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1. Mirror symmetry before SYZ

Calabi-Yau manifolds are important in mathematics for many reasons: they
give examples of Einstein manifolds whose metrics are Ricci-flat but not flat, and
they occupy a special position in algebraic geometry as a class of varieties with
Kodaira dimension 0. But when Yau [177, 178] gave his celebrated solution of
the Calabi conjecture in 1976, no one had expected that these manifolds were also
going to play such an indispensable role in physics, or more precisely, in string theory
[13] – a candidate for unifying general relativity and quantum field theory, whose
development in turn lead to the discovery of a mathematical phenomenon called
mirror symmetry that has generated a huge amount of research and drastically
influenced many branches of mathematics.

The story began in the late 1980’s when Dixon [44] and Lerche-Vafa-Warner
[119] discovered that string theory might not distinguish Calabi-Yau manifolds, or
more precisely, that two different Calabi-Yau manifolds, when used as compactifi-
cations of the hidden extra dimensions of spacetime, could give rise to equivalent
string theories. This surprising idea was soon realized by Greene-Plesser [67] and
Candelas-Lynker-Schimmrigk [14] who independently found nontrivial examples of
such pairs of Calabi-Yau manifolds; these are called mirror pairs because two such
manifolds exhibit an interchange of Hodge numbers.

Mathematicians became really interested in mirror symmetry when it was ex-
ploited by Candelas, de la Ossa, Green and Parkes in a remarkable calculation
of the numbers of rational curves on a quintic 3-fold in P4 [12], which solved a
long-standing problem in enumerative geometry and caught much attention from
algebraic geometers at that time.

This triggered the development of important subjects like Gromov-Witten the-
ory, and eventually lead to independent proofs of the mirror theorems by Givental
[63, 64] and Lian-Liu-Yau [125, 126, 127, 128], which in particular showed that the
calculations by Candelas et al. are mathematically correct. This marked the first
milestone in the mathematical study of mirror symmetry. The next question is how
to understand mirror symmetry in an intrinsic and mathematical way.

The first such formulation was Kontsevich’s Homological Mirror Symmetry (HMS)
conjecture, proposed in his 1994 ICM address [111]. In physics terminology, a
Calabi-Yau manifold X determines two topological string theories: the A-model
and B-model, which are controlled by the symplectic and complex geometry of X
respectively [169, 175]. From this perspective, mirror symmetry can be understood
as an isomorphism between the A-model (symplectic geometry) of X and the B-
model (complex geometry) of its mirror X̌, and vice versa. The above enumerative
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predictions about the quintic 3-fold is one of many interesting manifestations of
this bigger picture.

Kontsevich’s HMS conjecture formulates mirror symmetry succinctly as an equiv-
alence between the Fukaya category of Lagrangian submanifolds in X (A-model)
and the derived category of coherent sheaves on the mirror X̌ (B-model). His
conjecture is both deep and elegant, and is expected to imply the enumerative
predictions by mirror symmetry. Nevertheless, it does not indicate how such an
equivalence can be found, nor does it tell us how to construct the mirror of a given
Calabi-Yau manifold.

2. Formulation of the SYZ conjecture

In 1996, Strominger, Yau and Zaslow [163] made a ground-breaking proposal
which revealed the intimate relation between a pair of mirror Calabi-Yau manifolds
in a geometric manner:

Conjecture 2.1 (The SYZ conjecture [163]). Suppose that X and X̌ are Calabi-
Yau manifolds mirror to each other. Then

(i) both X and X̌ admit special Lagrangian torus fibrations with sections µ :
X → B and µ̌ : X̌ → B over the same base:

X

µ
��

X̌

µ̌��
B

which are fiberwise dual to each other in the sense that if the fibers µ−1(b) ⊂
X and µ̌−1(b) ⊂ X̌ over b ∈ B are nonsingular, then they are dual tori;
and

(ii) there exist fiberwise Fourier–type transforms responsible for the interchange
between symplectic-geometric (resp. complex-geometric) data on X and
complex-geometric (resp. symplectic-geometric) data on X̌.

In a nutshell, this says that the mysterious mirror phenomenon can be under-
stood simply as a Fourier transform, known as T -duality. This remarkable and far-
reaching conjecture not only provides a beautiful geometric explanation to mirror
symmetry, but also suggests a concrete mirror construction, namely, a mirror of any
given Calabi-Yau manifold X is given by fiberwise dualizing a special Lagrangian
torus fibration on X. It immediately became a major approach in the mathematical
study of mirror symmetry (the other being Kontsevich’s HMS conjecture), and has
attracted a lot of attention from both mathematicians and physicists.

Let us briefly review the heuristic reasoning behind the SYZ conjecture. First
of all, a key idea in string theory is the existence of Dirichlet branes, or D-branes.
Physical arguments suggest that D-branes in the B-model (or simply B-branes) are
coherent sheaves over complex subvarieties while those in the A-model (A-branes)
are special Lagrangian submanifolds equipped with flat connections. As mirror
symmetry predicts an equivalence between the A-model of X and the B-model of
X̌, the moduli space of an A-brane on X should be identified with the moduli space
of the mirror B-brane on X̌.

Note that a point in X̌ is a B-brane and the moduli space is X̌ itself, so it
should be identified with the moduli space of a certain A-brane (L,∇) on X, where
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L ⊂ X is a special Lagrangian submanifold and ∇ is a flat U(1)-connection on L.
Since X̌ is swept by its points, X should be swept by deformations of L as well.
Now McLean’s theorem [136] tells us that the moduli space of a special Lagrangian
submanifold L ⊂ X is unobstructed and modeled on H1(L;R), while the moduli
space of flat U(1)-connections (modulo gauge) on L is given by H1(L;R)/H1(L;Z).
So in order to match the dimensions, we should have dimH1(L;R) = dimC X̌ = n,
and hence X should admit a special Lagrangian torus fibration

µ : X → B.

Furthermore, the manifold X̌ itself may be viewed as a B-brane whose moduli space
is a singleton, and it intersects each point in X̌ once, so the corresponding A-brane
(L,∇) should give a special Lagrangian section σ to µ with H1(σ;R) = 0. In
particular, the base B should have first Betti number b1 = 0.

Applying the same argument to X̌ yields a special Lagrangian torus fibration
with section

µ̌ : X̌ → B̌.

For a torus fiber Lb := µ−1(b) ⊂ X, its dual L∨b can be viewed as the moduli space
of flat U(1)-connections on L which, under mirror symmetry, correspond to points
in X̌. This shows that L∨b is a submanifold in X̌. More elaborated arguments show
that L∨b should be identified with a special Lagrangian torus fiber of µ̌, and we
deduce that µ and µ̌ are fibrations over the same base which are fiberwise dual to
each other.

Notice that the above gives a transform carrying the A-branes (L,∇) where L
is a fiber of µ to points (as B-branes) in X̌. This is an instance of so-called SYZ
transforms, which are Fourier–type transforms mapping symplectic-geometric data
on X to complex-geometric data on X̌.

In the original SYZ paper [163], it was observed that Ricci-flat metrics on the mir-
ror X̌ should behave differently from the semi-flat Calabi-Yau metrics, constructed
earlier by Greene-Shapere-Vafa-Yau [68]. Therefore, the SYZ mirror construction
should in general be modified by instanton or quantum corrections. As we shall
see, a key step in the investigation of mirror symmetry is to understand these
corrections, which should come from higher Fourier modes of the SYZ transforms.

3. Semi-flat SYZ

When there are no singular fibers in the special Lagrangian torus fibrations,
the SYZ construction can be worked out nicely. Firstly, McLean’s classic results
[136] give us two naturally defined integral affine structures1 on the base mani-
fold B of a special Lagrangian torus fibration µ : X → B: the symplectic and
complex affine structures. More specifically, a normal vector field v to a fiber
Lb := µ−1(b) determines a 1-form α := −ιvω ∈ Ω1(Lb;R) and an (n − 1)-form
β := ιvIm Ω ∈ Ωn−1(Lb;R), where ω and Ω are the Kähler and holomorphic volume
form on X respectively. McLean [136] proved that the corresponding deformation
is special Lagrangian if and only if both α and β are closed. By identifying TB
with H1(Lb;R) (resp. Hn−1(Lb;R)) using the cohomology class of α (resp. β), we
get the symplectic (resp. complex) affine structure on B. This also gives us the
McLean metric g(v1, v2) := −

∫
Lb
ιv1ω ∧ ιv2Im Ω on B.

1An integral affine structure on a manifold is an atlas of charts whose transition maps are all
integral affine linear transformations.
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Hitchin used these structures and the Legendre transform to illustrate the SYZ
conjecture in his beautiful paper [95]. Let x1, . . . , xn be local coordinates on B with
respect to the symplectic affine structure. Then the McLean metric can be written

as the Hessian of a convex function φ on B, i.e. g
(

∂
∂xi

, ∂
∂xj

)
= ∂2φ

∂xi∂xj
. Setting

x̌i := ∂φ/∂xi (i = 1, . . . , n) gives precisely the coordinates on B with respect to
the complex affine structure, and if

φ̌ :=

n∑
i=1

x̌ixi − φ(x1, . . . , xn)

is the Legendre transform of φ, then we have xi = ∂φ̌/∂x̌i and g
(

∂
∂x̌i

, ∂
∂x̌j

)
=

∂2φ̌
∂x̌i∂x̌j

.

If the fibration µ : X → B admits a Lagrangian section, a theorem of Duis-
termaat [45] will give us global action-angle coordinates so that symplectically we
have

X = T ∗B/Λ∨,

where the lattice Λ∨ ⊂ T ∗B is locally generated by dx1, . . . , dxn, and ω can be
identified with the canonical symplectic form

ω =

n∑
i=1

dxi ∧ dui

on T ∗B/Λ∨. Here u1, . . . , un are the fiber coordinates on T ∗B.
Then by the SYZ conjecture, the mirror of X should be the fiberwise dual of µ,

i.e.

X̌ := TB/Λ,

where the lattice Λ ⊂ TB is locally generated by ∂/∂x1, . . . , ∂/∂xn. Note that
X̌ is naturally a complex manifold with holomorphic coordinates given by zi :=
exp(xi + iyi), where y1, . . . , yn are fiber coordinates on TB dual to u1, . . . , un. X
is equipped with the holomorphic volume form

Ω̌ := d log z1 ∧ · · · ∧ d log zn.

There is an explicit fiberwise Fourier–type transform, called the semi-flat SYZ
transform F semi-flat, that carries exp iω to Ω̌ (see e.g. [23, Section 2]). Many other
details on semi-flat SYZ mirror symmetry were worked out by Leung in [120].

If we now switch to the complex affine structure on B, we obtain a symplectic
structure on X̌ compatible with its complex structure so that the mirror X̌ becomes
a Kähler manifold. Furthermore, if the function φ above satisfies the real Monge-
Ampère equation

det

(
∂2φ

∂xi∂xj

)
= constant,

we get Tn-invariant Ricci-flat metrics on both X and X̌. The McLean metric on B
is then called a Monge-Ampère metric and B is called a Monge-Ampère manifold.
This links mirror symmetry to the study of real Monge-Ampère equations and
affine Kähler geometry, where Cheng and Yau had made substantial contributions
[35, 36, 37] way before mirror symmetry was discovered. It turned out that the
construction of Monge-Ampère metrics on affine manifolds with singularities is a
very difficult question. The highly nontrivial works of Loftin-Yau-Zaslow [131, 132]
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constructed such metrics near the “Y” vertex, a typical type of singularity in the
3-dimensional case. But besides this, not much is known.

4. Constructing SYZ fibrations

Right after the introduction of the SYZ conjecture in 1996, a great deal of effort
was devoted to finding examples of special Lagrangian torus fibrations, or SYZ
fibrations, on Calabi-Yau manifolds.2 Zharkov [182] first constructed topological
torus fibrations on Calabi-Yau hypersurfaces in a smooth projective toric variety
P∆, which includes the important quintic 3-fold example. He obtained his fibrations
by deforming the restriction of the moment map on P∆ to the boundary ∂∆ of the
moment polytope to a nearby smooth Calabi-Yau hypersurface.

Applying similar ideas and a gradient-Hamiltonian flow, W.-D. Ruan found La-
grangian torus fibrations on quintic 3-folds in a series of papers [151, 152, 153].
He also carried out a nontrivial computation of the monodromy of the fibrations,
which was later used by Gross [72] to work out a topological version of SYZ mirror
symmetry for Calabi-Yau manifolds. On the other hand, Mikhalkin [137] produced
smooth torus fibrations on hypersurfaces in toric varieties by using tools from trop-
ical geometry.

In general, constructing special Lagrangian submanifolds is a very difficult prob-
lem. One promising approach is by mean curvature flow. Thomas [164] formulated
a notion of stability for classes of Lagrangian submanifolds with Maslov index zero
in a Calabi-Yau manifold, and it should be mirror to the stability of holomorphic
vector bundles. Thomas-Yau [165] conjectured that there should exist a unique
special Lagrangian representative in a Hamiltonian isotopy class if and only if the
class is stable, and that such a representative should be obtained by mean curva-
ture flow, the long time existence of which should hold. They further proposed a
Jordan-Hölder–type decomposition for special Lagrangian submanifolds and related
this to formation of singularities in mean curvature flow.

These proposals and conjectures have a big influence on the development of
Calabi-Yau geometry and the SYZ conjecture, and a lot of advances in this area
have been seen: [32, 33, 104, 118, 140, 141, 143, 158, 159, 160, 170, 171, 172, 173];
see [174] and [142] and references therein for more details. Unfortunately, despite
so much effort, existence of special Lagrangian torus fibrations on the quintic 3-fold
is still unknown.

In contrast, noncompact examples of special Lagrangian fibrations are much
easier to come by. Harvey and Lawson’s famous paper on calibrated geometries
[94] gave the simplest of such examples: the map defined by

f : C3 → R3,

(z1, z2, z3) 7→
(
Im(z1z2z3), |z1|2 − |z2|2, |z1|2 − |z3|2

)
,

is a special Lagrangian fibrations with fibers invariant under the diagonal T 2-action
on C3. This was later largely generalized by independent works of Goldstein [65]
and Gross [71], who constructed explicit special Lagrangian torus fibrations on
any toric Calabi-Yau n-fold. The discriminant loci of these examples are of real
codimension two and can be described explicitly.

2In [69, 70], instead of constructing such fibrations, Gross assumed their existence and deduced
interesting consequences which were predicted by mirror symmetry.
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Another set of noncompact examples, which has a historic impact on the devel-
opment of SYZ mirror symmetry and special Lagrangian geometry, was discovered
by Joyce [103]. It was once believed that special Lagrangian fibrations would always
be smooth and hence have codimension two discriminant loci. But the examples
of Joyce indicated that this is unlikely the case. What he constructed are explicit
S1-invariant special Lagrangian fibrations that are only piecewise smooth and have
real codimension one discriminant loci. The set of singular points of such a fibra-
tion is a Riemann surface whose amoeba-shaped image gives the codimension one
discriminant locus. Joyce argued that his examples exhibited the generic behavior
of discriminant loci of special Lagrangian fibrations.

This important work of Joyce not only deepens our understanding of possible
singularities of special Lagrangian fibrations, but also forces us to rethink about
the SYZ conjecture. Originally, a mirror pair of Calabi-Yau manifolds X and X̌
are expected to have special Lagrangian torus fibrations to the same base B and
share the same discriminant loci. Now Joyce’s examples suggest that while the
discriminant locus on one side may be of codimension two, that on the mirror side
can well be of codimension one. The best one can hope for is that as one approaches
the large complex structure limits, the discriminant loci on both sides converge to
the same codimension two subset in B.

More precisely, let X → D and X̌ → D be maximally unipotent degenerations
of Calabi-Yau manifolds mirror to each other, where D is the unit disk and 0 ∈
D are the large complex structure limits on both sides. We choose a sequence
{ti} ⊂ D converging to 0, and let gi, ǧi be Ricci-flat metrics on Xti , X̌ti respectively,
normalized to have fixed diameters C. Then a limiting version of the SYZ conjecture
can be expressed as:

(i) there are convergent subsequences of (Xti , gi) and (X̌ti , ǧi) converging (in
the Gromov-Hausdorff sense) to metric spaces (B∞, d∞) and (B̌∞, ď∞) re-
spectively;

(ii) the spaces B∞ and B̌∞ are affine manifolds with singularities which are
both homeomorphic to Sn;

(iii) outside a real codimension 2 locus Γ ⊂ B∞ (resp. Γ̌ ⊂ B̌∞), d∞ (resp. ď∞)
is induced by a Monge-Ampère metric; and

(iv) the Monge-Ampère manifolds B∞ \Γ and B̌∞ \ Γ̌ are Legendre dual to each
other.

This was proposed independently by Gross-Wilson [92] and Kontsevich-Soibelman
[114]. In fact, the general question of understanding the limiting behavior of Ricci-
flat metrics was raised by Yau in his famous lists of open problems [179, 180].
Motivated by the SYZ picture of mirror symmetry, this question has been stud-
ied extensively in the last 15 years, and substantial progress has been made by
Gross-Wilson [92], Tosatti [166, 167], Ruan-Zhang [154], Zhang [181], Rong-Zhang
[149, 150] and more recently, Gross-Tosatti-Zhang [91, 90].

The metric spaces B∞ and B̌∞ should be viewed as limits of bases of SYZ
fibrations on the Calabi-Yau families. Applying the above picture, one may try to
construct the mirror of a maximally unipotent degeneration of Calabi-Yau manifolds
X → D by first identifying the Gromov-Hausdorff limit B∞, taking the Legendre
dual B̌0 of B∞ \ Γ, and then compactifying the quotient X̌0 := TB̌0/Λ.

Unfortunately this approach is never going to work because the semi-flat complex
structure on X̌0 is not globally defined because of nontrivial monodromy of the
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affine structure around the singularities in B̌∞. To get the correct mirror, we need
to deform the complex structure of X̌0 by quantum corrections from holomorphic
disks, as suggested by SYZ.

5. SYZ for compact Calabi-Yau manifolds

It is believed that the symplectic structure that we get using semi-flat SYZ
mirror symmetry can naturally be compactified to give a global symplectic structure
on the mirror. Indeed, Castaño-Bernard and Matessi [15] have shown that the
topological compactifications constructed by Gross in [72] can be endowed with
symplectic structures, thus producing pairs of compact symplectic 6-folds which are
homeomorphic to known mirror pairs of Calabi-Yau 3-folds, including the quintic
3-fold and its mirror, and equipped with Lagrangian torus fibrations whose bases
are Legendre dual integral affine manifolds with singularities.

On the other hand, as we mentioned above, the original SYZ proposal [163]
pointed out that Ricci-flat metrics on the mirror should differ from semi-flat Calabi-
Yau metrics [68] by instanton corrections coming from holomorphic disks whose
boundaries wrap non-trivially around fibers of an SYZ fibration. Since a metric
on the mirror is determined uniquely by its symplectic and complex structures,
it is natural to expect that the instanton corrections can be used to perturb the
mirror complex structure. This is the key idea underlying the SYZ conjecture.
As holomorphic disks can be glued to give holomorphic curves, this explains why
mirror symmetry can be used to solve enumerative problems.

Given an affine manifold with singularities B, let Γ ⊂ B and B0 = B \ Γ be
its singular and smooth loci respectively. What we want is the construction of
a complex manifold X as a (partial) compactification of a small deformation of
X0 := TB0/Λ. This is called the reconstruction problem in mirror symmetry.

The problem was first studied by Fukaya in [53] where he attempted to find
suitable perturbations by directly solving the Maurer-Cartan equation that gov-
erns the deformations of complex structures on X0. In the two-dimensional case,
his heuristic arguments showed that the desired perturbations should come from
gradient flow trees in B emanating from Γ. The latter should come from limits
of holomorphic disks bounding Lagrangian torus fibers of an SYZ fibration when
one approaches a large complex structure limit. Fukaya made a series of intriguing
conjectures explaining how quantum corrections are modifying the mirror complex
structure. Nevertheless the analysis required to make his intuitively clear picture
rigorous seemed out of reach.3

Kontsevich-Soibelman [115] got around the analytic difficulties in Fukaya’s argu-
ments by working with rigid analytic spaces. They started with an integral affine
structure on S2 with 24 singular points such that the monodromy of the affine

structure around each singular point is

(
1 1
0 1

)
, and managed to reconstruct a

non-Archimedean analytic K3 surface. The basic idea is to attach an automor-
phism to each gradient flow line in Fukaya’s construction, and use them to modify
the gluing between charts on the mirror, thereby canceling the effect of the non-
trivial monodromy of the affine structure around the discriminant locus.

3In a very recent work [25], Fukaya’s program has been realized by making use of the relation
between Witten-Morse theory and de Rham theory developed in [31]. In particular, this gives a

new geometric interpretation of scattering diagrams.
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A crucial step in their argument is a key lemma showing that when two gradient
flow lines intersect, new lines attached with automorphisms can always be added so
that the composition around each intersection point is the identity. This is called a
scattering diagram, which ensures that the composition of automorphisms attached
to lines crossed by a path is independent of the path chosen, so that the modified
gluings are consistent.

At around the same time, Gross and Siebert launched their spectacular program
[84, 85, 86, 73, 87] aiming at an algebraic-geometric approach to the SYZ conjecture.
Motivated by the limiting version of the SYZ conjecture we discussed in the previous
section and the observation by Kontsevich that the Gromov-Hausdorff limit will
be roughly the dual intersection complex of the degeneration, they formulated an
algebraic-geometric SYZ procedure to construct the mirror.

Starting with a toric degeneration of Calabi-Yau manifolds, the first step is to
construct the dual intersection complex. Then one takes its (discrete) Legendre
transform, and tries to reconstruct the mirror toric degeneration of Calabi-Yau
manifolds from this Legendre dual. In this way, they can completely forget about
SYZ fibrations. The claim is that all relevant information is encoded in the tropical
geometry of the dual intersection complex, which is an integral affine manifold with
singularities and plays the role of the base of an SYZ fibration.

Using the above key lemma of Kontsevich and Soibelman, together with many
new ideas such as the use of log structures and techniques from tropical geometry,
Gross and Siebert eventually succeeded in giving a solution to the reconstruction
problem in any dimension [87]. Given an integral affine manifold with singularities
satisfying certain assumptions and equipped with some additional structures like
a polyhedral decomposition, they constructed a toric degeneration of Calabi-Yau
manifolds which can be described explicitly and canonically via tropical trees in
B. An important feature of their construction is that the Calabi-Yau manifolds
constructed are defined over C, instead of being rigid analytic spaces.

Now the goal is to acquire a more conceptual understanding of mirror symmetry
by passing through the tropical world. On the B-side, Gross and Siebert conjectured
that the deformation parameter in their construction is a canonical coordinate4 and
period integrals of the family of Calabi-Yau manifolds can be expressed in terms of
tropical disks in B. Evidences were first provided in the local cases, e.g. the local
P2 example in [87, Remark 5.1].

On the A-side, one would like to understand the Gromov-Witten theory of a
smooth fiber in terms of that of the central fiber of a toric degeneration. The recent
independent works of Abramovich-Chen [34, 4] and Gross-Siebert [89] developed
the theory of log Gromov-Witten invariants, generalizing previous works of Li-
Ruan [123], Ionel-Parker [101, 102], and Jun Li [124] on relative Gromov-Witten
theory. This constitutes a significant step towards the ultimate goal. If one can
further prove a general correspondence theorem between tropical and holomorphic
curves/disks, in the same vein as works of Mikhalkin [138, 139], Nishinou-Siebert
[147] and Nishinou [146, 145], then we can connect the A-side (i.e. Gromov-Witten
theory) of a Calabi-Yau manifold to the tropical world.

Albeit much work needs to be done, this lays out a promising and beautiful
picture to explain the geometry of mirror symmetry via tropical geometry. We

4This was recently confirmed by Ruddat-Siebert [155]
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refer the reader to the nice survey articles of the inventors [88, 75] for an overview
of the Gross-Siebert program.

6. SYZ for noncompact Calabi-Yau manifolds

The lack of examples of special Lagrangian torus fibrations is one main obstacle
in implementing the original SYZ proposal for compact Calabi-Yau manifolds (and
perhaps one of the main reasons why Gross and Siebert attempted to develop an
algebraic-geometric version). But there are plenty of noncompact examples where
one can find explicit special Lagrangian torus fibrations, such as those constructed
by Goldstein [65] and Gross [71] in the case of toric Calabi-Yau manifolds.

Moreover, open Gromov-Witten invariants which count stable maps from open
Riemann surfaces to the manifold are well-defined in the toric case by works of
Fukaya-Oh-Ohta-Ono [57, 58, 59] (and more generally in the S1-equivariant case
by the work of Liu [130]). So it makes perfect sense to carry out the SYZ proposal
directly for toric Calabi-Yau manifolds, without retreating to the tropical world
and an algebraic-geometric version.

This brings us to the realm of local mirror symmetry, which is derived from
mirror symmetry for compact Calabi-Yau manifolds by taking certain limits in the
Kähler and complex moduli spaces [107]. Since this mirror symmetry provides
many interesting examples and has numerous applications, it has attracted a lot of
attention from both physicists and mathematicians [121, 38, 97, 71, 72, 109, 66, 99,
100, 50, 51, 110, 156].

Let X be an n-dimensional toric Calabi-Yau manifold (which is necessarily non-
compact). To carry out the SYZ construction, we use a special Lagrangian torus
fibration µ : X → B constructed by Goldstein and Gross; such a fibration is non-
toric, meaning that it is not the usual moment map associated to the Hamiltonian
Tn-action on X. The discriminant locus of this SYZ fibration has been analyzed
in details by Gross and can be described explicitly.

Topologically, the base B is simply an upper half-space in Rn, and it is an
integral affine manifold with both singularities and boundary. The pre-image of
the boundary ∂B ⊂ B is a non-toric smooth hypersurface D ⊂ X (a smoothing
of the union of toric prime divisors). The discriminant locus Γ ⊂ B is a real
codimension two tropical subvariety contained in a hyperplane H which we call the
wall in B. By definition, the wall(s) inside the base of an SYZ fibration is the loci
of Lagrangian torus fibers which bound Maslov index 0 holomorphic disks in X.
It divides the base into different chambers over which the Lagrangian torus fibers
behave differently in a Floer-theoretic sense. In the case of the Gross fibration, the
wall H ⊂ B, which is parallel to the boundary hyperplane ∂B, divides the base
into two chambers B+ and B−.

We consider (virtual) counts of Maslov index 2 holomorphic disks in X bounded
by fibers of µ over B+ and B−; these are disks which intersect with the hypersurface
D at one point with multiplicity one. As a point moves from B− to B+ by crossing
the wall, the virtual number of Maslov index 2 disks bounded by the corresponding
Lagrangian torus fiber, or more precisely, genus 0 open Gromov-Witten invariants,
jumps, exhibiting a wall-crossing phenomenon.

This has been analyzed by Auroux [8, 9] and Chan-Lau-Leung [20] by applying
the sophisticated machinery developed by Fukaya-Oh-Ohta-Ono [56]. Note that
there is no scattering phenomenon in this case because there is only one wall. By
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taking fiberwise dual over each chamber in the base, and then gluing the resulting
pieces together according to the wall-crossing formulas, we obtain the instanton-
corrected or SYZ mirror X̌, which is a family of affine hypersurfaces (which are also
noncompact Calabi-Yau manifolds) over the (complexified) Kähler moduli space of
X [20, 3], and this agrees with predictions by physicists [38, 97].

This SYZ construction is very precise in the sense that it tells us exactly which
complex structure on the mirror X̌ is corresponding to any given symplectic struc-
ture on X – the defining equation of the mirror X̌ is an explicit expression written
entirely in terms of the Kähler parameters and disk counting invariants of X. For
example, the SYZ mirror of X = KP2 is given by5

(6.1) X̌ =

{
(u, v, z1, z2) ∈ C2 × (C×)2 | uv = δ(q) + z1 + z2 +

q

z1z2

}
,

where q is the Kähler parameter which measures the symplectic area of a projective
line inside the zero section of KP2 over P2, and

(6.2) δ(q) =

∞∑
k=0

nkq
k

is a generating series of genus 0 open Gromov-Witten invariants.
Furthermore, the SYZ construction naturally defines the SYZ map, which is a

map from the Kähler moduli space of X to the complex moduli space of X̌. As
conjectured by Gross and Siebert [87, Conjecture 0.2 and Remark 5.1], the SYZ
mirror family should be written in canonical coordinates. In the toric Calabi-Yau
case, this is equivalent to saying that the SYZ map is inverse to a mirror map.

Evidences for this conjecture for toric Calabi-Yau surfaces and 3-folds were given
in [20, 117], and Chan-Lau-Tseng [21] proved the conjecture in the case when X
is the total space of the canonical line bundle over a compact toric Fano manifold.
Recently, by applying orbifold techniques, the conjecture was proved for all toric
Calabi-Yau manifolds (and orbifolds) in [19]. We call this an open mirror theorem
because it provides an enumerative meaning to (inverses of) mirror maps, and gives
an effective way to compute all the genus 0 open Gromov-Witten invariants.6

The main challenge in proving these results is the computation of the genus 0
open Gromov-Witten invariants defined by Fukaya-Oh-Ohta-Ono [57]. Since the
moduli spaces of holomorphic disks are usually highly obstructed, these invariants
are in general very difficult to compute. Currently, there are only very few tech-
niques available (such as open/closed equalities, toric mirror theorems, degeneration
techniques, etc). For example, the invariants in (6.2) can be computed as:

nk = 1,−2, 5,−32, 286,−3038, 35870, . . .

for k = 0, 1, 2, 3, 4, 5, 6, . . ., which agrees with period computations in [66].
We should mention that the SYZ construction can be carried out also in the

reverse direction [3] (see also [18, Section 5]). For example, starting with the conic

5More precisely, the SYZ mirror of KP2 is given by the Landau-Ginzburg model (X̌,W = u);

see the next section.
6In their ICM lecture [82], Gross and Siebert sketched an alternative proof of this conjecture,

using logarithmic Gromov-Witten theory [34, 4, 89] and with holomorphic disks replaced by trop-

ical disks. Very recently, by applying the results in [19], Lau [116] showed that the generating
functions of open Gromov-Witten invariants (such as δ(q) in the case of X = KP2 ) are slab

functions in the sense of Gross and Siebert.
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bundle (6.1), one can construct an SYZ fibration using similar techniques as in
[65, 71]. Although the discriminant locus is of real codimension one in this case,
the SYZ mirror construction can still be carried out which gives us back the toric
Calabi-Yau 3-fold KP2 , as expected.7

Nevertheless, outside the toric realm, it is not clear how SYZ constructions can
be performed in an explicit way. One major problem is the well-definedness of open
Gromov-Witten invariants. Only in a couple of non-toric cases (see Liu [130] and
Solomon [161]) do we have a well-defined theory of open Gromov-Witten invariants.8

7. SYZ in the non–Calabi-Yau setting

Not long after its discovery, mirror symmetry has been extended to the non–
Calabi-Yau setting, notably to Fano manifolds, through the works of Batyrev [10],
Givental [62, 63, 64], Kontsevich [112], Hori-Vafa [98] and many others. Unlike the
Calabi-Yau case, the mirror is no longer given by a manifold; instead, it is predicted
to be a pair (X̌,W ), where X̌ is a non-compact Kähler manifold and W : X̌ → C
is a holomorphic function. In the physics literature, such a pair (X̌,W ) is called a
Landau-Ginzburg model, and W is called the superpotential of the model [168, 176].

It is natural to ask whether the SYZ proposal can be extended to this setting as
well. Auroux [8] was the first to consider this question and in fact he considered
a much more general setting, namely, pairs (X,D) consisting of a compact Kähler
manifold X together with an effective anticanonical divisor D. The defining section
of D defines a meromorphic volume form on X with simple poles only along D
(and nowhere vanishing on X \D), thus making it possible to speak about special
Lagrangian torus fibrations on the complement X \D.

Suppose that we are given such a fibration µ : X \D → B. Then we can try to
run the SYZ construction to produce the SYZ mirror X̌, i.e. considering the moduli
space of pairs (L,∇), where L is a fiber of µ and ∇ is a flat U(1)-connection over
L, and then modifying by instanton corrections. Moreover, the superpotential W
will naturally appears as the object mirror to Fukaya-Oh-Ohta-Ono’s obstruction
chain m0 for the Floer complexes of Lagrangian fibers of µ.

When X is a compact toric Kähler manifold, a canonical choice of D is the union
of all toric prime divisors. The moment map then provides a convenient Lagrangian
torus fibration on X, which has the nice property that it restricts to a torus bundle
on the open dense torus orbit X \ D. In this case, the SYZ mirror manifold X̌
is simply given by the algebraic torus (C×)n, because we have a torus bundle and
there are no instanton corrections in the construction of the mirror manifold.

All the essential information is encoded in the superpotential W . Prior to the
work of Auroux, it was Cho and Oh [39, 41] who first noticed that W can be
expressed in terms disk counting invariants (or genus 0 open Gromov-Witten in-
variants). By classifying all holomorphic disks in X bounded by moment map
fibers, they got an explicit formula for W in the case when X is Fano, and this
agrees with earlier predictions obtained using physical arguments by Hori-Vafa [98].
This was later vastly generalized by works of Fukaya-Oh-Ohta-Ono [57, 58, 59] to
all compact toric manifolds.

7More precisely, the SYZ mirror of (6.1) is the complement of a smooth hypersurface in KP2 .
8There are, however, recent works of Fukaya [54, 55] on defining disk counting invariants for

compact Calabi-Yau 3-folds.
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In [22], mirror symmetry for toric Fano manifolds was used as a testing ground
to see how useful Fourier–type transforms, or what we call SYZ transforms, could
be in the study of the geometry of mirror symmetry. For a toric Fano manifold
X, we consider the open dense torus orbit U0 := X \ D ⊂ X, which is also the
union of Lagrangian torus fibers of the moment map. Symplectically, we can write
U0 = T ∗B0/Λ

∨, where B is the moment polytope and B0 denotes its interior. Then
the SYZ mirror is X̌ := TB0/Λ which is a bounded domain in (C×)n. To obtain
the superpotential W , we consider the space

X̃ := U0 × Λ ⊂ LX

of fiberwise geodesic/affine loops in X. On X̃, we have an instanton-corrected
symplectic structure ω̃ = ω + Φ, where Φ is a generating function of genus 0 open
Gromov-Witten invariants which count (virtually) holomorphic disks bounded by
moment map fibers.

An explicit SYZ transform F was then constructed by combining the semi-flat
SYZ transform F semi-flat with fiberwise Fourier series, and it was shown that F
transforms the corrected symplectic structure ω̃ on X precisely to the holomorphic
volume form eW Ω̌ of the mirror Landau-Ginzburg model (X̌,W ), where W was
obtained by taking fiberwise Fourier transform of Φ.

Moreover, F induces an isomorphism between the (small) quantum cohomology
ring QH∗(X) of X and the Jacobian ring Jac(W ) of W . The proof was by passing
to the tropical limit, and observing that a tropical curve whose holomorphic coun-
terpart contributes to the quantum product can be obtained as a gluing of tropical
disks; see [22] for details. This observation was later generalized and used by Gross
[74] in his study of mirror symmetry for the big quantum cohomology of P2 via
tropical geometry.

As for manifolds of general type, there are currently two main approaches to
their mirror symmetry along the SYZ perspective. One is by Abouzaid-Auroux-
Katzarkov [3] in which they considered a hypersurface H in a toric variety V and
constructed a Landau-Ginzburg model that is SYZ mirror to the blowup of V ×C
along H×{0}. In particular, when H is the zero set of a bidegree (3, 2) polynomial
in V = P1×P1, their construction produces a mirror of the genus 2 Riemann surface,
which is in agreement with a previous proposal by Katzarkov [108, 106, 157].

Another approach, which is more in line with the Gross-Siebert program, is
the work by Gross-Katzarkov-Ruddat [80], where they proposed that the mirror
to a variety of general type is a reducible variety equipped with a certain sheaf of
vanishing cycles. Presumably, the mirror produced in this approach should give the
same data as the one produced by [3]. For example, the reducible variety should be
the critical locus of the superpotential of the SYZ mirror Landau-Ginzburg model.
But the precise relations between these two approaches are still under investigation.

8. Beyond SYZ

Besides providing a beautiful geometric explanation of mirror symmetry, the
SYZ conjecture [163] has been exerting its profound influence on many related ar-
eas of mathematics as well. We are going to briefly describe several examples of
applications in this regard.
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HMS via SYZ. As we have seen, the SYZ conjecture is based upon the idea of
D-branes in string theory. Recall that B-branes (i.e. D-branes in the B-model)
are coherent sheaves over complex subvarieties while A-branes (i.e. D-branes in
the A-model) are special Lagrangian submanifolds equipped with flat U(1) connec-
tions. Therefore we may regard Kontsevich’s Homological Mirror Symmetry (HMS)
conjecture [111], which asserts that the (derived) Fukaya category of a Calabi-Yau
manifold X is equivalent to the derived category of coherent sheaves on the mir-
ror X̌, as a manifestation of the isomorphism between the A-model on X and the
B-model on X̌. Hence, rather naturally, one may expect that the SYZ proposal,
and in particular SYZ transforms, can be employed to construct geometric functors
which realize the categorial equivalences asserted by the HMS conjecture.

For example, given a Lagrangian section of an SYZ fibration µ : X → B, its
intersection point with a fiber L of µ determines a flat U(1)-connection on the dual
torus L∨. Patching these flat U(1)-connections together give a holomorphic line
bundle over the total space of the dual fibration, which is the mirror X̌ modulo
quantum corrections. This simple idea, first envisioned by Gross [69, 70], was
explored by Arinkin-Polishchuk [7] and Leung-Yau-Zaslow [122] to construct SYZ
transforms which were then applied to prove and understand the HMS conjecture
in the semi-flat Calabi-Yau case. Later, the same idea was also exploited to study
the HMS conjecture for toric varieties [1, 2, 46, 48, 47, 16, 24, 40].

In some more recent works [18, 28, 27, 26, 81], SYZ transforms were used to con-
struct geometric Fourier–type functors (on the objects level) which realize the HMS
categorial equivalences for certain examples of toric Calabi-Yau manifolds such as
resolutions of An-singularities and the smoothed conifold, where one encounters
SYZ fibrations with singular fibers and hence nontrivial quantum corrections.

On the other hand, work in progress by K.-L. Chan, Leung and Ma [29, 30]
have shown that SYZ transforms can also be applied to construct the HMS equiva-
lences on the morphism level, at least in the semi-flat case. The ultimate goal is to
construct a canonical geometric Fourier-type functor associated to any given SYZ
fibration, which realizes the equivalences of categories asserted by the HMS conjec-
ture, thereby enriching our understanding of the geometry of the HMS conjecture,
and also mirror symmetry as a whole.

Ricci-flat metrics and disk counting. A remarkable observation in the SYZ
paper [163] is that a Ricci-flat metric on the mirror can be decomposed as the sum of
a semi-flat part (which was written down explicitly earlier in Greene-Shapere-Vafa-
Yau [68]) and an instanton-corrected part which should come from contributions
by holomorphic disks in the original Calabi-Yau manifold bounded by Lagrangian
torus fibers of an SYZ fibration. This suggests a concrete and qualitative description
of Ricci-flat metrics, which are almost never explicit.

In general, such a qualitative description is still extremely difficult to obtain
because nontrivial examples of SYZ fibrations on compact Calabi-Yau manifolds
are hard to find and open Gromov-Witten theory is not well-understood yet. How-
ever, recent works of Gaiotto-Moore-Neitzke [60, 61] have shed new light on the
hyperkähler case. They proposed a new conjectural relation between hyperkähler
metrics on the total spaces of complex integrable systems (the simplest example
of which is the well-known Ooguri-Vafa metric [148]) and Kontsevich-Soibelman’s
wall-crossing formulas.
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To describe their proposal in a bit more details, let us consider a complex inte-
grable system ψ : M → B, i.e. M is holomorphic symplectic and the fibers of ψ
are complex Lagrangian submanifolds. More precisely, what Gaiotto, Moore and
Neitzke were looking at in [60, 61] were all meromorphic Hitchin systems, in which
case complete hyperkähler metrics were first constructed by Biquard-Boalch [11];
see e.g. [61, Section 4.1]. They made use of the fact that any hyperkähler metric is
characterized by the associated twistor space, so they tried to construct a C×-family
of holomorphic Darboux charts on M which satisfy the hypotheses of the theorem
of Hitchin et al. [96]. In particular, they required the coordinates to satisfy certain
wall-crossing formulas which describe the discontinuity of the coordinates across
the so-called BPS rays, where the (virtual) counts of BPS states jump.

These wall-crossing formulas turn out to be equivalent to those used by Kontsevich-
Soibelman [115] and Gross-Siebert [87] in their constructions of toric degenerations
of Calabi-Yau manifolds (and on the other hand they are the same as the wall-
crossing formulas in motivic Donaldson-Thomas theory [105, 113]). In view of this
and the SYZ conjecture, and also the fact that a vast family of examples of noncom-
pact SYZ fibrations on meromorphic Hitchin systems, including many in complex
dimension two (e.g. gravitational instantons, log-Calabi-Yau surfaces) have been
constructed via hyperkähler rotation in [11], it is natural to expect that the hy-
perkähler metrics on those examples of complex integrable systems considered by
Gaiotto, Moore and Neitzke can be expressed in terms of (virtual) counting of
holomorphic disks.

This was done for the simplest example – the Ooguri-Vafa metric in [17]. More
recent works of W. Lu [134, 135] have demonstrated that in general the twistor
spaces and holomorphic Darboux coordinates on meromorphic Hitchin systems
studied in [60, 61] produced the same data as those required to run the Gross-
Siebert program [87], hence showing that there must be some (perhaps implicit)
relations between the hyperkähler metrics and tropical disks counting. In his PhD
thesis [129], Y.-S. Lin considered elliptic K3 surfaces and tropical disk counting
invariants. He proved that his invariants satisfy the same wall-crossing formulas as
those appeared in [60, 61]. Evidently, the hyperkähler metrics on those K3 surfaces
are closely related to disk counting as well. More recent works of Stoppa and his
collaborators [162, 49] have also shown the intimate relations between wall-crossing
formulas in motivic Donaldson-Thomas theory and the constructions of Gaiotto-
Moore-Neitzke.

Other applications of SYZ. Let us also mention two recent unexpected appli-
cations of SYZ constructions, without going into the details.

In their recent joint project [77], Gross-Hacking-Keel constructed SYZ mirror
families to log Calabi-Yau surfaces, i.e. pairs (Y,D) where Y is a nonsingular
projective rational surface and D ∈ |−KY | is a cycle of rational curves, by extending
the construction in [87] to allow integral affine manifolds with more general (i.e.
worse) singularity types. Amazingly, their results could be applied to give a proof
of a 30-year-old conjecture of Looijenga [133] concerning smoothability of cusp
singularities.

In a more recent paper [78], they applied their construction to prove a Torelli
theorem for log Calabi-Yau surfaces, which was originally conjectured in 1984 by
Friedman [52]. On the other hand, their construction is also closely connected with
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the theory of cluster varieties, and they have suggested a vast generalization of the
Fock-Goncharov dual bases [76, 79]. For a nice exposition of these exciting new
results and developments, we refer the reader to the nice survey article by Gross
and Siebert [83].

In another direction, the SYZ construction has been unexpectedly applied to
construct new knot invariants. For a knot K in S3, its conormal bundle N∗K is
canonically a Lagrangian cycle in the cotangent bundle T ∗S3. In [43], Diaconescu-
Shende-Vafa constructed a corresponding Lagrangian cycle LK in the resolved coni-
fold X := OP1(−1)⊕OP1(−1), which is roughly speaking done by lifting the conor-
mal bundle N∗K off the zero section and letting T ∗S3 undergo the conifold tran-
sition. Their construction was motivated by a mysterious phenomenon called large
N duality in physics.

In [6], Aganagic-Vafa defined a new knot invariant by a generalized SYZ con-
struction applied to the pair (X,LK). More precisely, their invariant is a generating
function of genus 0 open Gromov-Witten invariants for the pair (X,LK). It turned
out that the resulting function is always a polynomial and they conjectured that
it is nothing but a deformation of the classical A-polynomial in knot theory [42].
Furthermore, an interesting relation between their invariant and augmentations of
the contact homology algebra of K [144] was suggested. Substantial evidences for
this relation was obtained in a recent paper [5].

These two new applications of the SYZ conjecture, together with many more yet
to come, open up new directions in mirror symmetry and many other branches of
mathematics and physics,9 and they are all pointing towards further beautiful and
exciting research works in the future.
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