J. DIFFERENTIAL GEOMETRY 99 (2015) 165-167

ERRATUM TO "SYZ MIRROR SYMMETRY FOR TORIC CALABI-YAU MANIFOLDS"

KWOKWAI CHAN, SIU-CHEONG LAU & NAICHUNG CONAN LEUNG

Abstract

In this erratum, we give corrected versions of Conjecture 1.1 and Proposition 5.3 of our paper [1].

1. A corrected version of [1, Conjecture 1.1]

Conjecture 1.1 (which is the same as Conjecture 5.1) in [1] cannot be true as stated because the Picard number l of the toric Calabi-Yau manifold X is strictly less than the dimension of the middle homology $H_n(\check{X},\mathbb{Z})$ of the mirror \check{X} and hence the cycles $\gamma_1, \ldots, \gamma_l$ cannot form a basis of $H_n(\check{X},\mathbb{Z})$. The correct conjecture was stated as [2, Conjecture 2]:

Conjecture 1 (Replacement of Conjecture 1.1 in [1]). The SYZ map is inverse to a mirror map. In other words, there exist integral cycles $\gamma_1, \ldots, \gamma_l$ forming part of an integral basis of $H_n(\check{X}, \mathbb{Z})$ such that

$$q_a = \exp\left(-\int_{\gamma_a} \check{\Omega}_{\check{q}}\right)$$

for a = 1, ..., l, where $\check{q} = \phi(q)$ is the SYZ map defined by generating functions of genus zero open Gromov-Witten invariants $n_{\beta_i+\alpha}$.

2. A corrected version of [1, Proposition 5.3]

Proposition 5.3 in [1] is not true because the hypothesis in [1, Lemma 5.2] is not satisfied for some noncompact divisors \mathcal{D}_i of a toric Calabi-Yau manifold X. This result and its proof should be replaced by the following:

Proposition 2 (Replacement of Proposition 5.3 in [1]). Suppose that the support $|\Sigma|$ of the fan defining X is a cone over a convex polytope \mathcal{P} in the affine hyperplane $\{\underline{\nu} = 1\} \subset N_{\mathbb{R}}$. Then for any primitive generator $v_i \in N$ which is a corner of the convex polytope, we have $n_{\beta_i+\alpha} = 0$ for all $\alpha \in H_2^{\text{eff}}(X, \mathbb{Z}) - \{0\}$.

Received 11/22/2013.

Proof. Suppose that the moduli space $\mathcal{M}_1(\beta_i + \alpha)$ of disks is nonempty for some $\alpha \in H_2^{\text{eff}}(X,\mathbb{Z}) - \{0\}$. Then $\alpha \neq 0$ is realized by a non-constant rational curve Q in X. Since X is Calabi-Yau, [1, Lemma 5.2] says that Q must lie inside the toric divisors $\bigcup_{i=0}^{m-1} \mathcal{D}_i$. Now Qhas non-empty intersection with the holomorphic disk representing $\beta_i \in \pi_2(X, \mathbf{T})$ for a generic toric fiber \mathbf{T} . This implies Q has at least one sphere component C lying inside the divisor \mathcal{D}_i , which has non-empty intersection with the open toric orbit $(\mathbb{C}^{\times})^{n-1} \subset \mathcal{D}_i$ of the divisor. We will prove that the divisor \mathcal{D}_i cannot support such a holomorphic sphere C.

The toric divisor itself $\mathscr{D}_i \subset X$ is a toric manifold, whose fan $\Sigma_{\mathscr{D}_i}$ is given by the quotient of Σ by the v_i -direction. If v_i is a corner of the polytope \mathcal{P} , then the support $|\Sigma_{\mathscr{D}_i}|$ is a convex polytope with one of its corners being the origin. Thus there exists a half space defined by $\{\nu > 0\} \subset (N/\langle v_i \rangle)_{\mathbb{R}}$ for some $\nu \in M^{\perp v_i}$ containing $|\Sigma_{\mathscr{D}_i}|$. Then the function on \mathscr{D}_i corresponding to ν is holomorphic and takes zeroes on all the toric divisors of \mathscr{D}_i . Thus the hypothesis of [1, Lemma 5.2] is satisfied, which implies that any non-constant holomorphic sphere in \mathscr{D}_i must lie entirely in the toric divisors of \mathscr{D}_i . This contradicts the requirement that the holomorphic sphere C has non-empty intersection with the open toric orbit $(\mathbb{C}^{\times})^{n-1} \subset \mathscr{D}_i$.

Example 3. Let $X = K_Y$ be the total space of the canonical line bundle K_Y over a toric Fano manifold Y. The fan of X is the cone over the fan of Y. The polytope \mathcal{P} in this case contains only one interior lattice point, and all boundary lattice points are vertices of the polytope. Thus all non-compact divisors \mathcal{D}_i correspond to vertices of \mathcal{P} , and so the open Gromov-Witten invariant $n_{\beta_i+\alpha} = 0$ for all $\alpha \in H_2^{\text{eff}}(X,\mathbb{Z}) - \{0\}$. In particular, all other results in [1] and those in [2] are unaffected by the above replacement of [1, Proposition 5.3].

Example 4. Consider $X = K_{\mathbb{F}_2}$, the total space of the canonical line bundle over the Hirzebruch surface \mathbb{F}_2 , which is not Fano. The fan of \mathbb{F}_2 consists of primitive generators $v_1 = (1, 1)$, $v_2 = (0, 1)$, $v_3 = (-1, 1)$, and $v_4 = (0, -1)$. The fan of $X = K_{\mathbb{F}_2}$ is the cone over the fan of \mathbb{F}_2 . In this case v_2 is a boundary lattice point of \mathcal{P} which is not a vertex. Thus there can be stable disks whose disk components are the basic disk β_2 : n_{β_2+ke} is non-trivial for $k \in \mathbb{N}$, where e is the (-2)-curve of \mathbb{F}_2 embedded into X.

References

 K. Chan, S.-C. Lau & N.C. Leung, SYZ mirror symmetry for toric Calabi-Yau manifolds, J. Differential Geom. 90 (2012), no. 2, 177–250, MR 2899874, Zbl pre06051255.

166

[2] K. Chan, S.-C. Lau & H.-H. Tseng, Enumerative meaning of mirror maps for toric Calabi-Yau manifolds, Adv. Math. 244 (2013), 605–625, MR 3077883, Zbl pre06264346.

> DEPARTMENT OF MATHEMATICS THE CHINESE UNIVERSITY OF HONG KONG SHATIN, HONG KONG *E-mail address*: kwchan@math.cuhk.edu.hk

DEPARTMENT OF MATHEMATICS HARVARD UNIVERSITY ONE OXFORD STREET CAMBRIDGE, MA 02138 *E-mail address*: s.lau@math.harvard.edu

D-man address. S.iau@inatii.iiai vard.edu

DEPARTMENT OF MATHEMATICS AND THE INSTITUTE OF MATHEMATICAL SCIENCES AND THE CHINESE UNIVERSITY OF HONG KONG SHATIN, HONG KONG *E-mail address*: leung@math.cuhk.edu.hk