉+m) z) ,

M2,k :=

bb(k)c−1∏
m=0

(λ2 − (〈b(k)〉+m) z) ,

M3,k :=
∏

N(k)+1≤m≤0

(λ3 + (m− (1− 〈c(k)〉)) z) ,

and

b(k) :=

2g∑
i=1

iki
2g + 1

, c(k) := −
2g∑
i=1

iki
2g + 1

(2g − 1),

N(k) := 1 +

2g∑
i=1

bi(2g − 1)

2g + 1
cki + bc(k)c.

Here λk, k = 1, 2, 3 is the weight of the k-th factor of (C∗)3 acting on the k-th factor
of C3.
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By [32, Theorem 4.8] it is then straightforward to extract the J-function of [C3/Z2g+1],
the mirror map, and generating functions of orbi-disk invariants from I tw(y, z). We
leave the details to the readers.

(3) X = [Cn/Zn]. See Example (3) of Section 5.4. In this case there is only one twisted
sector ν of age one, and let τ be the corresponding orbifold parameter. The toric
mirror map has been computed explicitly in [18], which is

τ = g(y) =
∞∑
k=0

((− 1
n
) . . . (1− k − 1

n
))n

(kn+ 1)!
ykn+1.

Then Theorem 6.20 tells us that the generating function of genus 0 open orbifold
Gromov-Witten invariants

τ + δν(τ) =
∑
k≥1

τ k

k!
n1,k,βν ([pt]L; (1ν)

k)

is equal to the inverse series of g(y).
The crepant resolution of X = Cn/Zn is Y = −KPn−1 is the total space of the

canonical line bundle over Pn−1. Its cohomology is generated by the line class l of
Pn−1, and let q denote the corresponding Kähler parameter. Let β0 be the basic disk
class corresponding to the zero-section divisor. The generating function of genus 0
open Gromov-Witten invariants

1 + δ(q) =
∑
k≥0

nβ0+klq
k

equals to exp g(y), where

g(y) =
∑
k>0

(−1)nk
(nk − 1)!

(k!)n
yk,

and q and y are related by the mirror map

q = y exp(−ng(y)).

(4) X = KF2 . See Example 6.8. X is a smooth toric manifold, whose fan has primitive
generators b0 = (0, 0, 1), b1 = (−1, 1, 1), b2 = (0, 1, 1), b3 = (1, 1, 1) and b4 =
(0,−1, 1). Note that the Hirzebruch F2 is not Fano (it is semi-Fano). X = KF2 is a
new example whose open Gromov-Witten invariants were not computed in previous
works.

The primitive generators which are not vertices of P (the convex hull of b1, b3 and
b4) are b0 and b2. Hence

nβi+α = 0

for i = 1, 3, 4 and α 6= 0. Also nβi = 1 for i = 0, . . . , 4. Only the open Gromov-Witten
invariants nβ0+α and nβ2+α for α 6= 0 are non-trivial, and we will compute them below.

Take p1 = D0, p2 = D2 to be the basis of H2(X ,Q), and let C1, C2 be the dual
basis. Denote the (−2) exceptional curve class of F2 by e, and denote the fiber curve
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class of F2 by f . e and f form a basis of H2(X ;Z). By computing the intersection
numbers of e and f with p1 and p2, we obtain the relation

f = C2 − 2C1,

e = −2C2.

The Kähler parameters of C1 and C2 are denoted as q1 and q2 respectively, while that
of e and f are denoted as qe and qf respectively. we have

qf = q2q
−2
1 ,

qe = q−2
2 .

The corresponding parameters of the complex moduli of the mirror are denoted by
(y1, y2). One has

yf = y2y
−2
1 ,

ye = y−2
2 .

The mirror map is given by

q1 = y1 exp(AX1 (y1, y2))

q2 = y2 exp(AX2 (y1, y2))

where

AXj (y) :=
∑
d∈ΩXj

yd
(−1)−〈Dj ,d〉−1(−〈Dj, d〉 − 1)!∏

i 6=j〈Di, d〉!

by Equation 6.13, and

ΩXj := {d ∈ Keff | 〈Dj, d〉 ∈ Z<0 and 〈Di, d〉 ∈ Z≥0 ∀i 6= j}.

First consider AX2 . For C = ae+ bf where a, b ∈ Z,

C ·D2 = −2a+ b < 0, C ·D0 = −2b ≥ 0

implies b = 0 and a ≥ 0. Also C ·Di ≥ 0 for i 6= 2. Hence ΩX2 = {ke : k ∈ N}, and

AX2 (y1, y2) =
∞∑
k=1

yke
(−1)2k−1(2k − 1)!

(k!)2
= − log 2 + log(1 +

√
1− 4ye).

Thus

qe = q−2
2 = ye exp(−2AX2 (y1, y2)) =

4ye

(1 +
√

1− 4ye)2
.

Taking the inverse, we obtain

ye =
qe

(1 + qe)2

and so

y2 = y−e/2 = (1 + qe)q2.

Comparing with y2 = q2 exp(−AX2 (y1, y2)), this implies

exp(−AX2 (y1, y2)) = 1 + qe
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under the mirror map. By Theorem 6.19, this is the generating function of open
Gromov-Witten invariants: ∑

α

nβ2+αq
α = 1 + qe.

Thus nβ2+α = 1 when α = 0, e, and zero for all other classes α. The hypergeometric
series AX2 above also gives the mirror map of F2. This is the analytic reason why the
open Gromov-Witten invariants above are the same as those of F2:

nXβ2+α = nF2
β2+α.

It is geometrically intuitive: the bubbling contributions of the curve class e to β2 in F2

are the same as that in KF2 , because D2 in KF2 is just the product of the corresponding
divisor in F2 with the complex line C.

Now consider AX1 . For C = ae+ bf where a, b ∈ Z,

C ·D2 = −2a+ b ≥ 0, C ·D0 = −2b < 0

implies b ≥ 2a > 0. Also C · Di ≥ 0 for i 6= 2. Hence ΩX1 = {kf + a(e + 2f) : a ∈
N, k ∈ Z≥0}. We have

AX1 (y1, y2) =
∞∑
a=1

∞∑
k=0

ykf+a(e+2f) (−1)2(2a+k)−1(2(2a+ k)− 1)!

(k!)(a!)2(2a+ k)!
.

By Theorem 6.19, this gives the generating function of open Gromov-Witten invariants
via the inverse mirror map y(q):∑

α

nβ0+αq
α = exp(−AX1 (y1(q), y2(q)))

where the mirror map q(y) is given by

qf = yf exp(−2A1(ye, yf ) + A2(ye))

qe = ye exp(−2A2(ye)).

The following table can be obtained by inverting the mirror map using computers:

nβ0+ae+bf a = 0 a = 1 a = 2 a = 3 a = 4 a = 5 a = 6
b = 0 1 0 0 0 0 0 0
b = 1 0 0 0 0 0 0 0
b = 2 0 −3 0 0 0 0 0
b = 3 0 −20 −20 0 0 0 0
b = 4 0 −105 −294 −105 0 0 0
b = 5 0 −504 −2808 −2808 −504 0 0
b = 6 0 −2310 −21835 −42867 −21835 −2310 0

7. Open mirror theorems

In this section we define the SYZ map, and prove an open mirror theorem which says
that the SYZ map coincides with the inverse of the toric mirror map. In the case of toric
Calabi-Yau manifolds, this theorem implies that the inverse of a mirror map defined using
period integrals (so this is not the toric mirror map) can be expressed explicitly in terms of
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generating functions of genus 0 open Gromov-Witten invariants defined by Fukaya-Oh-Ohta-
Ono [49]. This confirms in the affirmative a conjecture of Gross-Siebert [67, Conjecture 0.2],
which was later made precise in [20, Conjecture 1.1] in the toric Calabi-Yau case.

7.1. The SYZ map.

7.1.1. Kähler moduli. As before, X is a toric Calabi-Yau orbifold as in Setting 4.3. Let

C̃X ⊂ L∨ ⊗ R be the extended Kähler cone of X as defined in Section 2.6. Recall that there
is a splitting C̃X = CX +

∑m′−1
j=m R>0Dj ⊂ L∨ ⊗ R, where CX ⊂ H2(X ;R) is the Kähler cone

of X . We define the complexified (extended) Kähler moduli space of X as

MK(X ) :=
(
C̃X +

√
−1H2(X ,R)

)
/H2(X ,Z) +

m′−1∑
j=m

CDj.

Elements of MK(X ) are represented by complexified (extended) Kähler class

ωC = ω +
√
−1B +

m′−1∑
j=m

τjDj,

where ω ∈ CX , B ∈ H2(X ,R) and τj ∈ C.

We identify MK(X ) with (∆∗)r
′ × Cr−r′ , where ∆∗ is the punctured unit disk, via the

following coordinates:

qa = exp

(
−2π

∫
γa

(
ω +
√
−1B

))
, a = 1, . . . , r′,

τj ∈ C, j = m, . . . ,m′ − 1,

where {γ1, . . . , γr′} is the integral basis of H2(X ;Z) we chose in Section 2.6. A partial com-
pactification of MK(X ) is given by (∆∗)r

′ × Cr−r′ ⊂ ∆r′ × Cr−r′ .
Recall that the SYZ mirror of X equipped with a Gross fibration µ : X → B is given by

X̌q,τ =
{

(u, v, z1, . . . , zn−1) ∈ C2 × (C×)n−1 | uv = G(q,τ)(z1, . . . , zn−1)
}
,

where

G(q,τ)(z1, . . . , zn−1) =
m−1∑
i=0

Ci(1 + δi)z
bi +

m′−1∑
j=m

Cνj(τνj + δνj)z
νj ,

and the coefficients Ci, Cνj ∈ C are subject to the following constraints:

m−1∏
i=0

CQia
i = qa, a = 1, . . . , r′,

m−1∏
i=0

CQia
i

m′−1∏
j=m

CQja
νj

=
m′−1∏
j=m

(
qD
∨
j

)−Qja
, a = r′ + 1, . . . , r,

where qD
∨
j =

∏r′

a=1 q
〈pa,D∨j 〉
a .
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7.1.2. Complex moduli. On the mirror side, recall that

P ∩N = {b0, . . . , bm−1, bm, . . . , bm′−1}

and P is contained in the hyperplane {v ∈ NR | ((0, 1) , v) = 1}. Denote by L(P) ' Cm′ the

space of Laurent polynomials G ∈ C[z±1
1 , . . . , z±1

n−1] of the form
∑m′−1

i=0 Ciz
bi , i.e. those with

Newton polytope P . Let PP be the projective toric variety defined by the normal fan of P . In
Batyrev [7], a Laurent polynomial G ∈ L(P) is defined to be P-regular if the intersection of
the closure Z̄f ⊂ PP , of the associated affine hypersurface Zf := {(z1, . . . , zn−1) ∈ (C×)n−1 |
f(z1, . . . , zn−1) = 0} in (C×)n−1, with every torus orbit O ⊂ PP is a smooth subvariety of
codimension 1 in O. Denote by Lreg(P) the space of all P-regular Laurent polynomials.

Following Batyrev [7] and Konishi-Minabe [78], we define the complex moduli spaceMC(X̌ )
of the mirror X̌ to be the GIT quotient of Lreg(P) by a natural (C×)n-action, which is
nonempty and has complex dimension r = m′ − n [7]. It parametrizes a family of non-
compact Calabi-Yau manifolds {X̌y}:

(7.1) X̌y :=
{

(u, v, z1, . . . , zn−1) ∈ C2 × (C×)n−1 | uv = Gy(z1, . . . , zn−1)
}
,

where

Gy(z1, . . . , zn−1) =
m−1∑
i=0

Čiz
bi +

m′−1∑
j=m

Čνjz
νj ,

and the coefficients Či, Čνj ∈ C are subject to the following constraints:

m−1∏
i=0

ČQia
i = ya, a = 1, . . . , r′,

m−1∏
i=0

ČQia
i

m′−1∏
j=m

ČQja
νj

= ya, a = r′ + 1, . . . , r.

Note that the non-compact Calabi-Yau manifolds in the family (7.1) may become singular
and develop orbifold singularities when some of the ya’s go to zero.

To define period integrals, we let Ω̌y be the holomorphic volume form on X̌y defined by (cf.
Proposition 5.3)

Ω̌y = Res

(
1

uv −Gy(z1, . . . , zn−1)
d log z0 ∧ · · · ∧ d log zn−1 ∧ du ∧ dv

)
,

where Gy(z1, . . . , zn−1) :=
∑m−1

i=0 Čiz
bi +

∑m′−1
j=m Čνjz

νj .

7.1.3. Two mirror maps.
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Definition 7.1. We define the SYZ map as follows:

FSYZ :MK(X )→MC(X̌ ), y 7→ FSYZ(q, τ)

ya := qa

m−1∏
i=0

(1 + δi)
Qia , a = 1, . . . , r′,

ya :=
m−1∏
i=0

(1 + δi)
Qia

m′−1∏
j=m

(
q−D

∨
j
(
τνj + δνj

))Qja
, a = r′ + 1, . . . , r,

(7.2)

where q−D
∨
j :=

∏r′

a=1 q
〈pa,D∨j 〉
a , and 1 + δi and τνj + δνj are the generating functions of genus 0

open orbifold Gromov-Witten invariants in X relative to a Lagrangian torus fiber of a Gross
fibration µ : X → B, defined in (5.3).

On the other hand, recall that the toric mirror map (6.15) for X is given by

Fmirror :MC(X̌ )→MK(X ), (q, τ) 7→ Fmirror(y)

qa = ya

m−1∏
j=0

exp
(
AXj (y)

)Qja
, a = 1, . . . , r′,

τbj = AXj (y), j = m, . . . ,m′ − 1.

7.2. Open mirror theorems.

7.2.1. Orbifolds. We are now ready to prove one of the main results in this paper:

Theorem 7.2 (Open mirror theorem for toric Calabi-Yau orbifolds - Version 1). Let X be a
toric Calabi-Yau orbifold X as in Setting 4.3. Then locally around (q, τ) = 0, the SYZ map
is inverse to the toric mirror map, i.e. we have

(7.3) FSYZ =
(
Fmirror

)−1
.

In particular, this holds for a semi-projective toric Calabi-Yau manifold.

Proof. Recall that the toric mirror map Fmirror is a local isomorphism near y = 0, so we can

consider its inverse
(
Fmirror

)−1
given by y = y(q, τ) near (q, τ) = 0.

For a = 1, . . . , r′, we have, by the formula (6.20),

log qa +
m−1∑
i=0

Qia(1 + δi) = log qa −
m−1∑
i=0

QiaA
X
i (y(q, τ)) = log ya.
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For a = r′ + 1, . . . , r, we have, by the formulas (6.20) and (6.21),

m′−1∑
j=m

Qja

(
log q−D

∨
j + log(τνj + δνj)

)

=
m′−1∑
j=m

Qja

− r′∑
b=1

〈pb, D∨j 〉 log qb +
r∑
b=1

〈pb, D∨j 〉 log yb −
∑
i/∈Ij

cjiA
X
i (y(q, τ))


=

r∑
b=r′+1

(
m′−1∑
j=m

Qja〈pb, D∨j 〉

)
log yb +

m′−1∑
j=m

Qja

(
r′∑
b=1

〈pb, D∨j 〉 log
(
ybq
−1
b

))

−
m′−1∑
j=m

Qja

∑
i/∈Ij

cjiA
X
i (y(q, τ))

 .

(7.4)

Now, the definition of D∨j implies that 〈Di, D
∨
j 〉 = δij for m ≤ i, j ≤ m′ − 1. Since Di =∑r

a=1Qiapa and Qia = 0 for 1 ≤ a ≤ r′ and m ≤ i ≤ m′−1, we have
∑r

a=r′+1 Qia〈pa, D∨j 〉 = δij
for m ≤ i, j ≤ m′ − 1. This shows that the (r − r′) × (r − r′) square matrices (Qia) and
(〈pa, D∨i 〉) (where m ≤ i ≤ m′ − 1 and r′ + 1 ≤ a ≤ r) are inverse to each other (note that
r − r′ = m′ −m), so

m′−1∑
j=m

Qja〈pb, D∨j 〉 = δab

for r′ + 1 ≤ a, b ≤ r. Hence the first term of the last expression in (7.4) is precisely given by
log ya.

On the other hand, we have

r′∑
b=1

〈pb, D∨j 〉 log
(
ybq
−1
b

)
=

r′∑
b=1

〈pb, D∨j 〉

(
−

m−1∑
k=0

QkbA
X
k (y)

)

= −
m−1∑
k=0

(
r′∑
b=1

Qkb〈pb, D∨j 〉

)
AXk (y),

and using the above formula
∑m′−1

j=m Qja〈pb, D∨j 〉 = δab again, we can write

m−1∑
k=0

Qka log(1 + δk) = −
m−1∑
k=0

QkaA
X
k (y) = −

m−1∑
k=0

(
r∑

b=r′+1

Qkb

(
m′−1∑
j=m

Qja〈pb, D∨j 〉

))
AXk (y)

= −
m′−1∑
j=m

Qja

(
r∑

b=r′+1

〈pb, D∨j 〉

(
m−1∑
k=0

QkbA
X
k (y)

))
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We compute the sum

m−1∑
k=0

Qka log(1 + δk) +
m′−1∑
j=m

Qja

(
r′∑
b=1

〈pb, D∨j 〉 log
(
ybq
−1
b

))

=−
m′−1∑
j=m

Qja

(
r∑

b=r′+1

〈pb, D∨j 〉

(
m−1∑
k=0

QkbA
X
k (y)

))

−
m′−1∑
j=m

Qja

(
r′∑
b=1

〈pb, D∨j 〉

(
m−1∑
k=0

QkbA
X
k (y)

))

=−
m′−1∑
j=m

Qja

(
m−1∑
k=0

(
r∑
b=1

Qkb〈pb, D∨j 〉

)
AXk (y)

)

=−
m′−1∑
j=m

Qja

(
m−1∑
k=0

〈Dk, D
∨
j 〉AXk (y)

)

=
m′−1∑
j=m

Qja

∑
k/∈Ij

cjkA
X
k (y)

 ,

which cancels with the third term of the last expression in (7.4). Hence we conclude that

m−1∑
i=0

Qia log(1 + δi) +
m′−1∑
j=m

Qja

(
log q−D

∨
j + log(τνj + δνj)

)
= log ya

for a = r′ + 1, . . . , r.

This proves the theorem. �

7.2.2. Connection with period integrals. Traditionally, mirror maps are defined in terms of
period integrals, which are integrals

∫
Γ

Ω̌y of the holomorphic volume form Ω̌y over middle-

dimensional cycles Γ ∈ Hn(X̌y;C) (see, e.g. [37, Chapter 6]). The following theorem shows
that the inverse of such a mirror map also coincides with the SYZ map:

Theorem 7.3 (Open mirror theorem for toric Calabi-Yau orbifolds - Version 2). Let X be
a toric Calabi-Yau orbifold X as in Setting 4.3. Then there exist linearly independent cycles
Γ1, . . . ,Γr ∈ Hn(X̌y;C) such that

qa = exp

(
−
∫

Γa

Ω̌FSYZ(q,τ)

)
, a = 1, . . . , r′,

τbj =

∫
Γj−m+r′+1

Ω̌FSYZ(q,τ), j = m, . . . ,m′ − 1.
(7.5)

where FSYZ(q, τ) is the SYZ map in Definition 7.1.

When X is a toric Calabi-Yau manifold, we do not have extra vectors so that m′ = m and
r = r′, and there are no twisted sectors insertions in the invariants nX1,l,βi+α([pt]L).
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Corollary 7.4 (Open mirror theorem for toric Calabi-Yau manifolds). Let X be a semi-
projective toric Calabi-Yau manifold. Then there exist linearly independent cycles Γ1, . . . ,Γr ∈
Hn(X̌y;C) such that

qa = exp

(
−
∫

Γa

Ω̌FSYZ(q,τ)

)
, a = 1, . . . , r,

where FSYZ(q) is the SYZ map in Definition 7.1, now defined in terms of the generating
functions 1 + δi of genus 0 open Gromov-Witten invariants nX1,l,βi+α([pt]L).

Theorem 7.3 and Corollary 7.4 give an enumerative meaning to period integrals, which
was first envisioned by Gross and Siebert in [67, Conjecture 0.2 and Remark 5.1] where they
conjectured that period integrals of the mirror can be interpreted as (virtual) counting of
tropical disks (instead of holomorphic disks) in the base of an SYZ fibration for a compact
Calabi-Yau manifold; in [68, Example 5.2], they also observed a precise relation between the
so-called slab functions, which appeared in their program, and period computations for the
toric Calabi-Yau 3-fold KP2 in [60]. A more precise relation in the case of toric Calabi-Yau
manifolds was later formulated in [20, Conjecture 1.1].6

We should point out that Corollary 7.4 is weaker than [20, Conjecture 1.1] in the sense
that the cycles Γ1, . . . ,Γr are allowed to have complex coefficients instead of being integral.
In the special case where X is the total space of the canonical bundle over a compact toric
Fano manifold, Corollary 7.4 was proven in [23]. As discussed in [23, Section 5.2], to enhance
Corollary 7.4 to [20, Conjecture 1.1], one needs to study the monodromy of Hn(X̌y;Z) around
the limit points in the complex moduli space MC(X̌ ).

Theorem 7.3 is essentially a consequence of Theorem 7.2 and the analysis of the relation-
ships between period integrals over n-cycles of the mirror and GKZ hypergeometric systems in
[23, Section 4]. Recall that the Gel’fand-Kapranov-Zelevinsky (GKZ) system [52, 53] of differ-
ential equations (also called A-hypergeometric system) associated to X , or to the set of lattice
points Σ(1) = {b0, b1, . . . , bm−1}, is the following system of partial differential equations on
functions Φ(Č) of Č = (Č0, Č1, . . . , Čm−1) ∈ Cm:(

m−1∑
i=0

biČi∂i

)
Φ(Č) = 0, ∏

i:〈Di,d〉>0

∂
〈Di,d〉
i −

∏
i:〈Di,d〉<0

∂
−〈Di,d〉
i

Φ(Č) = 0, d ∈ L,
(7.6)

where ∂i = ∂/∂Či for i = 0, 1, . . . ,m− 1. Notice that the first equation in (7.6) consists of n
equations, so altogether there are n + r = m equations. By [23, Proposition 14], the period
integrals ∫

Γ

Ω̌y, Γ ∈ Hn(X̌y;Z),

provide a C-basis of solutions to the GKZ hypergeometric system (7.6); see also [71] and [78,
Corollary A.16].

6It was wrongly asserted that the cycles Γ1, . . . ,Γr form a basis of Hn(X̌y;C) in [20, Conjecture 1.1] while
they should just be linearly independent cycles; see [23, Conjecture 2] for the correct version.
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Now Theorem 7.3 follows from the following

Lemma 7.5. The components

log qa = log ya +
m−1∑
j=0

QjaA
X
j (y), a = 1, . . . , r′,

τbj = AXj (y), j = m, . . . ,m′ − 1,

of the toric mirror map (6.15) of a toric Calabi-Yau orbifold X are solutions to the GKZ
hypergeometric system (7.6).

Proof. The proof is more or less the same as that of [23, Theorem 12], which in turn is
basically a corollary of a result of Iritani [72, Lemma 4.6]. We first fix i0 ∈ {0, . . . ,m′ − 1},
and consider the corresponding toric compactification X̄ . For i ∈ {0, . . . ,m− 1} ∪ {∞}, we
set

Di =
∑

a∈{1,...,r}∪{∞}

Qiaya
∂

∂ya
,

and, for d ∈ L̄, we define a differential operator

2d :=
∏

i:〈Di,d〉>0

〈Di,d〉−1∏
k=0

(Di − k)− yd
∏

i:〈Di,d〉<0

−〈Di,d〉−1∏
k=0

(Di − k).

Now [72, Lemma 4.6] says that the I-function IX̄ (y, z) satisfy the following system of
GKZ-type differential equations:

(7.7) 2dΨ = 0, d ∈ L̄.
In particular, the components

log qa = log ya +
m−1∑
j=0

QjaA
X
j (y), a = 1, . . . , r′,

τbj = AXj (y), j = m, . . . ,m′ − 1,

of the toric mirror map of X , which are contained in the toric mirror map (6.11) of X̄ , are
solutions to the above system.

Hence, it suffices to show that solutions to the above system also satisfy the GKZ hyper-
geometric system (7.6). This was shown in the proof of [23, Theorem 12], so we will just

describe the argument briefly. First of all, we have
∑m′−1

i=0 Qia = 0 for a = 1, . . . , r. Together

with the fact that ya =
∏m−1

i=0 ČQia
i for a = 1, . . . , r, one can see that the first n equations

in (7.6) are satisfied by any solution of (7.7). On the other hand, it is not hard to compute,
using the fact that 〈D∞, d〉 = 0 for d ∈ L⊕ 0 ⊂ L̄, that∏

i:〈Di,d〉>0

∂
〈Di,d〉
i −

∏
i:〈Di,d〉<0

∂
−〈Di,d〉
i =

 ∏
i:〈Di,d〉>0

Č
−〈Di,d〉
i

2d

for d ∈ L. Hence the other set of equations in (7.6) are also satisfied.

This finishes the proof of the lemma. �
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8. Application to crepant resolutions

Let Z be a compact Gorenstein toric orbifold. Suppose the underlying simplicial toric

variety Z admits a toric crepant resolution Z̃. In [18], a conjecture on the relationship

between genus 0 open Gromov-Witten invariants of Z̃ and Z was formulated and studied. In
this section we consider the case of toric Calabi-Yau orbifolds, which are non-compact.

We consider the following setting. Let X be a toric Calabi-Yau orbifold as in Setting 4.3.
It is well-known (see e.g. [51]) that toric crepant birational maps to the coarse moduli space
X of X can be obtained from regular subdivisions of the fan Σ satisfying certain conditions.
More precisely, let X ′ = XΣ′ be the toric orbifold obtained from the fan Σ′, where Σ′ is a
regular subdivision of Σ. Then the morphism X ′ → X between the coarse moduli spaces is
crepant if and only if for each ray of Σ′ with minimal lattice generator u, we have (ν, u) = 1.

In this section we prove the following:

Theorem 8.1 (Open crepant resolution theorem). Let X be a toric Calabi-Yau orbifold as
in Setting 4.3. Let X ′ be a toric orbifold obtained by a regular subdivision of the fan Σ,
and suppose the natural map X ′ → X between the coarse moduli spaces is crepant. The flat
coordinates on the Kähler moduli of X and X ′ are denoted as (q, τ) and (Q, T ) respectively,
and r is the dimension of the extended complexified Kähler moduli space of X (which is equal
to that of X ′).

Then there exists

(1) ε > 0;
(2) a coordinate change (Q(q, τ), T (q, τ)), which is a holomorphic map (∆(ε)− R≤0)r →

(C×)r, and ∆(ε) is an open disk of radius ε in the complex plane;
(3) a choice of an analytic continuation of the SYZ map FSYZ

X ′ (Q, T ) to the target of the
holomorphic map (Q(q, τ), T (q, τ)),

such that

FSYZ
X (q, τ) = FSYZ

X ′ (Q(q, τ), T (q, τ)).

Theorem 8.1 may be interpreted as saying that generating functions of genus 0 open
Gromov-Witten invariants of X ′ coincide with those of X after analytical continuations and
changes of variables. See [18, Conjecture 1, Theorem 3] for related statements for compact
toric orbifolds.

Our proof of Theorem 8.1 employs the general strategy described in [18]. Namely we use
the open mirror theorem (Theorem 7.2) to relate genus 0 open (orbifold) Gromov-Witten
invariants of X and X ′ to their toric mirror maps. These toric mirror maps are explicit
hypergeometric series and their analytic continuations can be done by using Mellin-Barnes
integrals techniques. See Appendix B.

Proof of Theorem 8.1. The proof adapts the strategy used in [18] for proving related results

for compact toric orbifolds. First, by Theorem 7.2, we may replace FSYZ by
(
Fmirror

)−1
, which

are given by the toric mirror maps (6.15). It suffices to show that an analytical continuation
of the toric mirror map exists. Then the necessary change of variables is given by composing
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the inverse of the (analytically continued) toric mirror map of X ′ with the toric mirror map
of X .

Now the crepant birational map X ′ → X may be decomposed into a sequence of crepant
birational maps each of which is obtained by a regular subdivision that introduces only one
new ray. If we can construct an analytical continuation of the toric mirror map for each
of these simpler crepant birational maps, then we would obtain the necessary analytical
continuation of the toric mirror map of X ′ by composition. Therefore we may assume that
the fan Σ′ is obtained by a regular subdivision of Σ which introduces only one new ray. In
terms of secondary fans, this means that X ′ → X is obtained by crossing a single wall.
Therefore it remains to construct an analytic continuation of the mirror map in case of a
crepant birational map corresponding to crossing a single wall in the secondary fan. This is
done in Appendix B. �

Example 8.2. In the case when X = [C2/Zm] (see Example (1) of Section 5.4), and X ′ the
minimal resolution of X , an analytic continuation of the inverse mirror map was explicitly
constructed in [32]. We reproduce the result here. Denote by g0

X ′(y
′), ..., gm−1

X ′ (y′) the inverse
mirror map of X ′, and denote by g0(y), ..., gm−1(y) the inverse mirror map of X . Then
according to [32, Proposition A.7], for 1 ≤ i ≤ m − 1, there is an analytic continuation of
giX ′(y

′) such that

giX ′(y
′) = −2π

√
−1

m
+

1

m

m−1∑
k=1

ζ2ki(ζ−k − ζk)gk(y),

where ζ = exp(π
√
−1
m

).

It may be checked that this yields an identification between the mirrors of X and X ′.

Remark 8.3. In the case when X = [Cn/Zn] (see Example (3) of Section 5.4), and X ′ =
OPn−1(−n), an analytic continuation of the inverse mirror map was explicitly carried out in
[18]. We refer the readers to [18, Section 6.2] for more details.

Appendix A. Maslov index

Let E be a real 2n-dimensional symplectic vector bundle over a Riemann surface Σ and L
a Lagrangian subbundle over the boundary ∂Σ. The Maslov index of the bundle pair (E ,L)
is defined to be the rotation number of L in a symplectic trivialization E ∼= Σ × R2n. The
Chern-Weil definition of Maslov index, due to Cho-Shin [29], is described as follows. Let J
be a compatible complex structure of E . A unitary connection ∇ of E is called L-orthogonal
([29, Definition 2.3]) if L is preserved by the parallel transport via ∇ along the boundary ∂Σ.

Definition A.1 ([29], Definition 2.8). The Chern-Weil Maslov index of the bundle pair (E ,L)
is defined by

µCW (E ,L) =

√
−1

π

∫
Σ

tr(F∇)

where F∇ ∈ Ω2(Σ, End(E)) is the curvature induced by an L-orthogonal connection ∇.

It was proved in [29, Section 3] that the Chern-Weil definition agrees with the usual one.
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The Chern-Weil definition of Maslov index is easily extended to the orbifold setting. Let Σ
be a bordered orbifold Riemann surface with interior orbifold marked points z+

1 , . . . , z
+
l ∈ Σ

such that the orbifold structure at each marked point z+
j is given by a branched covering

map z 7→ zmj for some positive integer mj. According to [29, Definition 6.4], for an orbifold
vector bundle E over Σ and a Lagrangian subbundle L → ∂Σ, the Chern-Weil Maslov index
µCW (E ,L) of the pair (E ,L) is defined by Definition A.1 using an L-orthogonal connection ∇
invariant under the local group action. It was shown in [29, Proposition 6.5] that the Maslov
index µCW (E ,L) is independent of both the choice of the orthogonal unitary connection ∇
and the choice of a compatible complex structure.

Another orbifold Maslov index, the so-called desingularized Maslov index µde, is defined in
[28, Section 3] via the desingularization process introduced by Chen-Ruan [25]. The following
result relates the Chern-Weil and the desingularized Maslov indices:

Proposition A.2 ([29], Proposition 6.10).

(A.1) µCW (E ,L) = µde(E ,L) + 2
l∑

j=1

age(E ; z+
j ),

where age(E ; z+
j ) is the degree shifting number associated to the Zmj -action on E at the j-th

marked point z+
j ∈ Σ.

In this paper we are mainly concerned with Maslov index arising from holomorphic maps.
Let w : (Σ, ∂Σ)→ (X , L) be a holomorphic map from a boarded orbifold Riemann surface Σ
to a symplectic orbifold X such that w(∂Σ) is contained in the Lagrangian submanifold L.
Then we put µCW (w) := µCW (w∗TX , w∗TL). If β ∈ π2(X , L) is represented by a holomorphic
map w, then we put µCW (β) := µCW (w).

The following lemma, which generalizes results in [27, 3, 28], can be used to compute the
Maslov index of disks.

Lemma A.3. Let (X , ω, J) be a Kähler orbifold of complex dimension n, equipped with a
non-zero meromorphic n-form Ω on X which has at worst simple poles. Let D ⊂ X be the
pole divisor of Ω. Suppose also that the generic points of D are smooth. Then for a special
Lagrangian submanifold L ⊂ X , the Chern-Weil Maslov index of a class β ∈ π2(X , L) is
given by

µCW (β) = 2β ·D.

Proof. Suppose β is a homotopy class of a smooth disk. Given a smooth disk representative
u : D2 → X of β, note that the pull-back of the canonical line bundle u∗(KX ) is an honest
vector bundle over D2, and hence, the proof in [3] applies to this case. Also since the Chern-
Weil Maslov index is topological, we can write any class β which is represented by an orbi-disk
as a (fractional) linear combination of homotopy classes of smooth disks. Hence the statement
for an orbi-disk class β also follows. �

Appendix B. Analytic continuation of mirror maps

In this Appendix we explicitly construct analytic continuations of the toric mirror maps
in case of crepant partial resolutions obtained by crossing a single wall in the secondary fan,
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which are needed in the proof of Theorem 8.1. The technique of constructing analytical
continuations using Mellin-Barnes integrals is well-known and has been used in e.g. [14], [10]
and [34].

B.1. Toric basics. In this subsection we describe the geometric and combinatorial set-up
that we are going to consider. Much of the toric geometry needed here is discussed in Section
2 and repeated here in order to properly set up the notations.

Let X1 be a toric Calabi-Yau orbifold given by the stacky fan

(B.1) (Σ1 ⊂ NR, {b0, . . . , bm−1} ∪ {bm, . . . , bm′−1})
where N is a lattice of rank n, Σ1 ⊂ NR is a simplicial fan, b0, . . . , bm−1 ∈ N are primitive
generators of the rays of Σ1, and bm, . . . , bm′−1 are extra vectors chosen from Box(Σ1)age=1.
The Calabi-Yau condition means that there exists ν ∈ M := N∨ = Hom(N,Z) such that
(ν, bi) = 1 for i = 0, . . . ,m−1. We also assume that X1 is as in Setting 4.3 so that it satisfies
Assumption 2.9.

The fan sequence of this stacky fan reads

0 −→ L1 := Ker(φ1)
ψ1−→

m′−1⊕
i=0

Zei
φ1−→ N −→ 0.

Tensoring with C× yields

0 −→ G1 := L1 ⊗Z C× −→ (C×)m
′ −→ N ⊗Z C× → 0.

The set of anti-cones of the stacky fan (B.1) is given by

A1 :=

{
I ⊂ {0, . . . ,m′ − 1} |

∑
i/∈I

R≥0bi is a cone in Σ1

}
.

Note that {0, . . . ,m′ − 1} \ {i} ∈ A1 if and only if i ∈ {0, . . . ,m− 1}. Hence if I ∈ A1, then
{m, . . . ,m′ − 1} ⊂ I. Therefore we may define the following

A′1 := {I ′ ⊂ {0, . . . ,m− 1} | I ′ ∪ {m, . . . ,m′ − 1} ∈ A1} .

The divisor sequence is obtained by dualizing the fan sequence:

0 −→M
φ∨1−→

m−1⊕
i=0

Ze∨i
ψ∨1−→ L∨1 −→ 0.

For each i = 0, . . . ,m′ − 1, we put Di := ψ∨1 (e∨i ) ∈ L∨1 . The extended Kähler cone of X1 is
defined to be

C̃X1 :=
⋂
I∈A1

(∑
i∈I

R>0Di

)
⊂ L∨1 ⊗ R,

where CX1 is the Kähler cone of X1:

CX1 :=
⋂
I′∈A′1

(∑
i∈I

R>0D̄i

)
⊂ H2(X1,R).
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We understood that CX1 is the image of C̃X1 under the quotient map

L∨1 ⊗ R→ L∨1 ⊗ R/
m′−1∑
i=m

RDi ' H2(X1,R).

There is a splitting

L∨1 ⊗ R = Ker
((
D∨m, . . . , D

∨
m′−1

)
: L∨1 ⊗ R→ Rm′−m

)
⊕

m′−1⊕
j=m

RDj,

and the extended Kähler cone is decomposed accordingly:

C̃X1 = CX1 +
m′−1∑
j=m

R>0Dj.

Let ω1 ∈ C̃X1 be an extended Kähler class of X1. According to [72, Section 3.1.1], the
defining condition of A1 may also be formulated as

ω1 ∈
∑
i∈I

R>0Di.

The extended canonical class of X1 is ρ̂X1 :=
∑m′−1

i=0 Di. By [72, Lemma 3.3], we have

ρ̂X1 =
m−1∑
i=0

Di +
m′−1∑
i=m

(1− age(bi))Di.

Since we have chosen bi, i = m, . . . ,m′ − 1 to have age one, we see that ρ̂X1 =
∑m−1

i=0 Di =
c1(X1) = 0.

B.2. Geometry of wall-crossing. As mentioned earlier, we want to consider toric crepant
birational maps obtained by introducing a new ray. We now describe this in terms of wall-
crossing. We refer to [38, Chapters 14–15] for the basics of wall-crossings in the toric setting.

By definition, a wall is a subspace

W̃ = W ⊕
m′−1⊕
j=m

RDj ⊂ L∨1 ⊗ R,

where W is a hyperplane given by a linear functional l, such that

(1) CX1 ⊂ {l > 0}, and
(2) the intersection CX1 ∩W of the closure of CX1 with W is a top-dimensional cone in

W .

Let CX1(W ) ⊂ CX1 ∩W be the relative interior and let C̃X1(W ) := CX1(W )⊕
⊕m′−1

j=m RDj.

We want to consider a crepant birational map obtained by introducing one new ray. This
means that there is exactly one Di lying outside the Kähler cone CX1 . By relabeling the
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1-dimensional cones, we may assume that Dm−1 lies outside CX1 . More precisely, we assume
that

(B.2)

 l(Di) > 0 for 0 ≤ i ≤ a− 1,
l(Di) = 0 for a ≤ i ≤ m− 2,
l(Dm−1) < 0

Let ω2 be an extended Kähler class in the chamber7 adjacent to (CX1 ∩W )⊕
⊕m′−1

j=m RDj.

Following [72, Section 3.1.1], we may use ω2 to define another toric orbifold X2 as follows.
The set of anti-cones is defined to be

A2 :=

{
I ⊂ {0, . . . ,m′ − 1} | ω2 ∈

∑
i∈I

R>0Di

}
.

The toric orbifold X2 is then defined to be the following stack quotient

X2 :=

[(
Cm′ \

⋃
I /∈A2

CI
)
/G1

]
,

where CI := {(z0, . . . , zm′−1) ∈ Cm′ | zi = 0 for i /∈ I}. The fan Σ2 of this toric orbifold is
defined from A2 as follows:

∑
i/∈I R≥0bi is a cone of Σ2 if and only if I ∈ A2. We also define

A′2 := {I ′ ⊂ {0, . . . ,m− 1} | I ′ ∪ {m, . . . ,m′ − 1} ∈ A2} .

Next we make a few observations about the two sets A1, A2 of anti-cones.

Lemma B.1. Let I ∈ A1. Then I ∈ A2 if and only if m− 1 ∈ I.

Proof. Suppose I ∈ A2. Then ω2 ∈
∑

i∈I R>0Di. Since l(Di) ≥ 0 for all i except i = m− 1,
and l(ω2) < 0, in order for ω2 ∈

∑
i∈I R>0Di we must have m− 1 ∈ I.

Suppose that I /∈ A2. Then ω2 /∈
∑

i∈I R>0Di. But this means that R>0ω2 /∈
∑

i∈I R>0Di.
This implies m− 1 /∈ I. �

We also have

Lemma B.2. Let I ∈ A1 and I /∈ A2. Then

(1) (I ∪ {m− 1}) \ {0, . . . , a− 1} ∈ A2.
(2) If |I| = dim G1, then I∩{0, . . . , a−1} = {iI} is a singleton, so (I∪{m−1})\{iI} ∈ A2.

Proof. The first statement follows from the fact that l(Di) ≤ 0 for all i ∈ (I ∪ {m− 1}) \
{0, . . . , a − 1}. The second statement follows from the fact that the minimal size of an
anti-cone is equal to dim G1. �

Moving the Kähler class ω1 across the wall W to ω2 induces a birational map

(B.3) X1 → X2.

between the toric varieties underlying X1 and X2. In the setting of toric GIT, this map is
induced from the variation of GIT quotients given by moving the stability parameter from
ω1 to ω2.

7The chamber structure is given by the secondary fan associated to Σ1.
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We may describe the birational map X1 → X2 in terms of the fans. By Lemmas B.1 and
B.2, If

∑
i/∈I R≥0bi is a cone in Σ1, then either this cone is also in Σ2 (in which case R≥0bm−1

is not a ray of this cone), or ∑
i/∈(I∪{m−1})\{0,...,a−1}

R≥0bi

is a cone in Σ2. This shows that the fan Σ1 is an refinement of Σ2 obtained by adding a new
ray R≥0bm−1. The birational map X1 → X2 in (B.3) is induced from this refinement, in a
manner described more generally in e.g. [51, Section 1.4].

It is easy to see from the fan description that X1 → X2 contracts the divisor D̄m−1 ⊂ X1.
Furthermore, we have

Lemma B.3. The birational map X1 → X2 in (B.3) is crepant.

Proof. Since X1 is toric Calabi-Yau, there exists ν ∈ N∨ such that (ν, bi) = 1 for i =
0, ...,m−1. We conclude that X1 → X2 is crepant by applying the criterion for being crepant
(see e.g. [51, Section 3.4] and [9, Remark 7.2]) with the support function (ν,−). �

B.3. Analytic continuations. Recall that

K1 := {d ∈ L1 ⊗Q | {i | 〈Di, d〉 ∈ Z} ∈ A1} ,
K2 := {d ∈ L1 ⊗Q | {i | 〈Di, d〉 ∈ Z} ∈ A2} .

As defined in (2.6), there are reduction functions

ν : K1 → Box(Σ1),

ν : K2 → Box(Σ2),

which are surjective and have kernels L1. This gives the identifications

K1/L1 = Box(Σ1),

K2/L1 = Box(Σ2).
(B.4)

Next we recall some details about the toric mirror map. As in (6.15), the toric mirror map
of X1 is given by

log qa = log ya +
m−1∑
j=0

QjaA
X
j (y), a = 1, . . . , r′,

τbj =AXj (y), j = m, . . . ,m′ − 1,

(B.5)

Some explanations are in order. Fix an integral basis {p1, . . . , pr} ⊂ L∨1 , where r = m′−n.
For d ∈ L1 ⊗Q, we write

qd =
r′∏
a=1

q〈p̄a,d〉a , yd =
r∏

a=1

y〈pa,d〉a

which defines qa and ya, where r′ = m− n and {p̄1, . . . , p̄r′} are images of {p1, . . . , pr′} under
the quotient map L∨1 ⊗ Q → H2(X1;Q) and they give a nef basis for H2(X1;Q). Also, Qia



GROSS FIBRATIONS, SYZ, AND OPEN GW FOR TORIC CY ORBIFOLDS 83

are chosen so that

(B.6) Di =
r∑

a=1

Qiapa, i = 0, . . . ,m− 1.

For j = 0, 1, . . . ,m− 1, we have

ΩX1
j = {d ∈ (K1)eff | ν(d) = 0, 〈Dj, d〉 ∈ Z<0 and 〈Di, d〉 ≥ 0 ∈ Z≥0 ∀i 6= j},

AX1
j (y) =

∑
d∈Ω

X1
j

yd
(−1)−〈Dj ,d〉−1(−〈Dj, d〉 − 1)!∏

i 6=j〈Di, d〉!
.

For j = m, . . . ,m′ − 1, we have

ΩX1
j = {d ∈ (K1)eff | ν(d) = bj and 〈Di, d〉 /∈ Z<0 ∀i},

AX1
j (y) =

∑
d∈Ω

X1
j

yd
m′−1∏
i=0

∏∞
k=d〈Di,d〉e(〈Di, d〉 − k)∏∞

k=0(〈Di, d〉 − k)
.

To study the analytic continuation of (B.5), we first need to be more precise about the

variables involved. We pick p1, . . . , pr such that p1 is contained in the closure of C̃X1 and

p2, . . . , pr ∈ C̃X1(W ). Applying the linear functional l ⊕ 0 to (B.6) gives

l(Di) = Qi1l(p1) +
∑
a≥2

Qial(pa).

By the choice of p1, . . . , pr, we have l(p1) > 0 and l(pa) = 0 for a ≥ 2. The signs of l(Dj) are
given in (B.2). This implies that Qi1 > 0 for 0 ≤ i ≤ a− 1,

Qi1 = 0 for a ≤ i ≤ m− 2,
Qm−1,1 < 0

Since 0 =
∑m′−1

i=0 Di =
∑m′−1

i=0

∑r
a=1Qiapa, we have

∑m′−1
i=0 Qia = 0 for all a = 1, . . . , r. Also

note that Qia = 0 for 1 ≤ a ≤ r′ and m ≤ i ≤ m′ − 1.

We now proceed to construct an analytic continuation of Aj(y) where j ∈ {0, . . . ,m′ − 1}.
We do this in details for j ∈ {m, . . . ,m′ − 1}. The case when j ∈ {0, . . . ,m − 1} is similar
and will be omitted.

Let j ∈ {m, . . . ,m′ − 1}. The element bj ∈ Box(Σ1)age=1 corresponds to a component
X1,bj of the inertia orbifold IX1. According to [9, Lemma 4.6], X1,bj is the toric Deligne-
Mumford stack associated to the quotient stacky fan Σ1/σ(bj), where σ(bj) is the minimal
cone in Σ1 that contains bj. Let dbj ∈ K1 be the unique element such that ν(dbj) = bj and
〈pa, dbj〉 ∈ [0, 1). Then by the identification of Box in (B.4), every d ∈ K1 with ν(d) = bj can
be written as

d = dbj + d0

with d0 ∈ L1.
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We consider AX1
j (y). Put

A1,bj :=

{
I ⊂ {0, . . . ,m′ − 1} |

∑
i/∈I

R≥0bi is a cone in Σ1, 〈Di, dbj〉 ∈ Z for i ∈ I

}
⊂ A1,

and define

C̃X1,bj
:=

⋂
I∈A1,bj

(∑
i∈I

R>0Di

)
= CX1,bj

+
m′−1∑
i=m

R≥0Di.

Clearly C̃X1 ⊂ C̃X1,bj
. Taking duals gives

NE(X1,bj) := C̃∨X1,bj
⊂ C̃∨X1

=: NE(X1).

By definition, Aj(y) is a series in y whose exponents are contained in Ωj. It is straightforward

to check that Ωj ⊂ NE(X1,bj). In this way we interpret Aj(y) as a function on C̃X1,bj
and a

function on C̃X1 by restriction.

If we also have C̃X2 ⊂ C̃X1,bj
, then Aj(y) can also be interpreted as a function on C̃X2 by

restriction. So in this case no analytic continuation is needed.

It remains to consider those bj such that C̃X2 is not contained in C̃X1,bj
. First observe that

Aj(y) can be rewritten as follows:

Aj(y) =
∑
d0∈L1

ydbj yd0

m′−1∏
i=0

Γ({〈Di, dbj + d0〉}+ 1)

Γ(〈Di, dbj + d0〉+ 1)
.

We put Γbj :=
∏m′−1

i=0 Γ({〈Di, dbj + d0〉}+ 1) so that we can write

Aj(y) =
∑
d0∈L1

ydbj yd0Γbj

1

Γ(〈Dm−1, dbj + d0〉+ 1)

1∏
i 6=m−1 Γ(〈Di, dbj + d0〉+ 1)

.

Since Γ(s)Γ(1− s) = π/ sin(πs), we have

1

Γ(〈Dm−1, dbj + d0〉+ 1)
= −

sin(π〈Dm−1, dbj + d0〉)
π

Γ(−〈Dm−1, dbj + d0〉),

and

Aj(y) =
∑
d0∈L1

ydbj yd0
Γbj

π
sin(π〈Dm−1, dbj + d0〉)

−Γ(−〈Dm−1, dbj + d0〉)∏
i 6=m−1 Γ(〈Di, dbj + d0〉+ 1)

.

We put d0a := 〈pa, d0〉. In view of (B.6), we have

−Γ(−〈Dm−1, dbj + d0〉)∏
i 6=m−1 Γ(〈Di, dbj + d0〉+ 1)

=
−Γ(−〈Dm−1, dbj〉 −Qm−1,1d01 −

∑
a6=1 Qm−1ad0a)∏

i 6=m−1 Γ(〈Di, dbj〉+ 1 +Qm−1,1d01 +
∑

a6=1Qm−1ad0a)
.



GROSS FIBRATIONS, SYZ, AND OPEN GW FOR TORIC CY ORBIFOLDS 85

Since yd0 =
∏r

a=1 y
〈pa,d0〉
a =

∏r
a=1 y

d0a
a , we have

Aj(y)

=
Γbj

π

∑
d01,...,d0r≥0

ydbj

(∏
a≥2

yd0a
a

)
sin(π〈Dm−1, dbj + d0〉)

×
−Γ(−〈Dm−1, dbj〉 −Qm−1,1d01 −

∑
a6=1Qm−1ad0a)∏

i 6=m−1 Γ(〈Di, dbj〉+ 1 +Qm−1,1d01 +
∑

a6=1Qm−1ad0a)

=
Γbj

π

∑
d02,...,d0r≥0

ydbj

(∏
a≥2

yd0a
a

)
sin

(
π〈Dm−1, dbj〉+

∑
a6=1

Qm−1,ad0a

)

×

(∑
d01≥0

(
(−1)Qm−1,1y1

)d01
−Γ(−〈Dm−1, dbj〉 −Qm−1,1d01 −

∑
a6=1 Qm−1ad0a)∏

i 6=m−1 Γ(〈Di, dbj〉+ 1 +Qm−1,1d01 +
∑

a6=1Qm−1ad0a)

)
.

Now observe that∑
d01≥0

(
(−1)Qm−1,1y1

)d01
−Γ(−〈Dm−1, dbj〉 −Qm−1,1d01 −

∑
a6=1 Qm−1ad0a)∏

i 6=m−1 Γ(〈Di, dbj〉+ 1 +Qm−1,1d01 +
∑

a6=1Qm−1ad0a)

=Ress∈N∪{0}ds
−Γ(−s)((−1)Qm−1,1y1)sΓ(−〈Dm−1, dbj〉 −Qm−1,1s−

∑
a6=1Qm−1ad0a)∏

i 6=m−1 Γ(〈Di, dbj〉+ 1 +Qm−1,1s+
∑

a6=1Qm−1ad0a)
.

Fix a sign of y1 so that (−1)Qm−1,1y1 ∈ R>0. By using the Mellin-Barnes integral technique
(see e.g. [10, Section 4] and [10, Lemma A.6]), we have

Ress∈N∪{0}ds
−Γ(−s)((−1)Qm−1,1y1)sΓ(−〈Dm−1, dbj〉 −Qm−1,1s−

∑
a6=1Qm−1ad0a)∏

i 6=m−1 Γ(〈Di, dbj〉+ 1 +Qm−1,1s+
∑

a6=1Qm−1ad0a)

=

∮
Cd02,...,d0r

ds
−Γ(−s)((−1)Qm−1,1y1)sΓ(−〈Dm−1, dbj〉 −Qm−1,1s−

∑
a6=1 Qm−1ad0a)∏

i 6=m−1 Γ(〈Di, dbj〉+ 1 +Qm−1,1s+
∑

a6=1Qm−1ad0a)
,

where Cd02,...,d0r is a contour on the plane with (complex) coordinate s that runs from s =
−
√
−1∞ to s = +

√
−1∞, dividing the plane into two parts so that {0, 1, . . .} lies on one

part and

(B.7) PoleL :=

{〈Dm−1, dbj〉+
∑

a6=1Qm−1ad0a − l
−Qm−1,1

| l = 0, 1, . . .

}
lies on the other part. Note that −Qm−1,1 > 0.

To analytically continue to the region where |y1| is large, we close the contour Cd02,...,d0r to
the left to enclose all poles in PoleL. This gives∮

Cd02,...,d0r

ds
−Γ(−s)((−1)Qm−1,1y1)sΓ(−〈Dm−1, dbj〉 −Qm−1,1s−

∑
a6=1Qm−1ad0a)∏

i 6=m−1 Γ(〈Di, dbj〉+ 1 +Qm−1,1s+
∑

a6=1 Qm−1ad0a)

=Ress∈PoleLds
−Γ(−s)((−1)Qm−1,1y1)sΓ(−〈Dm−1, dbj〉 −Qm−1,1s−

∑
a6=1Qm−1ad0a)∏

i 6=m−1 Γ(〈Di, dbj〉+ 1 +Qm−1,1s+
∑

a6=1Qm−1ad0a)
,
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which is equal to

∑
l≥0

(−1)l

l!

Γ
( 〈Dm−1,dbj 〉+

∑
a6=1 Qm−1ad0a−l

Qm−1,1

) (
(−1)Qm−1,1y1

) 〈Dm−1,dbj
〉+

∑
a 6=1 Qm−1ad0a−l

−Qm−1,1∏
i 6=m−1 Γ

(
〈Di, dbj〉+ 1 +Qm−1,1 ×

〈Dm−1,dbj 〉+
∑
a6=1 Qm−1ad0a−l

−Qm−1,1
+
∑

a6=1Qm−1ad0a

)

=
∑
l≥0

(−1)l

l!

(
(−1)Qm−1,1y1

) 〈Dm−1,dbj
〉+

∑
a 6=1 Qm−1ad0a−l

−Qm−1,1 π

−Qm−1,1 sinπ

( 〈Dm−1,dbj
〉+

∑
a6=1 Qm−1ad0a−l

−Qm−1,1

)
∏

i 6=m−1 Γ
(
〈Di, dbj〉+ 1 +Qm−1,1 ×

〈Dm−1,dbj 〉+
∑
a6=1 Qm−1ad0a−l

−Qm−1,1
+
∑

a6=1Qm−1ad0a

)×
× 1

Γ
(

1−
〈Dm−1,dbj 〉+

∑
a6=1 Qm−1ad0a−l

Qm−1,1

) ,
where we again use Γ(s)Γ(1− s) = π/ sin(πs).

This gives an analytic continuation of Aj(y):

Aj(y)

=
Γbj

π

∑
d02,...,d0r≥0

ydbj

(∏
a≥2

yd0a
a

)
sin

(
π〈Dm−1, dbj〉+ π

∑
a6=1

Qm−1,ad0a

)

×
∑
l≥0

(−1)l

l!

(
(−1)Qm−1,1y1

) 〈Dm−1,dbj
〉+

∑
a6=1 Qm−1ad0a−l

−Qm−1,1 π

−Qm−1,1 sinπ

( 〈Dm−1,dbj
〉+

∑
a6=1 Qm−1ad0a−l

−Qm−1,1

)
∏

i 6=m−1 Γ
(
〈Di, dbj〉+ 1 +Qm−1,1 ×

〈Dm−1,dbj 〉+
∑
a 6=1Qm−1ad0a−l

−Qm−1,1
+
∑

a6=1Qm−1ad0a

)
× 1

Γ
(

1−
〈Dm−1,dbj 〉+

∑
a6=1 Qm−1ad0a−l

Qm−1,1

) .

(B.8)

It remains to show that the expression in (B.8) can be interpreted as a function on C̃X2 . To
do this, we need a new set of variables. Pick another integral basis of {p̂1, . . . , p̂r} ⊂ L∨1 ⊗Q
such that

p̂1 := Dm−1, p̂a := pa, for a = 2, . . . , r.

Introduce the corresponding variables ŷ1, . . . , ŷr, namely yd = ŷd =
∏r

a=1 ŷ
〈p̂a,d〉
a . From this it

is easy to see that

ŷ1 = y
1/Qm−1,1

1 , ŷa = y
−Qm−1,a/Qm−1,1

1 ya, for a = 2, . . . , r.



GROSS FIBRATIONS, SYZ, AND OPEN GW FOR TORIC CY ORBIFOLDS 87

We may express Di in terms of p̂1, . . . , p̂r as follows:

Di =
r∑

a=1

Qiapa = Qi1p1 +
∑
a≥2

Qiapa

=
Qi1

Qm−1,1

(
p̂1 −

∑
a≥2

Qm−1,ap̂a

)
+
∑
a≥2

Qiap̂a

=
Qi1

Qm−1,1

p̂1 +
∑
a≥2

(
Qia −

Qi1Qm−1,a

Qm−1,1

)
p̂a.

Next we interpret the expression in (B.8) as a series in ŷ whose exponents are contained in

NE(X2) = Ĉ∨X2
. Define d̂bj ∈ L1 ⊗Q to be the unique class such that

(B.9) 〈p̂1, d̂bj〉 = 0, 〈p̂a, d̂bj〉 = 〈pa, dbj〉, for a = 2, . . . , r.

Given l, d02, . . . , d0r ≥ 0, define d̂0 ∈ L1 ⊗Q to be the unique class such that

(B.10) 〈p̂1, d̂0〉 = l, 〈p̂a, d̂0〉 = d0a, for a = 2, . . . , r.

Lemma B.4. Given l, d02, . . . , d0r ≥ 0. Then d̂ := d̂bj + d̂0 is contained in K2.

Proof. First note that 〈Dm−1, d̂〉 = 〈p̂1, d̂bj + d̂0〉 = l ∈ Z.

Let i ∈ {a, . . . ,m− 2}. We consider 〈Di, d̂〉. Let p̂∨1 , . . . , p̂
∨
r be such that 〈p̂a, p̂∨b 〉 = δab. We

calculate 〈p̂1, d0〉 =
∑

a≥1Qm−1,ad0a and 〈p̂a, d0〉 = d0a for a ≥ 2. So

d0 =

(∑
a≥1

Qm−1,ad0a

)
p̂∨1 +

∑
a≥2

d0ap̂
∨
a .

By (B.9) and (B.10), we have

d̂ = d̂bj + d̂0 = dbj − 〈pa, dbj〉p̂∨1 + d0 +

(
l −
∑
a≥1

Qm−1,ad0a

)
p̂∨1

= dbj + d0 +

(
l − 〈pa, dbj〉 −

∑
a≥1

Qm−1,ad0a

)
p̂∨1 .

Since i ∈ {a, . . . ,m− 2}, we have Di ∈ C̃X1(W ). So Di is a linear combination of p̂2, . . . , p̂r.
This implies that 〈Di, p̂

∨
1 〉 = 0, and hence

〈Di, d̂〉 = 〈Di, dbj + d0〉.

We know that 〈Di, d0〉 =
∑r

a=1Qia〈pa, d0〉 =
∑r

a=1Qiad0a ∈ Z. So 〈Di, d̂〉 = 〈Di, dbj +d0〉 ∈ Z
if and only if 〈Di, dbj〉 ∈ Z.

By assumption, C̃X2 is not contained in C̃X1,bj
. It follows easily that∑

i∈{a,...,m−2}
〈Di,dbj 〉∈Z

R>0Di
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must contain CX1 ∩W . Thus

R>0Dm−1 +
∑

i∈{a,...,m−2}
〈Di,dbj 〉∈Z

R≥0Di

contains the Kähler class ω2, and {m − 1} ∪ {i ∈ {a, . . . ,m − 2} | 〈Di, dbj〉 ∈ Z} is in A′2.

Since 〈Di, d̂〉 ∈ Z for all i ∈ {m− 1} ∪ {i ∈ {a, . . . ,m− 2} | 〈Di, dbj〉 ∈ Z}, we conclude that

d̂ ∈ K2 by the definition of K2. �

We calculate

〈Di, dbj〉+ 1 +Qm−1,1 ×
〈Dm−1, dbj〉+

∑
a6=1 Qm−1ad0a − l

−Qm−1,1

+
∑
a6=1

Qm−1ad0a

=
Qi1

Qm−1,1

l +
∑
a6=1

(
Qia −

Qi1Qm−1,a

Qm−1,1

)
d0a −

Qi1

Qm−1,1

〈Dm−1, dbj〉+ 〈Di, dbj〉

=〈Di, d̂0〉+ 〈Di −
Qi1

Qm−1,1

Dm−1, d̂bj〉.

Also, (
(−1)Qm−1,1y1

) 〈Dm−1,dbj
〉+

∑
a6=1 Qm−1ad0a−l

−Qm−1,1

=(−1)(〈Dm−1,dbj 〉+
∑
a6=1Qm−1ad0a−l)ŷ

−(〈Dm−1,dbj 〉+
∑
a6=1 Qm−1ad0a−l)

1 ,

yd0a
a = ŷd0a

a ŷ
Qm−1,ad0a

1 for a ≥ 2,

which gives

ydbj

(∏
a≥2

yd0a
a

)(
(−1)Qm−1,1y1

) 〈Dm−1,dbj
〉+

∑
a6=1 Qm−1ad0a−l

−Qm−1,1

=(−1)
Qm−1,1×

〈Dm−1,dbj
〉+

∑
a6=1 Qm−1ad0a−l

Qm−1,1 ŷd̂bj ŷd̂0 .

Also

〈Dm−1, dbj〉+
∑

a6=1 Qm−1ad0a − l
Qm−1,1

= 〈 Dm−1

Qm−1,1

, dbj〉+ 〈
p̂1 −

∑
a6=1Qm−1,ap̂a

Qm−1,1

, d̂0〉.

From these calculations it is easy to see that the expression in (B.8) can be interpreted as a

series in ŷ whose exponents are contained in NE(X2) = Ĉ∨X2
. This completes the construction

of the analytic continuation.
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