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ABSTRACT. We introduce the notion of a logarithmic Landau-Ginzburg (log LG) model, which is essentially
given by equipping the central degenerate fiber of the family of Landau-Ginzburg (LG) models mirror to
a projective toric manifold with a natural log structure. We show that the state space of the mirror log LG
model is naturally isomorphic to that of the original toric manifold. Following [32, 33], we give a pertur-
bative construction of primitive forms by studying the deformation theory of such a log LG model, which
involves both smoothing of the central degenerate fiber and unfolding of the superpotential. This yields a
logarithmic Frobenius manifold structure on the base space of the universal unfolding. The primitive forms
and flat coordinates we obtained are computable and closely related to the bulk-deformed Lagrangian Floer
superpotential of a projective toric manifold, at least in the semi-Fano case.
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1. INTRODUCTION

Background. The long history of mirror symmetry for toric manifolds can be traced back to the works
of Batyrev [4], Givental [19], Lian-Liu-Yau [36], Kontsevich [31], Hori-Vafa [26], and many others. Given
an n-dimensional projective toric manifold Y defined by a complete smooth fan Σ ⊂ Rn, its mirror is
generally agreed to be given by a Landau-Ginzburg (abbrev. LG) model (X1, f ), where X1 is a smooth affine
variety isomorphic to the algebraic torus (C∗)n and the so-called superpotential f : X1 → C is a Laurent
polynomial whose Newton polytope is the fan polytope of Σ. As an example, the LG mirror of Y = P2

is given by X1 = {(z1, z2, z3) ∈ C3 : z1z2z3 = 1} ∼= (C∗)2 together with the restriction f of the function
z1 + z2 + z3 to X1 ⊂ C3.

In genus zero, mirror symmetry can be understood as an isomorphism between Frobenius manifolds.
The classical work of K. Saito [40] first introduced primitive forms and used them to construct flat struc-
tures associated to universal unfoldings of isolated hypersurface singularities. Dubrovin [14] general-
ized and unified this with the WDVV equations in genus zero Gromov-Witten (GW) theory by intro-
ducing the notion of Frobenius manifolds. We call the Frobenius manifold coming from genus zero
GW theory (or big quantum cohomology) the A-model Frobenius manifold. Douai-Sabbah [12, 13] ex-
tended Saito’s work to a broad class of examples, enabling the construction of the B-model Frobenius
manifold from the LG mirror (X1, f ). Genus zero toric mirror symmetry can then be phrased as an iso-
morphism (possibly via a nontrivial mirror map) between this B-model Frobenius manifold and the
A-model Frobenius manifold associated to Y. In [2], Barannikov established such an isomorphism in
the case of projective spaces (using his own construction of the B-model Frobenius manifold).1

Subsequently, Iritani [27, 28] and Coates-Corti-Iritani-Tseng [10] investigated mirror symmetry for
toric manifolds (and more generally, toric Deligne-Mumford stacks) in terms of quantum D-modules.
They also constructed primitive forms and described the B-model Frobenius manifold structure. On the
other hand, Reichelt [38] introduced the notion of a logarithmic Frobenius manifold. Reichelt-Sevenheck
[39] showed the existence of a primitive form, yielding a logarithmic Frobenius structure associated to

1Barannikov’s construction was based on an earlier construction by Barannikov-Kontsevich [3] which produced a Frobenius
manifold structure on the extended moduli space of a Calabi-Yau manifold via polyvector fields; see also Li-Wen [34] where
they gave a construction of Frobenius manifolds via the Barannikov-Kontsevich approach unifying the Landau-Ginzburg and
Calabi-Yau geometry.
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the LG model (X1, f ). In fact, all these constructions of primitive forms and (log) Frobenius structures
made use of the mirror family of LG models (X , F) in which (X1, f ) is a smooth fiber. For example, the
LG mirror family for Y = P2 is given by X = {(z1, z2, z3; τ) ∈ C3 × C : z1z2z3 = τ} ⊂ C3 × C together
with the superpotential given by restricting F = z1 + z2 + z3 to each fiber Xτ .

Main results. In this paper, we introduced the notion of a logarithmic Landau-Ginzburg model (abbrev.
log LG model), which is essentially given by equipping the central (singular) fiber X = X0 of the mirror
family X with a natural log structure (see Definition 2.1). For instance, the log LG model mirror to
Y = P2 is given by equipping the singular surface X = X0 = {(z1, z2, z3) ∈ C3 : z1z2z3 = 0} (a union of
3 copies of C2) with a log structure and the superpotential is the restriction f of the function z1 + z2 + z3

to X0 ⊂ C3.

Our main result is a perturbative construction of primitive forms from the log LG model mirror to a
projective toric manifold, and therefore a construction of a logarithmic Frobenius manifold structure on
the base of its universal unfolding (see Section 3 and the proof of Theorem 3.13 for details):

Theorem 1.1. Let (X†, ϕ, f ) be the logarithmic Landau-Ginzburg model mirror to a projective toric manifold
Y. Then there is a perturbative construction of primitive forms which yields a logarithmic Frobenius manifold
structure on the base space S of the universal unfolding of (X†, ϕ, f ).

The construction of primitive forms and Frobenius manifold structures is along the lines of the pertur-
bative, explicit approach using polyvector fields pioneered by Li-Li-Saito [32] (see also [41, 42]), which
is a complex differential-geometric framework inspired by the BCOV gauge theory on Calabi-Yau man-
ifolds [5]. Indeed, our results can be viewed as the second application of the general construction and
explicit perturbative formula in [32], after that of exceptional unimodular singularities in [33]. More
precisely, our primitive forms and Frobenius manifold structures can all be determined perturbatively
and explicitly from the central degenerate fiber X = X0 of the mirror LG family (or the log LG mirror).
This is in sharp contrast with previous constructions, which rely on either the entire or punctured mirror
LG family.

As X = X0 is non-compact, we start the construction by following [32] to transform the complex
PVlog(X) of log polyvector fields to that PVlog,c(X) with compact support via a homotopy (Section 2.3).
This allows us to define the higher residue pairing K f on the (formally completed) Brieskorn lattice H f :=
H(PVlog(X)[[u]], ∂̄ + d f ∧+u∂) using integration (Section 2.4). Now the main advantage and novelty in
choosing the central degenerate fiber X = X0 as our reference fiber is that we can find particularly simple
and explicit good bases {φi} (Theorem 2.21) via the state space isomorphism (Theorem 2.4). In general,
the existence of good basis is a highly nontrivial problem. This greatly simplifies the construction of the
logarithmic Frobenius structure.

Next we study an unfolding of the log LG model (X, f ), which consists of two directions – one cor-
responds to the smoothing of the singular Calabi-Yau variety X while the other corresponds to unfolding
of the superpotential f . We take a universal unfolding (X , F) of (X, f ) (Section 3.1). Applying a slight
generalization of the theory of regularized integrals due to Li-Zhou [35] (which is needed because we
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will encounter integrands which have arbitrary orders of poles; see Appendix B), we can extend the
higher residue pairing K f to KF and prove that it is compatible with the extended Gauss-Manin connec-
tion ∇ (Section 3.2). This gives the main result in Section 3.2, namely, the triple (HF,∇, KF) forms a log
semi-infinite variation of Hodge structure (abbrev. ∞

2 -LVHS); see Theorem 3.6.

At this point, the remaining ingredients in constructing a log Frobenius manifold are a good opposite
filtration and a primitive form. The existence of the former is proved using the Deligne extension of a good
basis {φi} (Lemma 3.8 and Proposition 3.10), while the latter is constructed using the standard Birkhoff
factorization procedure (Equation (14), Lemma 3.11, Proposition 3.12). From these we obtain a good
opposite filtration and a primitive form ζ, hence yielding a logarithmic Frobenius manifold structure on
the base of the universal unfolding and completing the proof of Theorem 1.1; see Section 3.3 for more
details.

Relation with the toric A-side. As our construction is within the framework of Li-Li-Saito [32], the
primitive forms and flat coordinates (or semi-infinite period maps) can all be computed perturbatively and
explicitly. If we write the primitive form as ζ = eF̃/u, then the corrected superpotential f + F̃, expressed in
terms of the flat coordinates (and with the descendant variable set to be zero), should be closely related
to the bulk-deformed Lagrangian Floer superpotential [15, 16] of the projective toric manifold Y.

There are very few explicitly known calculations of the bulk-deformed Lagrangian Floer superpo-
tential of a toric manifold. Gross [21, 22] constructed an explicit perturbation of the Hori-Vafa potential
f = z1 + z2 + z3 mirror to Y = P2 using counts of Maslov index 2 tropical disks. Recently, Hong-
Lin-Zhao [25] generalized this and provided an inductive algorithm to compute the bulk-deformed La-
grangian Floer superpotentials for all Fano toric surfaces using wall-crossing techniques and a tropical-
holomorphic correspondence.

For non-bulk-deformed Lagrangian Floer superpotentials (meaning that all the ‘big quantum vari-
ables’ are set to be zero; see Section 3.4), the first calculation was done by Cho-Oh [9] in the Fano
toric case. Beyond the Fano setting, Auroux [1] and Fukaya-Oh-Ohta-Ono [17] first computed the La-
grangian Floer superpotential for the Hirzebruch surface F2 (Auroux also worked out the F3 example).
Chan-Lau extended this to all semi-Fano toric surfaces in [6]. More generally, Chan-Lau-Leung-Tseng
[7] and Gonzaleź-Iritani [20] proved that the non-bulk-deformed Lagrangian Floer superpotential of a
semi-Fano toric manifold only differs from its Hori-Vafa superpotential by the toric mirror map (a co-
ordinate change), thereby giving an explicit calculation of the non-bulk-deformed superpotential in all
such cases.

In the semi-Fano case, in fact we can see by a weight degree argument that the primitive form is sim-
ply given by ζ = 1 when all ‘big quantum variables’ are set to be zero (see Section 3.4). In this case, we
expect that our period map coincides with the toric mirror map and the non-bulk-deformed Lagrangian
Floer superpotential of a semi-Fano toric manifold Y is simply given by the Hori-Vafa potential f ex-
pressed in terms of the flat coordinates (and restricted to the ‘small quantum variables’). We verify that
this is indeed the case for the Hirzebruch surface F2 in Section 3.4.2.
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Remark 1.2. The explicit computations in Section 3.4.2 are all done by hand. In general, the semi-infinite period
map and primitive form (and hence the corrected superpotential) of any log LG toric mirror can all be computed
up to any desired order using a computer program.

Organization of the paper. The rest of this paper is organized as follows. In Section 2.1, we define
the logarithmic Landau-Ginzburg model (abbrev. log LG model) (X†, ϕ, f ) mirror to a projective toric
manifold Y. In Section 2.2, we prove the state space isomorphism and deduce the Hodge-to-de Rham degen-
eration (Theorem 2.5). After transforming smooth differential forms/polyvector fields into those with
compact support by a homotopy in Section 2.3, following [32], we define the higher residue pairing using
integration in Section 2.4. In Section 2.5, we introduce grading structures, and prove the crucial Moving
Lemma (Lemma 2.20) which is the key for constructing a natural, explicit good basis (Theorem 2.21 and
Proposition 2.22).

In Section 3.1, we study the unfolding/deformation of our log LG model and deduce the freeness of the
Hodge bundle (Theorem 3.1). In Section 3.2, we prove the compatibility between the Gauss-Manin connec-
tion and the higher residue pairing, which leads to the construction of a log semi-infinite variation of Hodge
structure (abbrev. ∞

2 -LVHS) (HF,∇, KF) in Theorem 3.6. In Section 3.3, we construct a good opposite filtra-
tion (Proposition 3.10) and a primitive form (Proposition 3.12), thereby producing the logarithmic Frobenius
manifold structure. In Section 3.4, we further study the case when Y is semi-Fano (i.e., the anticanonical
bundle K−1

Y is nef). We show that the period map restricted to the small quantum variables (i.e., those
which correspond to H2(Y)) is of the shape of the toric mirror map (Theorem 3.16), as expected. Finally,
explicit calculations for the Hirzebruch surface F2 are provided in Section 3.4.2.

Acknowledgement. We would like to thank Hiroshi Iritani, Changzheng Li, Si Li and Junwu Tu for very
helpful discussions. K. Chan was supported by grants from the Hong Kong Research Grants Council
(Project No. CUHK14301420, CUHK14301621 & CUHK14305322). Z. N. Ma was supported by National
Natural Science Foundation of China (Grant No. K23281001, K23281103).

Notation summary. In this subsection, we explain some notation that will be frequently used. When P
is a monoid, C[P] denotes the monoid ring of P with coefficients in C. We will work with analytic spaces
and write Spec(C[P]) as the corresponding toric analytic variety. When X is a log analytic space, we will
write X† to emphasize its log structure. When ϕ : X† → Y† is a map of log spaces, Ω1

X†/Y† and Θ1
X†/Y†

denote the sheaf of relative log differentials and sheaf of relative log derivations on X respectively. Let
u be a formal variable and A be a C-vector space. Then A[[u]] and A((u)) denote the space of A-valued
formal power series and formal Laurent power series in u respectively.

2. THE LOG LG MODEL MIRROR TO A PROJECTIVE TORIC MANIFOLD

2.1. Constructions. In this paper, we assume the reader has some familiarity with log geometry; for
references, see [29, 30]. We first describe the local model used in the mirror symmetry program of Gross
and Siebert, see [24].
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Let N ∼= Zn be a lattice of rank n and NR := N ⊗Z R the real vector space it spans. Let Σ ⊂ NR

be a smooth complete fan which defines an n-dimensional smooth projective toric manifold Y. Since Y
is projective, there is a strictly convex piecewise linear function ψ on |Σ| with only integral slopes. The
subset

P := {(n, r)|n ∈ |Σ|, r ≥ ψ(n)} ⊂ NR ⊕ R,

is a strictly convex rational polyhedral cone and hence defines an affine toric variety

X := Spec(C[P ∩ (N ⊕ Z)]).

The natural inclusion N ↪→ P ∩ (N ⊕ Z) given by q → (0, q) is an inclusion of monoids, which
induces a map X → C = Spec(C[N]). Let X be the fiber over 0 ∈ C. Equip X with the log structure
induced by the inclusion X ↪→ X and equip C with the log structure induced by the inclusion 0 ↪→ C.
Then Φ : X † → C† is log smooth. By pulling back the log structures on X † and C† respectively, we get
a log smooth map

ϕ : X† → 0†.

The space X can be described more explicitly. Let Σ(1) := {ρ1, · · · , ρd} ⊂ N be primitive generators
of the 1-dimensional cones of Σ. Recall that a subset P of Σ(1) is a primitive collection if P is not the set
of generators of a cone of Σ, while for 0 ≤ k < p, any k elements of P generate a k-dimensional cone in
Σ. Each primitive collection P := {ρi1 , · · · , ρip} defines an equation EP as follows

zi1 · · · zip = 0.

When P runs over all primitive collections in Σ(1), the equations {EP}P define an affine space in Cd,
and this is exactly the central fiber X. In other words, the ideal in C[z] := C[z1, · · · , zd] defining X is the
Stenley-Reisner ideal SR(Σ) of Σ. Now X = ∪iXi is the union of n-dimensional coordinate hyperplanes in
Cd, each corresponding to an n-dimensional cone of Σ. For convenience, we denote by X1 the component
defined by zl = 0 for n + 1 ≤ l ≤ d.

Since ϕ : X† → 0† is log smooth, the sheaf Ω•
X†/0† of (relative) log differentials and the sheaf Θ•

X†/0†

of (relative) log derivations are both locally free on X. Let us describe these sheaves explicitly. Since Σ
is smooth, we can assume, without loss of generality, that ρ1 = e1, · · · , ρn = en is the standard basis of
N. Assume that when n + 1 ≤ l ≤ d,

ρl =
n

∑
i=1

ailρi.

By construction, we have

zl =
n

∏
i=1

zail
i · qm

for some m ∈ Z+. By the definition of Ω1
X†/0† , we have the relations

(1)
dzl
zl

=
n

∑
i=1

ail ·
dzi
zi

, ∀n + 1 ≤ l ≤ d.

So Ω1
X†/0† is the OX-module ⊕d

i=1OX
dzi
zi

modulo the above relations, which is a locally free sheaf with a

global frame dz1
z1

, . . . , dzn
zn

.
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We set Ωk
X†/0† := ∧kΩ1

X†/0† . On any n-dimensional component Xi of X, any α ∈ Ωk
X†/0† has a unique

representative α|Xi given by a holomorphic k-form with at most log poles on Xj ∩ Sing X. The compat-
ibility condition is that if Xi and Xj has an (n − 1)-dimensional intersection Dij, then the restriction of
α|Xi and α|Xj to Dij agrees when taking into account the relations (1).

Writing θi := zi
∂

∂zi
as vector fields on Spec(C[z]), we can express Θ1

X†/0† as the OX-submodule

(2)

{
d

∑
i=1

biθi : bl =
n

∑
i=1

biail , ∀n + 1 ≤ l ≤ d

}
of Θ1

X† = ⊕d
i=1OXθi, and we set Θk

X†/0† := ∧kΘ1
X†/0† . Any v ∈ Θ1

X†/0† restricts to a log derivation on
each n-dimensional component of X.

Let Ω := ∧n
i=1

dzi
zi

. Then it defines a global nowhere vanishing log differential form in Ωn
X†/0† on X.

Hence X† is in fact log Calabi-Yau. As usual, contraction with Ω defines a map

Θk
X†/0† → Ωn−k

X†/0† , θ 7→ θ ⊢ Ω.

The following is the definition of a logarithmic version of Landau-Ginzburg models, though we will
restrict ourselves only to a narrow class.

Definition 2.1 (Logarithmic Landau-Ginzburg model). A logarithmic Landau-Ginzburg model (abbrev.
log LG model) is a triple (X†, ϕ, f ), where X† is a log Calabi-Yau analytic space with underlying space X, ϕ :
X† → 0† is a log smooth map from X† to the standard P-log point 0† associated to some toric monoid P, and f is
a holomorphic function (called the superpotential) on X such that when d f is viewed as a relative log differential,
the critical set

Crit( f ) := {z ∈ Cd : d f (z) = 0}

is compact.

Remark 2.2. In Section 2.1, we are taking the toric monoid P = N. In Section 3 and later sections when we
consider universal unfoldings, we may need to consider a more general P.

Remark 2.3. The definition of a log LG model may be generalized to the case when the log structure on X has
singularities, but we do not pursue it here.

The function f = z1 + · · ·+ zd defines a superpotential on X. As will be shown in the next section,
d f has only isolated zeros, hence the triple (X†, ϕ, f ) defines a log LG model; we regard it as a mirror of
the projective toric manifold Y.

2.2. The state space isomorphism. Let us list some important complexes of sheaves. Note that d f∧
and the holomorphic de Rham differential ∂ are well-defined differentials on Ω•

X†/0† . The first complex
is

(Ω•
X†/0† , d f∧),

where d f is viewed as a global log differential. By conjugating with Ω, we get a second complex

(Θ•
X†/0† , { f ,−}).
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Note that { f ,−} acts as a derivation, hence the cohomology group has a product structure.

Let u be a formal variable. Then we can consider the complex

(Ω•
X†/0† [[u]], d f ∧+u∂),

where [[u]] denotes formal power series in u. Again by conjugating with Ω, we obtain another complex

(Θ•
X†/0† [[u]], { f ,−}+ u∂).

The following result can be viewed as a mirror theorem without quantum corrections.

Theorem 2.4 (State space isomorphism). Let (X†, ϕ, f ) be the log LG model obtained from a projective toric
manifold Y. Then for i > 0, we have

Hi(Θ•
X†/0† , { f ,−}) = 0;

while for i = 0, we have the following ring isomorphism

H0(Θ•
X†/0† , { f ,−}) ∼= H∗(Y, C).

Proof. We will show that

(3) Hi(Ω•
X†/0† , d f∧) ∼=

{
0, i < n;

C[z]/(P(Σ) + SR(Σ)) · Ω, i = n.

Using the conjugation by Ω, the theorem then follows from the well-known result on the cohomologies
of compact toric manifolds. In the equation (3), P(Σ) denotes the ideal in C[z] generated by n elements

d

∑
i=1

⟨ρi, e1⟩zi, · · · ,
d

∑
i=1

⟨ρi, en⟩ zi,

where e1, · · · , en is the basis of the dual lattice M = Ň = Hom(N, Z) dual to e1, · · · , en. When written
as a log differential,

d f = z1 ·
dz1

z1
+ · · ·+ zd ·

dzd
zd

.

By the relations (1), we have

d f =(z1 +
d

∑
l=n+1

al1zl)
dz1

z1
+ · · ·+ (zn +

d

∑
l=n+1

alnzl)
dzn

zn

=
d

∑
i=1

⟨ρi, e1⟩zi
dz1

z1
+ · · ·+

d

∑
i=1

⟨ρi, en⟩ zi
dzn

zn
.

Since X is affine, the hypercohomology has the form

Hi(Ω•
X†/0† , d f∧) ∼= Hi(Ω•

X†/0†(X), d f∧).

To conclude that Hi(Ω•
X†/0† , d f∧) has the desired property, it is sufficient to show that

d

∑
i=1

⟨ρi, e1⟩zi, · · · ,
d

∑
i=1

⟨ρi, en⟩ zi
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form a regular sequence in C[z]/SR(Σ). This is true if the origin is the only common zero of the se-
quence, which in turn can be verified on each component of X. Let X1 be the n-dimensional component
with zi = 0 when n + 1 ≤ i ≤ d. Then on X1, the sequence becomes z1, · · · , zn, so indeed the origin is
the only common zero. The same holds on any other component of X since Σ is a smooth fan. □

Since H∗(Θ•
X†/0† , { f ,−}) is concentrated at degree 0, we have the following Hodge-to-de Rham degen-

eration property:

Theorem 2.5 (Hodge-to-de Rham degeneration). The spectral sequence associated to the u-adic filtration of
the complex (T∗

X†/0† [[u]], { f ,−}+ u∂) degenerates at the E1 page; in particular, we have the isomorphism

H∗(Θ•
X†/0† [[u]], { f ,−}+ u∂) ∼= H∗(Θ•

X†/0† , { f ,−})[[u]].

Remark 2.6. Results on complexes of log differential forms can be translated into results on complexes of log
derivations by conjugation with Ω, and vice versa. A minor difference is that it is possible to define a ring
structure on the complexes of log derivations.

2.3. A homotopy formula. Let A0,j be the sheaf of smooth differential (0, j)-forms on X and define

Ai,j
log := A0,j ⊗OX Ωi

X†/0† , PVi,j
log := A0,j ⊗OX Θi

X†/0† .

By Theorem A.10 and the fact that Ωi
X†/0† and Θi

X†/0† are locally free sheaves on X, we have the follow-
ing corollary:

Corollary 2.7. The following two complexes are exact:

0 → Ωp
X†/0† → Ap,0

log
∂̄−→ Ap,1

log
∂̄−→ Ap,2

log
∂̄−→ · · · ,

0 → Θp
X†/0† → PVp,0

log
∂̄−→ PVp,1

log
∂̄−→ PVp,2

log
∂̄−→ · · · .

Let Ai,j
log(X) and PVi,j

log(X) be the global sections of these sheaves. We define

Alog(X) :=
⊕
i,j

Ai,j
log(X), PVlog(X) :=

⊕
i,j

PVi,j
log(X),

and denote by Alog,c(X) and PVlog,c(X) the subspaces of the corresponding spaces that consist of el-
ements with only compact support. It is clear that they are all super-commutative algebras over the
algebra of smooth functions on X. In the sequel, if α is in Ai,j

log(X) or PVi,j
log(X), we will call it a differ-

ential form or polyvector field of bidgree (i, j), and define |α| = i + j for α ∈ Ai,j
log(X) and |α| = i − j

for α ∈ PVi,j
log(X). By abuse of notation, we will use ∂̄ f to denote the operator ∂̄ + d f∧ when it acts on

differential forms and the operator ∂̄ + { f ,−} when it acts on polyvector fields.

Corollary 2.8. We have

H(Ω•
X†/0† , { f ,−}) ∼=H(Alog(X), ∂̄ f ),

H(Θ•
X†/0† , { f ,−}) ∼=H(PVlog(X), ∂̄ f ).
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If we denote by Q f the operator ∂̄ f + u∂, we have a similar result:

Corollary 2.9. We have

H(Ω•
X†/0† [[u]], d f ∧+u∂) ∼=H(Alog(X)[[u]], Q f ),

H(Θ•
X†/0† [[u]], { f ,−}+ u∂) ∼=H(PVlog(X)[[u]], Q f ).

We will do integration on X to define the so-called higher residue pairing. Since X is non-compact, we
need a homotopy formula to transform an arbitrary smooth differential form into one with only compact
support. The following construction is a variation of that in [32].

Let ρ = ρ(|z1|2, · · · , |zd|2) be a smooth (real-valued) cut-off function with compact support such that
ρ ≡ 1 in a neighbourhood of 0. For 1 ≤ k ≤ n, write gk := ∑d

i=1⟨ρi, ek⟩zi = zk + ∑d
l=n+1 aklzl , and define

(4) Vf :=
1

∑k=1 gk ḡk

(
n

∑
k=1

ḡkθk +
d

∑
l=n+1

(
n

∑
k=1

akl ḡk)θl

)
,

where ḡk ∈ A0,0(X). If we define a global frame

(5) θ̃i := θi +
d

∑
l=n+1

ailθl

of Θ1
X†/0† , we have Vf = 1

∑k=1 gk ḡk

(
∑n

k=1 ḡk θ̃k
)
. The zeros of ∑k=1 gk ḡk contain only the origin since Σ

is smooth. As Vf satisfies the condition of (2), Vf is a relative log derivation on X − 0 and it defines an
operator acting on PVlog(X − 0).

Lemma 2.10.

[{ f ,−}, Vf ] = 1 on X − 0.

Proof. Let B = (bij) be the n × d matrix such that bij = δij for j ≤ n and bij = aij for j > n + 1, and let
Xi be the component of X where the generating rays of the corresponding cone are given by ρi1 , · · · , ρin .
Denote by Ci the matrix whose k-th column is the ik-th column of B. Note that Ci is invertible since Σ is
a smooth fan. We can write

d f =
n

∑
k=1

gk
dzk
zk

=

(
dzi1
zi1

, · · · ,
dzin
zin

)
(Ci)

−1(g1, · · · , gn)
T .

By conjugating with Ω and using the frame (θ̃i1 , · · · , θ̃in) = (θ̃1, · · · , θ̃n)(CT)−1,

{ f ,−} =

(
∂

∂θ̃i1
, · · · ,

∂

∂θ̃in

)
(Ci)

−1(g1, · · · , gn)
T ,

where [ ∂
∂θ̃ij

, θ̃is∧] = δjs as operators. On the other hand, on Xi − 0 we can write

Vf =
1

∑k=1 gk ḡk
(ḡ1, · · · , ḡk)Ci(θ̃i1 , · · · , θ̃in)

T .

Hence [{ f ,−}, Vf ] =
1

∑k=1 gk ḡk
(ḡ1, · · · , ḡk)Ci(Ci)

−1(g1, · · · , gn)T = 1. □
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Proposition 2.11. The inclusion of complexes

(PVlog,c(X), ∂̄ f ) ↪→ (PVlog(X), ∂̄ f )

is a quasi-isomorphism.

Proof. Define another two operators:

Tρ := ρ + (∂̄ρ)Vf
1

1 + [∂̄, Vf ]
, Rρ := (1 − ρ)Vf

1
1 + [∂̄, Vf ]

.

It is clear that they both act on PVlog(X). As in [32], we have the following identity

[∂̄ f , Rρ] = 1 − Tρ.

So Tρ gives the quasi-isomorphism. □

When the formal parameter u is present, we have a similar result:

Proposition 2.12. The inclusion of complexes

(PVlog,c(X)[[u]], Q f ) ↪→ (PVlog(X)[[u]], Q f )

is a quasi-isomorphism.

Proof. Defining Q := ∂̄ + u∂ and

Tu
ρ := ρ + (Qρ)Vf

1
1 + [Q, Vf ]

, Ru
ρ := (1 − ρ)Vf

1
1 + [Q, Vf ]

,

one finds

[Q f , Ru
ρ ] = 1 − Tu

ρ .

Now Tu
ρ gives the desired quasi-isomorphism. □

Similarly we can define Tu
ρ and Ru

ρ acting on (Alog(X)[[u]], Q f ).

Corollary 2.13. The inclusions of complexes

(Alog,c(X), ∂̄ f ) ↪→(Alog(X), ∂̄ f ),

(Alog,c(X)[[u]], Q f ) ↪→(Alog(X)[[u]], Q f )

are quasi-isomorphisms.
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2.4. Integration and the higher residue pairing. Now let us define the integral of ϕ ∈ Ap,q
log,c(X) on X.

Since
∧n

i=1(
dzi
zi

∧ dz̄i) is locally integrable around 0 ∈ Cn, one can define

∫
X

ϕ :=

{
∑i
∫

Xi
ϕi, (p, q) = (n, n);

0, (p, q) ̸= (n, n).

Here the summation is over all the n-dimensional components Xi of X and φi is the unique representa-
tive of φ on Xi. The following lemma is of fundamental importance in the sequel.

Lemma 2.14. Let ϕ ∈ An−1,n
log,c (X) and ψ ∈ An,n−1

log,c (X). Then we have∫
X

∂ϕ =
∫

X
∂̄ψ = 0.

Proof. Denote by Sing(X) the singular part of X and define Di := Xi ∩ Sing(X). Denote by Ei the set {j :
dim(Xi ∩ Xj) = n − 1} and write Dij = Xi ∩ Xj. Then Di = ∪j∈Ei Dij is a union of (n − 1)-dimensional
subspaces of Xi. Note that α = (αi) ∈ Ap,q

log,c(X) implies that for any i, αi ∈ A0,q(Xi, Ωp
Xi
(log Di)). One

can now define the Poincaré residue of αi on Dij, and in particular,

ResDij αi ∈ Ap−1,q
Di,j

log

Di,j ∩
⋃

q∈Ei ,q ̸=j

Di,q

 .

In [37, Section 2], the following formulae are proved:∫
Xi

∂αi ∧ βi =(−1)p+q+1
∫

Xi

αi ∧ ∂βi,∫
Xi

∂̄αi ∧ γi =(−1)p+q+1
∫

Xi

αi ∧ ∂̄γi − 2π
√
−1 ∑

j∈Ei

∫
Dij

ResDij αi ∧ ι∗γi,

where αi ∈ Ap,q
Xi

(log Di), βi ∈ An−p−1,n−q(Xi), γi ∈ An−p,n−q−1(Xi) and ι : Dij → Xi is the inclusion
map. Note that these formulae can also be deduced from Theorem B.5.

For α = ϕ, β = 1, where 1 denotes the function that is equal to 1 on each component, we get
∫

X ∂ϕ = 0.
For α = ψ, γ = 1, we denote by E(∆) the set {(i, j) : i < j, dim(Xi ∩ Xj) = n − 1}, and then we have∫

X
∂̄ψ =− 2π

√
−1 ∑

i
∑
j∈Ei

∫
Dij

ResDij ψi

=− 2π
√
−1 ∑

(i,j)∈E(∆)

∫
Dij

(ResDij ψi + ResDji ψj)

=0.

The last equality holds because ResDij ψi + ResDji ψj = 0, which follows from the definition of Ap,q
log,c(X).

□

Integration on X induces a pairing on Alog,c(X) defined as ⟨ϕ, ψ⟩A =
∫

X ϕ ∧ ψ. By applying Lemma
2.14, we get the following
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Corollary 2.15. For ϕ ∈ Ap,q
log,c(X), ψ ∈ Alog,c(X), we have

⟨∂ϕ, ψ⟩A =(−1)|ϕ|+1 ⟨ϕ, ∂ψ⟩A ,〈
∂̄ϕ, ψ

〉
A =(−1)|ϕ|+1 〈ϕ, ∂̄ψ

〉
A .

With the global nowhere vanishing form Ω at hand, we can define the trace of polyvector fields.
Given α ∈ PVlog,c(X), define its trace to be

Tr α :=
∫

X
(α ⊢ Ω) ∧ Ω.

Note that Tr α vanishes unless α is of bidegree (n, n).

Proposition 2.16. For α ∈ PVlog,c(X), we have

Tr(∂̄α) = Tr(∂α) = Tr{ f , α} = 0.

Proof. We have Tr(∂̄α) =
∫

X(∂̄α ⊢ Ω)∧ Ω =
∫

X ∂̄((α ⊢ Ω)∧ Ω) = 0. Tr(∂α) and Tr{ f , α} vanish because
∂α and { f , α} have no nonzero components of bidegree (n, n). □

Similarly, this trace map induces a pairing on polyvector fields by defining

⟨α, β⟩PV =: Tr(α · β)

for α, β ∈ PVlog,c(X). An explicit computation in coordinates gives the following lemma.

Lemma 2.17. Assume α ∈ PVp,q
log(X), β ∈ PVn−p,n−q

log (X). Then

((α · β) ⊢ Ω) ∧ Ω = (−1)n(q+1)+p(n+1)(α ⊢ Ω) ∧ (β ⊢ Ω).

Proposition 2.18. For any α, β ∈ PVlog,c(X), we have〈
∂̄α, β

〉
PV =− (−1)|α|

〈
α, ∂̄β

〉
PV ,

⟨{ f , α}, β⟩PV =− (−1)|α| ⟨α, { f , β}⟩PV ,

⟨∂α, β⟩PV =(−1)|α| ⟨α, ∂β⟩PV .

Proof. For the third identity, we can assume for simplicity that α ∈ PVp+1,q
log,c (X), β ∈ PVn−p,n−q

log,c (X), and
then we have

⟨∂α, β⟩PV =
∫

X
((∂α · β) ⊢ Ω) ∧ Ω

=(−1)n(q+1)+p(n+1)
∫

X
(∂α ⊢ Ω) ∧ (β ⊢ Ω)

=(−1)n(q+1)+p(n+1)+n−p−1+q+1
∫

X
(α ⊢ Ω) ∧ (∂β ⊢ Ω)

=(−1)n(q+1)+p(n+1)+n−p−1+q+1+n(q+1)+(p+1)(n+1)
∫

X
((α ∧ ∂β) ⊢ Ω) ∧ Ω

=(−1)p+1+q Tr(α · ∂β)

=(−1)|α| ⟨α, ∂β⟩PV .
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The first two identities can be proved similarly, or simply by using Proposition 2.16 and the fact that ∂̄

and { f ,−} are derivations. □

By Theorems 2.16 and 2.18, the trace map and the pairing both descend to cohomologies. Applying
Corollary 2.13, we can define on the (formally completed) Brieskorn lattice

H f := H(PVlog(X)[[u]], Q f )

a trace map and a pairing: for α(u), β(u) ∈ H f ,

Res f : H f → C[[u]], Res f (α(u)) := Tr(Tu
ρ α(u));

and

K f : H f ×H f → C[[u]], K f (α(u), β(u)) := Tr(Tu
ρ α(u) ∧ Tu

ρ β(u)),

where β(u) := β(−u).

Note that Res f and K f can be extended to H(PVlog(X)((u)), Q f ) linearly in u, which is isomorphic to
H f ⊗C[[u]] C((u)) by Theorem 2.5 and will be denoted by H f ,±. In the sequel, we will call Res f and K f

the higher residue map and the higher residue pairing respectively.

2.5. Grading structure and good basis. There exists natural grading structures on the complexes and
cohomologies. To be compatible with the cohomology grading of H∗(Y, C), we put

deg(zi) = 2, ∀1 ≤ i ≤ d

so that deg( f ) = 2. In this way, it is natural to put deg(dz) = 2, deg(z̄) = deg(dz̄) = −2. We also put

deg(θ̃i) = 2,

where θ̃i is defined in equation (5) from θi’s. Finally, we put deg(u) = 2.

We can pack up the above degree assumption by defining a grading operator E f : PVlog(X)((u)) →
PVlog(X)((u)) by

E f := 2u
∂

∂u
+ 2

d

∑
i=1

(
zi

∂

∂zi
− z̄i

∂

∂z̄i
− dz̄i ∧

∂

∂dz̄i

)
+ 2

n

∑
i=1

θ̃i ∧
∂

∂θ̃i
,

where ∂
∂θ̃i

is an odd operator satisfying [ ∂
∂θ̃i

, θ̃i] = 1. Also, the operators zi
∂

∂zi
, z̄i

∂
∂z̄i

and dz̄i ∧ ∂
∂dz̄i

act on

C0(∆,A0,∗) =
⊕d

i=1 A0,∗(Xi) (on each component Xi, only non-zero zi’s and z̄i’s in the summand act)
and these actions pass on to the subspaces A0,∗(X) using Proposition A.9, while the operator θ̃i ∧ ∂

∂θ̃i
acts on Θ∗

X†/0† .

Since Q f can be written as

Q f =
d

∑
i

dz̄i ∧
∂

∂z̄i
+

n

∑
i=1

(
gi + u

(
zi

∂

∂zi
+

d

∑
l=n+1

alizl
∂

∂zl

))
∂

∂θ̃i
,

Q f preserves the Z-grading induced by E f and thus

[E f , Q f ] = 0.
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We conclude that the action of E f descends to cohomologies. In particular, the isomorphism in Theorem
2.4 is an isomorphism of graded rings.

Lemma 2.19. The higher residue map Res f and the higher residue pairing K f both have weight degree −2n.

Proof. This is a straightforward calculation, using the fact that Tr α, α ∈ PVlog,c vanishes unless α has
weight degree 2n. □

Now let us describe a set of distinguished generators of H f . As proved in [18, Section 5.2], we can fix
an order σ1, · · · , σµ of n-dimensional cones of Σ such that if we let τi ⊂ σi, 1 ≤ i ≤ µ be the intersection
of σi with all cones in {σj : j > i, dim(σi ∩ σj) = n − 1}, then we have

(6) if τi is contained in σj, then i ≤ j.

Given a cone τ in Σ, let P(τ) be the monomial zi1 · · · zik where ρi1 , · · · , ρik are the generating rays of τ.
By the results in the same section of [18], {P(τ1), · · · , P(τµ)} forms a C-basis of H0(Θ•

X†/0† , { f ,−}). By
Theorem 2.5, they also form a set of generators of the free C[[u]]-module H f . If we denote φi := P(τi),
then φ1 = 1 and we write φµ = z1 · · · zn for convenience.

The following lemma is a refined version of the “algebraic moving lemma” in page 107 of [18].

Lemma 2.20 (Moving Lemma). Let γ1 ⊊ σ ⊂ γ2 be cones in Σ and let k = dim(σ). Then there are cones σi

of dimension k in Σ with γ1 ⊂ σi and σi ⊈ γ2 and integers mi such that

p(σ) = ∑
i

miP(σi) ∈ H f .

Proof. Without loss of generality, we can assume that γ1 is generated by ρ1, · · · , ρp, σ by ρ1, · · · , ρk, and
γ2 by ρ1, · · · , ρq with 1 ≤ p < k ≤ q ≤ n. For p + 1 ≤ i ≤ k, define θ̃i = θi + ∑d

l=n+1 ailθl , then
θ̃i ∈ Θ1

X†/0† by (2). We have

H f ∋ 0 = ({ f ,−}+ u∂)(z1 · · · ẑi · · · zk θ̃i) = z1 · · · zk +
d

∑
l=n+1

ailzlz1 · · · ẑi · · · zk.

Neglecting the terms zlz1 · · · ẑi · · · zk such that the corresponding rays do not lie in a common cone, we
get the desired result. □

Theorem 2.21. The basis described above is a good basis, namely, K f (φi, φj) ∈ C for any i, j.

Proof. If deg(φi) + deg(φj) ≤ 2n, then K f (φi, φj) ∈ C by Lemma 2.19. So we assume that deg(φi) +

deg(φj) > 2n. If τi and τj are not contained in a common cone of Σ, then K f (φi, φj) = 0 since on each
component of X either φi or φj vanishes. Thus we may further assume that τi and τj are contained in
a common maximal cone σ ∈ Σ. In this case, the number of common variables of φi and φj is m ≥ 1.
Assuming zk is a common variable, then the Moving Lemma 2.20 tells us that we can replace zk in φi by a
linear combination of variables not corresponding to rays in σ. By neglecting the terms whose variables
and that of φj do not correspond to rays in a common cone of Σ, we reduce to the case that φ′

i and φ′
j has

m − 1 common variables. By inductively reducing the number of common variables, we arrived at the
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case that φ′
i and φ′

j has no common variables and deg(φ′
i) + deg(φ′

j) > 2n. In this case, K f (φ′
i, φ′

j) = 0
since the corresponding rays cannot lie in a common cone. □

Proposition 2.22. Let K(0)
f : H(PVlog(X), ∂̄ f )× H(PVlog(X), ∂̄ f ) → C be the leading term in the expansion in

u of the higher residue pairing K f . Under the ring isomorphism in Theorem 2.4, K(0)
f coincides with the Poincaré

pairing of Y up to a nonzero constant depending only on the dimension n. In particular, K(0)
f is non-degenerate.

Proof. In fact, K(0)
f is the trace of the product of two classes in H(PVlog(X), ∂̄ f ), and is hence defined in

the same way as the Poincaré (or cup product) pairing of Y. By Theorem 2.4 and Lemma 2.19, it remains
to show the number Res f (z1 · · · zn) ∈ C is nonzero. The following sketched calculation is parallel to
that of the proof of Proposition 2.5 in [32]. First, one can show by similar calculations that

Vf [∂̄, Vf ]
n−1 = (−1)n(n−1)/2(n − 1)!

n

∑
i=1

(−1)i−1 z̄i
|z|2n dz̄1 ∧ · · · d̂z̄i ∧ · · ·dz̄n ⊗ θ1 · · · θn

and it is ∂̄-closed. Then, by the residue theorem, we have

Res f (z1 · · · zn)

=(−1)n−1
∫

X1

(
∂̄ρVf [∂̄, Vf ]

n−1(z1 · · · zn) ⊢
dz1

z1
∧ · · · ∧ dzn

zn

)
∧
(

dz1

z1
∧ · · · ∧ dzn

zn

)
=(−1)n−1

∫
X1

(
∂̄ρVf [∂̄, Vf ]

n−1 ⊢ dz1

z1
∧ · · · ∧ dzn

zn

)
∧ (dz1 ∧ · · · ∧ dzn)

=(−1)n−1(n − 1)!

·
∫

X1

d

(
ρ

n

∑
i=1

(−1)i−1 z̄i
|z|2n (dz̄1 ∧ · · · ∧ d̂z̄i ∧ · · · ∧ dz̄n) ∧ (dz1 ∧ · · ·dzn)

)

=(−1)n(n − 1)!
∫
|z|2=R

(
n

∑
i=1

(−1)i−1 z̄i
|z|2n dz̄1 ∧ · · · d̂z̄i ∧ · · ·dz̄n) ∧ (dz1 ∧ · · ·dzn)

)
=(−2π

√
−1)n(n − 1)!.

□

3. DEFORMATION THEORY OF LOG LG MODELS

3.1. Unfolding. An unfolding of our log LG model consists of two parts – one corresponds to the
smoothing of the target space X and the other corresponds to deformation of the superpotential f . The
former is described by a construction in [23].

Let P := NE(Y) be the cone of effective curves in Y with Pgp = A1(Y, Z). We consider the following
exact sequence

0 → A1(Y, Z) → Z|Σ(1)| s→ N → 0,
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where s is the map sending the basis element tρ, ρ ∈ Σ(1) to ρ itself. Let π : Z|Σ(1)| → A1(Y, Z) be any
splitting of the above sequence and let φ̃ be the unique Z|Σ(1)|-valued Σ-piecewise linear function given
by sending ρ to tρ. Define

φ = π ◦ φ̃ : M → A1(Y, Z).

Then by [23, Lemma 1.13], the map φ : |Σ| → Pgp = A1(Y, Z) is a strictly P-convex Σ-piecewise linear
function. Consider

Pφ := {(m, φ(m) + p) : m ∈ |Σ|, p ∈ P} ⊂ M × Pgp.

The convexity of φ implies that Pφ is a monoid. The natural inclusion P ↪→ Pφ given by p 7→ (0, p)
induces a flat morphism

Φ : Spec(C[Pφ]) → Spec(C[P]).

Since Y is projective, NE(Y) and the nef cone Ne f (Y) of Y are dual strictly convex rational polyhedral
cones of full dimension by [11, Theorem 6.3.22]. There is a bijection between the interior lattice points
q ∈ Ne f (Y) and strictly convex Σ-piecewise linear functions, up to adding a linear function, with only
integral slopes on |Σ|. Let ⟨−,−⟩ be the pairing between Ne f (Y) and NE(Y). Then q defines a map of
monoids

q : NE(Y) → N, p 7→ ⟨q, p⟩ .

Since NE(Y) is strictly convex and q is in the interior of Ne f (Y), the preimage of 0 ∈ N contains only
0 ∈ NE(Y) and hence the function q ◦ φ : |Σ| → R is a strictly convex Σ-piecewise linear function. In
fact, the function q ◦ φ is exactly the one q ∈ Ne f (Y) represents.

Now fix q ∈ Ne f (Y) such that it represents the function ψ in Section 2.1. We have the following
commutative diagram

Q Pφ
oo

N

OO

Poo

OO

where Q := {(m, q ◦ φ(m) + p) : m ∈ |Σ|, p ∈ N}. Dually, we have

Spec(C[Q])

��

// Spec(C[Pφ])

��
Spec(C[N]) // Spec(C[P]).
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The obvious map P → C[P] induces a canonical log structure on Spec(C[P]), so the above commutative
diagram can be upgraded to a commutative diagram of morphisms between log spaces:

(Spec(C[Q]), Q)

��

// (Spec(C[Pφ]), Pφ)

��
(Spec(C[N]), N) // (Spec(C[P]), P).

We denote the family by

π : X† := Spec(C[Pφ]) → S† := Spec(C[P]).

Denote R := C[P], T := C[t1, · · · , ts] (where s = µ − ν + 1) and R := R ⊗C T. We define a family of log
LG models parametrized by S † := Spec(R) (here the log structure is given by the natural map P → R)
where the superpotential is given by the function F = f + ∑i:deg(φi) ̸=2 ti φi. Here s is the number of
elements of a basis of H(Θ•

X†/0† , { f ,−}) whose weight degree is not 2.

Let m := C[P − 0] and I := ⟨t1, · · · , ts⟩ be the corresponding maximal ideal of R and T respectively,
and I = m ⊗ T + R ⊗ I be the maximal ideal of R. Let Rk = R/mk+1 and Rk := R/Ik+1 be the system
of kth-order log rings (with the log structure of Rk defined by the canonical monoid homomorphism
P → Rk) and R̂ and R̂ be the corresponding inverse limits. Let S†

k and S †
k be the corresponding kth-

order log schemes and Ŝ† and Ŝ † be their formal counterparts. We denote the kth-order family by
X†

k → S†
k and X †

k → S †
k over S†

k and S †
k respectively, with their formal counterparts written as X̂† and

X̂ † respectively. We get a log smooth map

ϕk : X †
k → S †

k .

The kth-order sheaf of log differential and log derivation on S †
k will be denoted by Ω•

S †
k

and Θ•
S †

k
respectively. Similarly, the sheaf of relative log differential and log derivation for the family will be
denoted by Ω•

X †
k /S †

k
and Θ•

X †
k /S †

k
respectively. We define

HF,k := H∗(Θ•
X †

k /S †
k
[[u]], {F,−}+ u∂),

HF
k := H∗(Ω•

X †
k /S †

k
[[u]], dF ∧+u∂),

which can be identified by contracting with the relative volume form Ω.

Given F as above, we define

(7) deg(ti) := 2 − deg φi, ∀i

so that F is homogeneous of weight degree 2. To define the weight degree of zp ∈ C[P] for p ∈ P, let us
fix a Σ-piecewise linear function qc on |Σ| such that qc(ρi) = 2 for any 1 ≤ i ≤ d. Then it defines

qc : NE(Y) → Z, p 7→ ⟨qc, p⟩ .

We define

(8) deg(zp) := ⟨qc, p⟩ .
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It is not difficult to see that this definition of deg(zp) is compatible with deg(zi) = 2 for any 1 ≤ i ≤ d in
the sense that if zp = ∏d

i=1 zai
i , then deg(zp) = 2 ∑i ai.

Given (8), we get a logarithmic vector field EP on Spec C[P]. Together with (7), we get an Euler vector
field E on Spec(C[Pφ])× Cs defined by

E = EP +
s

∑
i=1

deg(ti)ti
∂

∂ti
.

Define

EF := E f + E.

Then EFF = 2F and [EF, QF] = 0. In particular, EF induces a Z-grading on the hypercohomology
HF,k := H∗(Θ•

X †
k /S †

k
[[u]], {F,−}+ u∂), which is compatible for different values of k.

Theorem 3.1 (Freeness of Hodge bundle). The hypercohomology

HF
k := H(Ω•

X †
k /S †

k
[[u]], dF ∧+u∂)

is a graded free Rk[[u]]-module for each k.

Proof. We begin with the fact that H(Ω•
X †

k /S †
k

, dF∧) is a free Rk-module for each k. Notice that the map

H∗(Ω•
X †

k /S †
k

, dF∧) → H∗(Ω•
X†/0† , d f∧)

induced by taking quotient R/Ik+1 → R/I ∼= C is always surjective. This is because the product of
monomials φi = P(τi)’s with the relative volume form Ω lift to H∗(Ω•

X †
k /S †

k
, dF∧). This further shows

that H∗(Ω•
X †

k /S †
k

, dF∧) is free Rk-module for each k, with a basis φi’s. By the same degree reason and

spectral sequence argument as in Theorem 2.5, we conclude that

H(Ω•
X †

k /S †
k
[[u]], dF ∧+u∂)

is a free Rk[[u]]-module. □

3.2. Gauss-Manin connection and the higher residue pairing. Define a filtration F≥r on Ω•
X̂ † by the

image of the map ϕ̂∗(Ωr
Ŝ †)⊗ Ω•

X̂ † → Ω•
X̂ † given by taking wedge product. Therefore we have

F≥0Ω•
X̂ † /F≥1Ω•

X̂ †
∼=Ω•

X̂ †/Ŝ † ,

F≥1Ω•
X̂ † /F≥2Ω•

X̂ †
∼=ϕ̂∗(Ω1

Ŝ †)⊗ Ω•−1
X̂ †/Ŝ † .

Consider the exact sequence of complexes

0 → F≥1Ω•
X̂ † /F≥2Ω•

X̂ † → F≥0Ω•
X̂ † /F≥2Ω•

X̂ † → F≥0Ω•
X̂ † /F≥1Ω•

X̂ † → 0,

where all the three complexes have differential dF ∧+u∂.

The connecting morphism on hypercohomology induces a flat connection

∇ : HF → 1
u

Ω1
Ŝ † ⊗HF.
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Explicitly, for s ∈ HF and v ∈ Θ1
Ŝ † , we have

(9) ∇vs =
1
u

ιv(dF ∧+u∂) s̃,

where s̃ is a lifting of a representative of s to F≥0Ω•
X̂ † /F≥2Ω•

X̂ † . Now Ω can be viewed as a global
nowhere vanishing element in Ωn

X̂ †/Ŝ † . By conjugating with Ω, ∇ induces a flat connection, which will
still be denoted by ∇, on HF satisfying

(∇v φ) ⊢ Ω =
1
u

ιv(dF ∧+u∂) (φ ⊢ Ω)

for φ ∈ HF and v ∈ Θ1
Ŝ † .

The connection ∇ can be extended to the u-direction by defining

∇u ∂
∂u

s :=
(

u
∂

∂u
+ p − F

u

)
s, for s ∈ Θp

X̂ †/Ŝ † [[u]].

It can be verified that ∇u ∂
∂u

is well-defined on HF and [∇v,∇u ∂
∂u
] = 0. This extended connection is called

the extended Gauss-Manin connection. We can equally describe the extended Gauss-Manin connection on
HF,k for each k using the same formulation.

For any v ∈ Θ1
Ŝ † , the Gauss-Manin connection ∇ induces a C((u))-linear map ∇(0)

v on H f ,±, which
is called the residue of ∇. Let φ1, · · · , φµ be the good basis in Theorem 2.21.

Lemma 3.2. For any v ∈ Θ1
Ŝ † , there is a nilpotent matrix Nv ∈ Cµ×µ such that

u∇(0)
v (φ1, · · · , φµ) = (φ1, · · · , φµ)Nv.

Proof. Assume for simplicity that φ = z1 · · · zk, k ≤ n is an element of the good basis. Then by definition,

(∇(0)φ) ⊢ dz1

z1
∧ · · · ∧ dzn

zn
=(d f + u∂)

(
z1 · · · zk

dz1

z1
∧ · · · ∧ dzn

zn

)
=

d

∑
l=n+1

zlz1 · · · zk
dzl
zl

∧ dz1

z1
∧ · · · ∧ dzn

zn
.

Using the equation zl = ∏n
i=1 zali

i zpl where pl ∈ P − 0, we have dzl
zl

= dzpl
zpl + ∑n

i=1 ali
dzi
zi

. Hence

∇(0)
v φ =

d

∑
l=n+1

dzpl

zpl
(v) · zlz1 · · · zk,

and it suffices to show zlz1 · · · zk can be written as a C-linear combination of the good basis. This can be
done by an argument parallel to that of page 107 in [18], using the Moving Lemma 2.20 and descending
induction on the subscript i of φi. Thus Nv ∈ Cµ×µ for any v ∈ Θ1

Ŝ † . To see that Nv is nilpotent, we only

need to notice that u∇(0)
v always increases the weight degree by 2. □
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Now we define a trace map for sections in HF, which will turn out to be a family version of that for
H f . Since F = f + ∑i:deg(φi) ̸=2 ti φi, we can write

dF =
d

∑
i=1

zi
∂F
∂zi

dzi
zi

,

where zi
∂F
∂zi

is a polynomial in z1, · · · , zd and t. By the change of frame relations (1) that still hold in
Ω1

X̂ †/Ŝ † , we have

(10)
(

dz1

z1
, · · · ,

dzn

zn

)
Ci =

(
dzi1
zi1

, · · · ,
dzin
zin

)
as in the proof of Lemma 2.10. Therefore dF can be written as

dF =
n

∑
k=1

hk
dzk
zk

,

where hk is again a polynomial of z1, · · · , zd and t.

Let Xi be an n-dimensional component of X̂T with the corresponding cone generated by the rays
ρi1 , · · · , ρin . We express hk|Xi as a meromorphic function of zi1 , · · · , zin , zpi ’s and ti’s using zl = ∏n

i=1 zali
i zpl .

We get a meromorphic differential form on Xi × Ŝ , which we denote by (dF)i. Clearly, (dF)i and
(dF)j can be transformed to each other using equation (10) and the defining equation of the map
Spec C[Pφ] → Spec C[P], follows from the fact that dF is a global log differential in Ω1

X̂ †/Ŝ † . When
zpi = ti = 0, dF reduces to d f .

Let hk be as above and ḡk be defined as in (4), we formally write

VF :=
1

∑n
k=1 hk ḡk

(
n

∑
k=1

ḡkθk +
d

∑
l=n+1

(
n

∑
k=1

akl ḡk

)
θl

)
=

1
∑n

k=1 hk ḡk

n

∑
k=1

ḡk θ̃k.

It is only a formal expression but we can assign a meromorphic derivation on each component Xi × Ŝ

of X̂ as follows. Let Xi be as before, for any j such that j ̸= is, ∀1 ≤ s ≤ n, we treat z̄j|Xi = 0 in the
defining expression of ḡk so that ḡk|Xi is a linear function of z̄i1 , · · · , z̄in . In particular, the only common
zeros of ḡk|Xi is the origin. By writing hk|Xi as a meromorphic function and making use of the change of
frame

(θ̃i1 , · · · , θ̃in)C
T
i = (θ̃1, · · · , θ̃n),

we define (VF)i to be a section of A0,0
Xi

⊗OXi
(Θ1

X̂ †/Ŝ †)|Xi (⋆Di). Since zpi ’s and ti’s are formal variables,

(VF)i can be written as a meromorphic derivation on Xi − 0 valued in R̂. When zpi = ti = 0, (VF)i

reduces and glues to Vf . However, due to the presence of z̄i’s variables, the above expression for VF

does not define a global derivation on X̂ . Nevertheless, we have the following result that imitates
Lemma 2.10.

Lemma 3.3. For any i, let {F,−}i be defined using (dF)i∧ by conjugating with Ω. Then

[{F,−}i, (VF)i] = 1 on Xi − 0,

as an action on sections of A0,∗
Xi

⊗OXi
(Θ∗

X̂ †/Ŝ †)|Xi (⋆Di).
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Proof. With the above assumption on notation, the proof is parallel to that of Lemma 2.10. □

Let Tu
ρ,i and Ru

ρ,i be defined as in the proof of Proposition 2.12, with Vf replaced by (VF)i. Then we
have

[QF, Ru
ρ,i] = 1 − Tu

ρ,i on Γ(Xi − 0,A0,q
Xi

⊗OXi
Ωp

X̂ †/Ŝ † |Xi (⋆Di)).

For α ∈ Θ•
X̂ †/Ŝ † , we can define a trace as

Tr(α) := ∑
i
−
∫

Xi

(Tu
ρ α ⊢ Ω) ∧ Ω ∈ R̂[[u]],

where −
∫

denotes the regularized integral in Appendix B (see Definition B.3). To see why this regularized
version of integral is needed, one only needs to note that the integrand may have arbitrary orders of
poles.

Proposition 3.4. The trace map satisfies Tr(({F,−} + u∂)β) = 0, ∀β ∈ Θ•
X̂ †/Ŝ † . Hence the trace map

descends to HF.

Proof. Since Tu
ρ,iQF = QFTu

ρ,i for QF = dF ∧+∂̄ + u∂, we need only to show that for any φ = β ⊢ Ω ∈
Ωn−1

X̂ †/Ŝ † ,

∑
i
−
∫

Xi

QFTu
ρ,i φ ∧ Ω = 0,

which is equivalent to

∑
i
−
∫

Xi

d(Tu
ρ,i φ ∧ Ω) = 0.

By Theorem B.5, it is sufficient to show that the higher residue satisfies

ResDij(T
u
ρ,i φ ∧ Ω)i + ResDij(T

u
ρ,j φ ∧ Ω)j = 0

for any pair of n-dimensional components of Xi, Xj such that Dij = Xi ∩ Xj has dimension n − 1; here
the subscripts i and j indicate restriction to the corresponding component of X̂ .

Assume that Xi has free coordinates (x, w1, · · · , wn−1) and Xj has free coordinates (y, w1, · · · , wn−1).
As Σ is smooth, X̂ is contained in {xy = r} for some function r = r(w1, · · · , wn−1, zp) which can be
meromorphic in the w1, · · · , wn−1 variables. By equation (22), it suffices to show that

(11) ResDij((T
u
ρ,i φ ∧ Ω)i) + ResDij((T

u
ρ,j φ ∧ Ω)j) = 0.

To compute the residues, we express (Tu
ρ,i φ ∧ Ω)i = ∑p,l ϕp,lzptl (here l’s are multi-indices) and every

ϕp,l as

ϕp,l = dx̄ ∧ αp,l +
d log x
xk−1 ∧ βp,l + γp,l

as in equation (21). The residue is obtained from applying ( ∂
∂x )

k−1 to βp,l and then restricting on Dij. It
is similar for (Tu

ρ,j φ ∧ Ω)j = ∑p,l ψp,lzptl
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According to the expression of Tu
ρ,i in the proof of Proposition 2.12, we need to consider ρ and Q(ρ) =

(∂̄ + u∂)ρ. By definition of ρ we have ρi|Dij = ρj|Dij and ( ∂
∂x )

k(ρi)|Dij = 0 = ( ∂
∂y )

k(ρj)|Dij for any k > 0.

Writing Q(ρi) = dx̄ ∧ ai + dx ∧ bi + ci and Q(ρj) = dȳ ∧ aj + dy ∧ bj + cj, we see that ( ∂
∂x )

k(bi)|Dij = 0 =

( ∂
∂y )

k(bj)|Dij for any k ≥ 0, ci|Dij = cj|Dij and ( ∂
∂x )

k(ci)|Dij = 0 = ( ∂
∂y )

k(cj)|Dij for any k > 0. For any

1 ≤ k ≤ n, we have (ḡk)i|Dij = (ḡk)j|Dij and ( ∂
∂x )

k((ḡk)i) = 0 = ( ∂
∂y )

k((ḡk)j) for any k > 0. From these,
we can replace the terms involving ρ, bi, ci and (ḡk)i as constant functions along the x variable in the
computation of ResDij((T

u
ρ,i φ ∧ Ω)i). Their restrictions to Dij agree with ρ, bj, cj and (ḡk)j.

If we further substitute y by r
x on Xj and change d log y into d log( r

x ), then (Tu
ρ,j φ ∧ Ω)j transforms

into (Tu
ρ,i φ ∧ Ω)i. From the expression of Tu

ρ,i, we can expand ϕp,l into a Laurent series of x:

ϕp,l = ∑
r∈Z

ϕp,l,rxr,

where the coefficients ϕp,l,r’s are smooth functions on Dij that are constant along x. Then ResDij(T
u
ρ,i φ ∧

Ω)i = ∑p,l ResDij(ϕp,l)zptl , where ResDij(ϕp,l) equals the coefficient of dx
x in the above Laurent series

expansion of ϕp,l . By the above argument, this coefficient is the negative of the y-independent coefficient

of dy
y of the Laurent expansion of ψp,l in y. Therefore (11) follows. □

With the trace map at hand, we define a family version of higher residue pairing: for any α, β ∈ HF,
we set

KF(α, β) = Tr(Tu
ρ α · Tu

ρ β)

By Proposition 3.4, KF descends to a pairing:

KF : HF ×HF −→ R̂[[u]].

As [QF, EF] = 0, there exists a weight grading on HF. It turns out that KF is homogeneous with
respect to this Z-grading.

Lemma 3.5. The higher residue pairing KF is homogeneous of weight degree −2n.

Proof. Similar to that of Lemma 2.19. □

Theorem 3.6. Let s1, s2 be sections of HF. Then

(1) KF(s1, s2) = KF(s2, s1);
(2) KF(g(u)s1, s2) = KF(s1, g(−u)s2) = g(u)KF(s1, s2) for any g(u) ∈ R̂[[u]];
(3) v KF(s1, s2) = KF(∇vs1, s2) + KF(s1,∇vs2) for any v ∈ Θ1

Ŝ † ;

(4) (u d
du + n)KF(s1, s2) = KF(∇u d

du
s1, s2) + KF(s1,∇u d

du
s2);

(5) the pairing HF/uHF ×HF/uHF −→ R̂ induced by KF is nondegenerate.

Proof. Statements (1) and (2) are trivial. Statement (5) follows from Proposition 2.22. Statements (3) and
(4) follow from direct calculations, similar to that of [32, Proposition 3.20]. □
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By Theorems 3.1 and 3.6, the triple (HF,∇, KF) gives a log semi-infinite variation of Hodge structure
(abbrev. ∞

2 -LVHS).

3.3. Logarithmic Frobenius manifold. In this section, we show that there is a logarithmic Frobenius
manifold structure on S . By [38] and [8], it suffices to show the existence of a good opposite filtration
and a primitive form. Our exposition is along the lines of [32, 33]; some details will be omitted and we
refer the reader to those references.

We start with the construction of a good opposite filtration [32]. Due to the nontriviality of ∇(0)
v , there

exist no global flat sections of HF,± = H∗(Θ•
X̂ †/Ŝ † [[u]][u

−1], {F,−}+ u∂). However, there is the fol-

lowing Deligne extension of sections in H f ,± := H(PVlog(X)[[u]][u−1], { f ,−}+ u∂).

Lemma 3.7. There is a degree-preserving C((u))-linear map DE : H f ,± → HF,± such that

DE(φ) ≡ φ (mod I), ∇v ◦ DE = DE ◦ ∇(0)
v

for any v ∈ Θ1
Ŝ † .

Proof. Since φ1, · · · , φµ can also be viewed as a basis of sections of HF, there exists an R̂((u))-valued
matrix A such that

(12) (DE(φ1), · · · , DE(φµ)) = (φ1, · · · , φµ)A.

Applying u∇ on both sides and let Np and N be the matrix of ∇ and ∇(0) respectively, we have

(φ1, · · · , φµ)Np A + (φ1, · · · , φµ)u∇A = (φ1, · · · , φµ)AN

and hence u∇A = AN − Np A. We solve for A by induction on k applying to the equation

(13) u∇A ≡ AN − Np A (mod Ik+1).

The k = 0 case is trivial. The induction part is the same as that of [8, Lemma 6.13]. □

Lemma 3.8. Let DE(φ1), · · · , DE(φµ) be the Deligne extension of the good basis in Theorem 2.21. Then

KF(DE(φi), DE(φj)) = K f (φi, φj) ∈ C.

Proof. This follows from (3) of Theorem 3.6, Lemma 3.7, (∇(0))2 = 0 and Lemma 3.2 which says that
∇(0)

v is nilpotent for any v ∈ Θ1
Ŝ † . □

Remark 3.9. The sections DE(φ), φ ∈ H f ,± play the role of flat sections in the usual Landau-Ginzburg model.

Proposition 3.10. Let HF,− be the R̂[u−1]-submodule of HF,± generated by u−1DE(φ1), · · · , u−1DE(φµ).
Then HF,− defines a good opposite filtration, in other words, we have

(a) HF,± = HF ⊕HF,−;
(b) HF,− is preserved by ∇v for any v ∈ Θ1

Ŝ † ;
(c) HF,− is preserved by EF;
(d) HF,− is isotropic with respect to the symplectic pairing Resu=0 KF(−,−).
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Proof. Let H f ,− be the C[u−1]-module generated by u−1 φ1, · · · , u−1 φµ. Then H f ,± = H f ⊕ H f ,− by

Theorem 2.5. Thus (a) follows from DE(φi) ≡ φi (mod I). (b) follows from ∇v ◦ DE = DE ◦ ∇(0)
v and

Lemma 3.2. (c) follows from Lemma 3.7 that u−1DE(φ1), · · · , u−1DE(φµ) are all homogeneous with
respect to the Z-grading induced by EF. (d) follows from Lemma 3.8. □

To construct a primitive form, we consider a Birkhoff factorization of the R̂((u))-valued matrix A in the
proof of Lemma 3.7. Namely, we solve the equation A ≡ CB−1 (mod Ik+1) by induction on k, so that C
is an R̂[[u]]-valued matrix and B is of the form Idµ×µ + B′, in which B′ is an u−1R̂[u−1]-valued matrix
(cf. [32, Sections 5.4 and 6]). Then we have

(14) (DE(φ1), · · · , DE(φµ))B = (φ1, · · · , φµ)C.

Lemma 3.11. Denote (φ̃1, · · · , φ̃µ) := (DE(φ1), · · · , DE(φµ))B. Then KF(φ̃i, φ̃j) ∈ R̂.

Proof. Since C is R̂[[u]]-valued and KF(φi, φj) ∈ R̂[[u]], we see that KF(φ̃i, φ̃j) ∈ R̂[[u]]. On the other
hand, by Lemma 3.8 and the form of B, we have KF(φ̃i, φ̃j) ∈ R̂[u−1]. The result follows. □

Proposition 3.12. Let ζ := φ̃1. Then ζ is a primitive form in the sense of [32, 8]. More concretely,

(a) ζ ∈ HF ∩ uHF,−;
(b) ∇vζ = 0 ∈ uHF,−/HF,− for any v ∈ Θ1

Ŝ † ;
(c) ζ is homogeneous with respect to the Z-grading induced by EF;
(d) The Kodaira-Spencer map KS : Θ1

Ŝ † → HF/uHF given by KS(v) := ∇vζ (mod uHF) is a bundle isomor-
phism.

Proof. (a) follows from the definition of ζ. (b) follows from the assumption on B in the equation (14). (c)
is obvious. (d) follows from an easy explicit computation. □

By [38, Proposition 1.11], a good opposite filtration together with a primitive form gives the germ of
a logarithmic Frobenius manifold. Thus we arrive at our main result.

Theorem 3.13. Let (X†, ϕ, f ) be the logarithmic Landau-Ginzburg model defined from a projective toric manifold.
Then there is a logarithmic Frobenius manifold structure on the base space S .

3.4. Log LG mirrors of semi-Fano toric manifolds. In this subsection, we investigate the canonical
coordinates and primitive forms in the case of semi-Fano toric manifolds, meaning projective toric man-
ifolds X whose anticanonical line bundle K−1

X is nef.

To begin with, we arrange the good basis φ1, . . . , φµ (in Theorem 2.21) so that φ1 = 1 (i.e. of weight
degree 0), φ2, . . . , φν are of weight degree 2, while the remaining φj’s are of higher weight degrees. Let
F be the vector space spanned by the basis

DE(φ1), DE(φ2), . . . , DE(φν), DE(φν+1) . . . , DE(φµ),

and write its coordinate functions as τ1, log(τ2), . . . , log(τν), τν+1 . . . , τµ, which will be the flat coordi-
nates.
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We first describe the semi-infinite period map (or period map for short). We take the vector space V =

Pgp ×Z C and treat an element p ∈ Pgp ⊂ V as log zp. For v ∈ ΘŜ†
∼= R̂ ⊗C V∗, we declare its action

on R̂V = R̂⊗̂CSym∗V as a derivation using the natural pairing ⟨·, ·⟩ between V∗ and V. Explicitly, if we
write ∂n for n ∈ V∗, then we have ∂n(log zp) = ⟨n, p⟩ and ∂n(zp) = ⟨n, p⟩zp. Formally, we will extend the
coefficient ring from R to R⊗̂CSym∗V in order to write down the flat sections. We let 1 = DE(φ1) + η

with η ∈ HF,±⊗̂CSym>0V such that ∇v1 = 0 ∀v ∈ ΘŜ .

Definition 3.14. The semi-infinite period map is the map

Ψ : R̂⊗̂CSym∗(V) → C[τ1, log τ2, . . . , log τν, τν+1, . . . , τµ]

given by
Ψ(zp, log zp) = u[ζ − 1] ∈ uHF,−/HF,− ∼= F ⊗C R̂⊗̂CSym∗(V),

where ζ is a primitive form as in Proposition 3.12.

3.4.1. The period map for log LG mirror of a semi-Fano toric manifold. We call the variables log(τ2), . . . , log(τν)

the small quantum variables, because they correspond to a basis of H2(Y); all the other parameters are
called big quantum variables.

We will study the period map restricted to Ŝ for the family (X†, F) mirror to a semi-Fano toric man-
ifold (resp. Fano toric manifold) Y, which refers to those with all p ∈ P having non-negative (resp.
positive) weight degrees. We denote by P0 the submonoid consisting of those p’s with weight degree 0.

Let us first discuss the log LG mirror of a Fano toric manifold. We write

(15) 1 = f (zp, u)DE(φ1) +
ν

∑
i=2

gi(zp, u)DE(φi) +
µ

∑
j=ν+1

hj(zp, u)DE(φj),

and expand f = ∑k fkuk, gi = ∑k gikuk and hj = ∑k hjkuk into Laurent series in u. By a weight degree
argument, we see that gik = 0 and hjk = 0 for k ≥ 0. Similarly, we have fk = 0 for k > 0 and f0 = 1.
Thus we conclude that ζ = 1 is the primitive form.

By a similar weight argument, we find that hj(−1) = 0 = gi(−1), and f−1 = ∑deg(p)=2 apzp for some
constants ap. Modulo the ideal I>2 generated by those zp’s with p having weight degree greater than 2,
we obtain the formula

1 = (1 + u−1 ∑
deg(p)=2

apzp)DE(φ1) + u−2 ∑
i

gi(−2)DE(φi).

We need to show that ap = 0 for every p. Taking a vector field n ∈ ΘS† and applying ∇n to both sides,
we deduce that

d

∑
s=1

u−1zs(ιnd log zs) = u−1 ∑
deg(p)=2

ap∇n(zp)DE(φ1) + u−1∇n(DE(φ1)) + u−2(· · · ),

and it is enough to argue that expressing zs’s in terms of the frame DE(φi)’s does not involve compo-
nents in DE(φ1) modulo I>0. This is achieved by showing the following Lemma 3.15, which is valid for
the log LG mirror (X†, F) of a semi-Fano toric manifold.
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We take the basis {φ1, . . . , φµ} for H f ,+ as in the beginning of this subsection, lift it to a frame of HF,+

using the same monoial expressions and call them ψi’s.

Lemma 3.15. Let (X†, F) be the log LG mirror of a semi-Fano toric manifold Y. Then the connection matrix
u−1 A of ∇n, as a Ω1

S† [[u]]-valued matrix and written as a block matrix with respect to the frames ψ1 in the first
block, ψ2, . . . , ψν in the second block and ψν+1, . . . , ψµ in the third block, is of the form

A =


0 0 0
∗ ∗ ∗
∗ ∗ ∗


when modulo the ideal I>2.

Proof. For ψ1 = 1, we have ∇n1 = ∑d
s=1 u−1zsιn(d log zs) and we can express each zs in terms of

ψ2, . . . , ψν using relations in HF,± as in the Moving Lemma 2.20.

For other ψi = P(τi) = zi1 · · · zik which is identified with P(τi)Ω ∈ HF
+, the action of the connection

∇n is given by

∇n(P(τi)Ω) = ιn

(
P(τi)

(
u

k

∑
l=1

d log zil +
d

∑
s=1

zsd log zs

)
∧ Ω

)
,

using the description in equation (9). Note that the possible relations in C[Pφ] are

∏
i∈I

zi = zp ∏
j∈J

zij ,

where I is a subset of {1, . . . , d}, p ∈ P and ij ∈ {1, . . . , d} (which is allowed to repeat). If we further
modulo zp ∈ I>2, we observe that the only possible relations will have J ̸= ∅. Therefore, the RHS
cannot have components along ψ1 = 1. □

In the Fano case, we see that, modulo I>2, we have

1 = DE(φ1)−
ν

∑
i=1

(
ν

∑
l=1

cil log(ql))DE(φi) + u−2(· · · ).

The period map restricted to R̂ ⊗C Sym∗V is simply given by

log(τi) = ∑
il

cil log(ql), for i = 2, . . . , ν,

τj = 0, for j ̸= 2, . . . , ν,

where log(ql)’s is a basis for V.

In the semi-Fano case, we have a more general expression.

Theorem 3.16. Let (X†, F) be the log LG mirror of a semi-Fano toric manifold. When restricted to the parameter
space R̂ ⊗C Sym∗V, ζ = 1 is a primitive form and the period map takes the form

log(τi) = ∑
il

cil log(ql) + gi(−1)(z
p), for i = 2, . . . , ν,

τj = 0, for j ̸= 2, . . . , ν,
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where each gi(−1)(zp) is a formal series of zp where p’s have weight degree 0.

Proof. Recall that in equation (15), we have gik = 0 = hjk for k ≥ 0, fk = 0 for k > 0 and hj(−1) = 0.
The only possibility that cannot be ruled out by a degree argument is when f0 and gi(−1) are series in
zp where p’s have weight degree 0. The presence of gi(−1) contributes to the corresponding terms in
log(τi), so we simply have to rule out the presence of f0 and f−1. Once again we have to look at the
expression of ψ1 in terms of DE(φi)’s.

Fix a decreasing sequence of ideals Ji containing I>2 such that J1 = m, Ji/Ji+1 is one-dimensional
and generated by zp for some p, and their intersection is I>2. Such a sequence can be found because P is
a toric monoid, using arguments similar to those in [8, below Lemma 4.17]. We define a µ × µ matrix G
by the change of frames [ψ1, . . . , ψµ] = [DE(φ1), . . . , DE(φµ)]G. Passing to the quotient R((u))/Ji((u)),
we write the corresponding matrix as Gi, which are compatible for different i’s. Notice that G1 = id.

Write Ω1
Ŝ†

∼= R̂ ⊗C V with elements in V written as d log qi’s. The connection matrix when restricting
to H f ,± with respect to the basis φi’s is written as u−1N, where N is consists of constant 1-forms with
coefficient in V. Treating N as a matrix of 1-forms in Ω1

Ŝ† , it gives the connection 1-form with respect to
the frame DE(φi)’s by our construction. We have the change of frames relation

GA = udG + NG

relating N and the connection matrix A in Lemma 3.15. Now we can argue order by order that each Gi

is of the form

Gi =

1 0 0
∗ ∗ ∗
∗ ∗ ∗


when written as a block matrix as in Lemma 3.15.

We can write Gi as a matrix with coefficients in R((u)) \ Ji((u)), and relate Gi+1 = Gi + zpG̃ for
zp ∈ Ji \ Ji+1 and some G̃ with coefficients in C((u)). Similarly we write Ai+1 = Ai + zp Ã for the
matrix A. Suppose the claim is true for Gi, and we consider the change of frames equation modulo
R((u))/Ji+1. We obtain

(Gi + zpG̃)(Ai + zp Ã) = ud(Gi + zpG̃) + N(Gi + zpG̃),

and the relation

(ud log(zp)G̃ + NG̃ − G̃N)zp = Gi Ai − udGi − NGi + zp Ã.

From the induction hypothesis and Lemma 3.15, we see that the RHS is a matrix with zero first row.
Contracting with a constant vector field n ∈ V∗ such that ιd log(zp) ̸= 0, ιnN becomes a lower triangular
nilpotent matrix. Then G̃ is forced to have zero first row from the above equation. □

3.4.2. Explicit computations for the Hirzebruch surface F2. For the Hirzebruch surface F2 (which is semi-
Fano), perturbative expansions for the primitive form ζ and the semi-infinite period map can be calcu-
lated explicitly by hand.
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Associated to F2 is the fan Σ in NR = R2 whose 1-dimensional cones are generated by e1 = (1, 0),
e2 = (0, 1), e3 = (−1, 2) and e4 = (0,−1). Let Di ⊂ F2 be the toric divisor corresponding to the ray
spanned by ei. The monoid P is isomorphic to N2 with generators C1 and C2 corresponding to rational
curves lying in D1 and D2 respectively. Here C1 has Chern number 2 and C2 has Chern number 0. The
universal piecewise linear function φ : |Σ| → R2 is defined by

φ(e1) = (0, 0) = φ(e2), φ(e3) = (0, 1), φ(e4) = (1, 0).

Letting q1 = z(1,0) and q2 = z(0,1), we see that q1 has weight degree 2 and q2 has weight degree 0. X† is
given as a subvariety of Spec(C[q1, q2][z1, z2, z3, z4]) by the relations

z2z4 = q1, z1z3 = q2z2
2.

To compare with known results, we will only compute the canonical coordinates and the primitive
form when restricted to R̂ = C[[q1, q2]] (the small quantum variables), ignoring the other two parameters
t1, t2. The Landau-Ginzburg superpotential is given by F = z1 + z2 + z3 + z4. The sheaf Ω∗

X̂†/Ŝ† of log
differential forms is locally free with generators d log z1, d log z2, and the holomorphic volume form
is taken to be Ω = d log z1 ∧ d log z2. The cohomology H∗(Θ∗

X̂†/Ŝ† [[u]], u∂ + {F, ·}) is concentrated at
degree 0 which is generated by polynomials in zi’s, qi’s and u.

We have several useful relations such as:

z1 = z3, z2 = −2z3 + z4, z2
2 = f (q2)(q1 − uz2 − 2z1z4),

where f (q2) =
1

1−4q2
; the first two equalities come from the Moving Lemma 2.20, while the third equality

is obtained from the following relations

(u∂ + {F, ·})(z2(θ̃2 + 2θ̃1)) = z2
2 − q1 + uz2 + 2z1z2 = 0,

(u∂ + {F, ·})(z1θ̃2) = z1z2 + 2q2z2
2 − z1z4 = 0.

We arrange the maximal cones σi’s in Σ in the counter-clockwise ordering so that σ1 = R≥0e1 + R≥0e2.
This gives us frames 1, z3, z4 and z1z4 in HF,+ which restrict to φi’s in H f ,+ after modulo q1, q2, according
to the choice made after equation (6).

Now we compute the Gauss-Manin connection acting on the frames ψi’s according to Section 3.2. We
have

∇ ∂
∂ log q2

1 =
1
u

z3,

∇ ∂
∂ log q2

z3 =
q2 f (q2)

u
(q1 − u(z4 − 2z3)− 2z1z4),

∇ ∂
∂ log q2

z4 =
1
u

z1z4,

∇ ∂
∂ log q2

z1z4 =
q1q2

u
(z4 − 2z3).
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These formula are obtained from equation (9). For instance, if we compute using the identification
HF,± ∼= HF

± via Ω = d log z1 ∧ d log z2 = −d log z3 ∧ d log z2, we have

∇ ∂
∂ log q2

(z3Ω) = ι ∂
∂ log q2

(∂ + u−1dF∧)(z3d log z2 ∧ d log z3)

= ι ∂
∂ log q2

1
u

z1z3d log z1 ∧ d log z2 ∧ d log z3

= ι ∂
∂ log q2

1
u

q2z2
2d log q2 ∧ Ω

=
q2 f (q2)

u
(q1 − u(z4 − 2z3)− 2z1z4)Ω.

Similarly we have

∇ ∂
∂ log q1

1 =
1
u

z4,

∇ ∂
∂ log q1

z3 =
1
u

z1z4,

∇ ∂
∂ log q1

z4 =
1
u
(q1 + 2z1z4),

∇ ∂
∂ log q1

z1z4 =
q1(1 + q2)

u
(2z4 − 3z3).

Next we solve for the flat sections DE(φi)’s. We first restrict ourselves to q1 = 0 and then extend to
flat sections in q1. Let ψi’s be the restrictions of DE(φi)’s to q1 = 0. Then we can simply take ψ3 = z4

and ψ4 = z1z4. It remains to solve for ψ1 and ψ2. To do so, we let ψ2 = a(q2)z3 + b(q2)z4 + c(q2)z1z4.
Then the equation ∇ ∂

∂ log q2
ψ2 = 0 gives us

a(q2) = ( f (q2))
−1/2,

b(q2) =
1
2
(1 − a(q2)),

c′(q2) =
1
u

(
2( f (q2))

1/2 − b(q2)

q2

)
,

where c(q2) is determined by the initial condition c(0) = 0. Letting ψ1 = 1 + α(q2)z3 + β(q2)z4 +

γ(q2)z1z4, we have the equation ∇ ∂
∂ log q2

ψ1 = 1
u ψ2 which gives us

α′(q2) =
1

uq2

(
1 − 1

a(q2)

)
,

β′(q2) =
1

uq2

b(q2)

a(q2)
=

−1
2

α′(q2),

γ′(q2) =
1

uq2

c(q2)

a(q2)
,

that is determined by the initial condition α(0) = β(0) = γ(0) = 0. It is worth noting that a(q2), b(q2) ∈
C[q2], and α(q2), β(q2), c(q2) ∈ C[q2]u−1 while γ(q2) ∈ C[q2]u−2.
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To determine the primitive form, we express

1 =
4

∑
i=1

δi · DE(φi)

with δi = δi(q1, q2, u) = ∑∞
j=−∞ δij(q1, q2)uj such that δij(q1, q2) ∈ C[[q1, q2]] and the summation starts

from j = −Nk if we modulo (q1, q2)
k+1. The weight degrees of DE(φ1), DE(φ2), DE(φ3) and DE(φ4)

are 0, 2, 2 and 4 respectively. From these, we know that δ1 has weight degree 0, δ2 and δ3 both have
weight degree −2 and δ4 has weight degree −4. Since the weight degree of q1 is 4 and that of q2 is 0, we
see that δi,j≥0 = 0 for i > 0, δ0,j>0 = 0 and δ0,0 is independent of q1. Modulo q1 we find that δ0,0 ∼= 1
from the expression of ψ1. All in all, we see that the primitive form is simply given by ζ = 1.

Finally we compute the canonical coordinates using δi,−1(q1, q2). The weight degree requirement
forces δ0,−1 = 0 = δ4,−1, and δ2,−1, δ3,−1 are functions which depend only on q2. Therefore, we see that
δ2,−1(q2) = −α(q2)u and δ3,−1 = −β(q2)u. To compute the period map, we first compute

1 =DE(φ1)− log(q2)
DE(φ2)

u
− log(q1)

DE(φ3)

u

+ (log(q1))
2 DE(φ4)

u2 + log(q1) log(q2)
DE(φ4)

u2 .
(16)

Then we find the constant term in u in the expression u(ζ − 1), which will be

(log(q2)− α(q2))DE(φ2) + (log(q1)− β(q2))DE(φ3).

The period map is then given by

log(τ2) = log(q2)− uα(q2) = log(q1) + 2uβ(q2),

log(τ3) = log(q1)− uβ(q2),

where we let log(τ3), log(τ2) be the coefficients of DE(φ3) and DE(φ2) respectively. Taking ∂
∂ log(q2)

(log τ2) =

1 − uα′(q2) =
1

a(q2)
= f (q2)

1/2, and comparing with the known formulae

q2 = τ2(1 + τ2)
−2,

q1 = τ3(1 + q2)

for the mirror map (in e.g., [6]), we conclude that the two expressions for τ2(q2) agree.

APPENDIX A. DOLBEAULT RESOLUTION

This section is aimed at constructing Dolbeault resolutions of various sheaves on the analytic space
X. We begin by recalling the definition of a polytopal complex, which is a generalization of the more
familiar concept of a simplicial complex.

Definition A.1. A polytopal complex ∆ is a set of polytopes that satisfies the following conditions:

(1) every face of a polytope in ∆ is also in ∆;
(2) the (possibly empty) intersection of any two polytopes σ1, σ2 ∈ ∆ is a face of both σ1 and σ2.
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A polytopal complex is said to be finite if it contains only finitely many polytopes. A polytope ∆
together with its faces naturally defines a polytopal complex, which will still be denoted by ∆.

Definition A.2. Let ∆ be a finite polytopal complex. A (covariant) presheaf V of C-vector space on ∆ consists
of the following data:

(1) for every polytope σ of ∆, a C-vector space V(σ), and
(2) for every inclusion σ2 ⊂ σ1 of polytopes, a morphism of C-vector spaces r = rσ1σ2 : V(σ2) → V(σ1),

such that the following conditions are satisfied:

(1) V(∅) = 0,
(2) rσσ is identity map on V(σ),
(3) if σ3 ⊂ σ2 ⊂ σ1 are three polytopes of ∆, then rσ1σ3 = rσ1σ2 ◦ rσ2σ3 .

There is a Čech complex associated to the pair (∆,V). Equip each polytope in ∆ with an orientation.
Let ∆p be the set of p-dimensional polytopes of ∆. For each p ≥ 0, define C p = C p(∆,V) = ⊕

σ∈∆p V(σ),
where the direct sum is taken over all polytopes in ∆p. For α = (α(σ)σ∈∆p) ∈ C p, the combinatorial Čech
differential δp : C p → C p+1 is given by

(δpα)(τ) = ∑
σ⊂τ

±rτσα(σ)

where the sum if taken over all p dimensional polytopes that is contained in τ. The sign here depends
on the orientations of σ and τ: There are two orientations on σ, one is induced from that of τ, the other
is the equipped orientation. If these two orientations on σ agree, we take the positive sign, otherwise we
take the negative sign. Clearly δp+1 ◦ δp = 0, thus we get a Čech complex (C(∆,V), δ).

Take ∆ to be the defining polytope of the projective toric manifold Y. Then each p-dimensional poly-
tope σ of ∆ corresponds to an (n − p)-dimensional component of X, which is denoted by σ◦. Moreover,
the inverse inclusion relation holds, i.e., σ ⊂ τ if and only if τ◦ ⊂ σ◦. For any σ ∈ ∆, define

V(σ) := O(σ◦)

as the space of holomorphic functions on σ◦ and let r be the restriction map induced by inclusion.
Denote the resulting complex by (C(∆, O), δ). Let X1, · · · , Xk be n-dimensional components of X. Then
C0(∆, O) =

⊕k
i=1 O(Xi). Let

O(X) → C0(∆, O)

be given by restriction map. Then we have the following complex:

(17) 0 → O(X) → C0(∆, O)
δ0
−→ C1(∆, O)

δ1
−→ C2(∆, O)

δ2
−→ · · · .

Proposition A.3. The complex (17) is exact.

Remark A.4. As each p-dimensional component σ◦ of X is an intersection of coordinate hyperplanes, the canoni-
cal projection Cd → σ◦ lifts any function g on σ◦ to a function on Cd. Then by restriction we get a function on X
and each higher dimensional component containing σ◦. By abuse of notation, these functions will still be denoted
by g.
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The proof of Proposition A.3 consists of three lemmas.

Lemma A.5. The p = 0 joint of the complex (17) is exact.

Proof. The injection part is obvious. To prove the exactness, we should show that every δ0-closed (gi) ∈
C0(∆, O) with gi ∈ OXi is the restriction of a global function on X. By definition, δ0(gi) = 0 implies
gi|Xi∩Xj = gj|Xi∩Xj if the intersection is (n − 1)-dimensional. In fact, the same identity holds even if the
intersection has codimension greater than 1. This can be seen as follows. Since Xi ∩ Xj is a subset of both
Xi and Xj, both of the vertices vi and vj corresponding to Xi and Xj respectively are in the polytope σ

corresponding to Xi ∩ Xj. We can find a sequence of vertices vi, vs, vt · · · , vu, vj of σ such that each pair
of adjacent vertices is connected by an edge in σ. Now by the definition of δ0-closedness, we have

gi|Xi∩Xs = gs|Xi∩Xs , gs|Xs∩Xt = gt|Xs∩Xt , · · · , gu|Xu∩Xj = gj|Xu∩Xj .

However, we know that Xi ∩ Xj is a common subset of Xi ∩ Xs, Xs ∩ Xt, · · · and Xu ∩ Xj, hence

gi|Xi∩Xj = gs|Xi∩Xj = · · · = gj|Xi∩Xj .

Thus (gi) determines a unique function on each σ◦, which we denote by (gi)|σ◦ . Define

g = ∑
σ∈∆

(−1)dim σ(gi)|σ◦ .

As remarked above, g is seen as a global function on X, we will show that it restricts to gk on each Xk.
Fix the vertex vk, define Svk := {τ : vk ∈ τ}. For τ ∈ Svk , define τ⊥ := {σ ∈ ∆ : σ ⊂ τ, σ ⊈ ρ, ∀ρ ⊂
τ, ρ ∈ Svk}. One sees easily by induction on dimension that the Euler characteristic χ(τ⊥) of each τ⊥ is
zero unless τ = vk and

∆ = ⨿
τ∈Svk

τ⊥.

Now g can be written as

g = ∑
τ∈Svk

∑
σ∈τ⊥

(−1)dim σ(gi)|σ◦ .

When τ ̸= vk, for each σ ∈ τ⊥ the function induced on Xk by (gi)|σ◦ is equal to (gi)|τ◦ . Hence the sum
∑σ∈τ⊥(−1)dim σ(gi)|σ◦ is just χ(τ⊥)(gi)|τ◦ = 0. It follows that g = gk on Xk. □

Lemma A.6. Assume matrices A ∈ Cp×q, B ∈ Cq×r satisfy {⃗a ∈ Cq×1 : A⃗a = 0} ⊂ {B⃗b : b⃗ ∈ Cr×1}.
Let a⃗(z) := (a1(z), · · · , aq(z))T be a family of vectors that depends holomorphically on the parameters z =

(z1, · · · , zk) and that for any z, A⃗a(z) = 0. Then we can find vectors b⃗(z) depending holomorphically on z such
that

B⃗b(z) = a⃗(z).

Moreover, we can require b⃗(z) = 0 if a⃗(z) = 0.

Proof. This is an easy exercise in linear algebra. □

Lemma A.7. The p > 0 joints of the complex (17) are exact.
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Proof. Let (gσ)σ∈∆p ∈ C p(∆, O) be δp-closed with p > 0, which means a holomorphic function gσ is
assigned for each p-dimensional polytope and these functions satisfy certain compatibility conditions.
Note that ∆ is the unique n-dimensional polytope and it corresponds to the origin o(= ∆◦) of Cd, and
each function gσ, σ ∈ ∆p, restricts to a complex number gσ(0) at o. Look at the Čech complex (C(∆,V), δ)

associated to the presheaf V := O(o) = C. It’s easy to see this complex computes the polyhedral
cohomology of ∆ and hence for p > 0, the cohomologies vanish. Now δp-closedness of (gσ)σ∈∆p implies
the δp-closedness of (gσ(0))σ∈∆p , hence we have

(gσ(0))σ∈∆p = δp−1( f ∆
τ )τ∈∆p−1

for some ( f ∆
τ )τ∈∆p−1 ∈ C p−1(∆, O(o)). The superscript ∆ indicates the we are considering the restriction

to o = ∆◦. The projections τ◦ → o, τ ∈ ∆p−1 lift ( f ∆
τ )τ∈∆p−1 to chains in C p−1(∆, O). Look at the p-cycle

(g(1)σ ) := ((gσ)− δp−1( f ∆
τ )), we see by construction that the restriction of each g(1)σ to o is zero.

Let ρ ∈ ∆n−1 be an (n − 1)-dimensional polytope and consider the complex (C(ρ, Õ(ρ◦)), δ), where
Õ(ρ◦) denotes the space of functions on ρ◦ that restricts to 0 at o. Now closeness of (g(1)σ ) implies the
closeness of the restriction of (g(1)σ )σ⊂ρ to a p-chain in (C(ρ, Õ(ρ◦)), δ) and the latter can be viewed as
a family of p-cycles in (C(ρ, C), δ) that are parametrized by points of ρ◦. By Lemma A.6, we can find a
ρ◦-parametrized (p − 1)-chain ( f ρ

τ )τ∈ρp−1 in (C(ρ, C), δ) such that

δp−1( f ρ
τ )τ∈ρp−1 = (g(1)σ )σ⊂ρ.

Moreover, ( f ρ
τ )τ∈ρp−1 is a chain in (C(ρ, Õ(ρ◦)), δ). If we define f ρ

τ = 0 for τ ∈ ∆p−1 \ ρp−1, we get now
a (p − 1)-chain ( f ρ

τ )τ∈∆p−1 in (C(∆, Õ(ρ◦)), δ) and the projection τ◦ → ρ◦ allows us to view it as a chain
in (C(∆, O), δ). Define

(g(2)σ ) := ((g(1)σ )− ∑
ρ∈∆n−1

δp−1( f ρ
τ )τ∈∆p−1).

We claim that the restriction of (g(2)σ ) to any ρ◦, ρ ∈ ∆n−1 is zero. By construction, ((g(1)σ )− δp−1( f ρ
τ ))

restricts to zero on ρ◦. Given ρ′ ∈ ∆n−1, ρ′ ̸= ρ, if there exists τ ∈ ρ′p−1 ∩ ρp−1, f ρ′
τ is the pull-back to τ◦

of a function in Õ(ρ′◦). As ρ′ ̸= ρ, ρ◦ ∩ ρ′◦ is zero dimensional, hence by construction f ρ′
τ restrict to 0 on

ρ◦. If no (p − 1)-dimensional polytope is in ρ′p−1 ∩ ρp−1, then by definition, f ρ′
τ = 0, ∀τ ⊂ ρ.

Inductively, we can define (g(3)σ ), (g(4)σ ), · · · , (g(n−p)
σ ) ∈ (C(∆, O), δ) such that: a) each (g(i)σ ) differs

from (g(i−1)
σ ) by a δp−1-boundary; b) any function g(i)σ restrict to 0 on ρ◦, where ρ is any polytope that

contains σ and is of dimension not smaller than n − i + 1.

Now (g(n−p)
σ )σ∈∆p differs from (gσ)σ∈∆p by a δp−1-boundary and the lemma is proved if (g(n−p)

σ )σ∈∆p

can also be written as a δp−1-boundary. Given any g(n−p)
σ on σ◦, let τ(σ) ⊂ σ be a (p − 1)-dimensional

polytope. The projection p : τ(σ)◦ → σ◦ lifts g(n−p)
σ to a function on τ(σ)◦, which is denoted by

g(n−p)
τ(σ)

. Since g(n−p)
σ restrict to 0 on ρ◦ for any ρ properly contains σ, g(n−p)

τ(σ)
will restrict to 0 on any p

dimensional polytope σ′ ∈ ∆p \ {σ} that contains τ(σ). Define a (p − 1)-chain (g(n−p)
σ;τ )τ∈∆p−1 by letting

gn−p
σ;τ(σ) = gn−p

τ(σ)
and g(n−p)

σ;τ′ = 0 for any τ′ ∈ ∆p−1 \ {τ(σ)}, then the σ-component of δp−1(g(n−p)
σ;τ ) is
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±g(n−p)
σ , in which the sign depends on the orientations of σ and τ. We put the sign before (g(n−p)

σ;τ ),

which by abuse of notation we still denote by (g(n−p)
σ;τ ), so that the σ-component of δp−1(g(n−p)

σ;τ )τ∈∆p−1

is exactly g(n−p)
σ . Taking summation over all σ ∈ ∆p−1, we finally have

(g(n−p)
σ )σ∈∆p = δp−1 ∑

σ∈∆p

(g(n−p)
σ;τ )τ∈∆p−1 ,

i.e., (g(n−p)
σ )σ∈∆p is a δp−1-boundary. Thus the lemma is proved. □

Combining Lemmas A.5 and A.7 gives Proposition A.3.

For any 0 < p ≤ n, we can similarly define the complex (C(∆, Ωp), δ), where the presheaf V := Ωp is
defined by assigning to σ the space Ω(σ◦) of holomorphic p-forms on σ◦ and the map r is the restriction
map. Let Ω̃p(X) be the space of holomorphic p-forms on X, or in other words,

Ω̃p(X) := {(w1, · · · , wk) : wi ∈ Ωp(Xi), ωi|Xi∩Xj = ω j|Xi∩Xj , ∀dim(Xi ∩ Xj) = n − 1}

and let Ω̃p(X) → C0(∆, Ωp) be the natural map given by restriction. We obtain the following complex:

(18) 0 → Ω̃p(X) → C0(∆, Ωp)
δ0
−→ C1(∆, Ωp)

δ1
−→ C2(∆, Ωp)

δ2
−→ · · · .

Proposition A.8. The complex (18) is exact.

Proof. In fact, only two types of maps appeared in the proof of Proposition A.3: the pull-back map
induced from projection and the restriction map induced from inclusion. The key point is that for σ, τ ∈
∆, a function on σ◦ induces the same function on τ◦ ether by first pulling back to Cd then restricting to
τ◦ or first restricting to σ◦ ∩ τ◦ and then pulling back to τ◦. The situation is the same for differential
forms, hence the proof runs in the same way. □

In the definitions of the complexes (17) and (18), holomorphic functions can be replaced by smooth
functions and holomorphic p-forms can be replaced by anti-holomorphic q-forms. Let A0,q(X) be the
space of smooth (0, q)-forms on X. Defining the complex (C(∆,A0,q), δ) and the corresponding maps
in a similar way as before, we can prove the following theorem along the same line of the proofs of
Propositions A.3 and A.8.

Proposition A.9. For any 0 ≤ q ≤ n, we have the following exact complex

(19) 0 → A0,q(X) → C0(∆,A0,q)
δ0
−→ C1(∆,A0,q)

δ1
−→ C2(∆,A0,q)

δ2
−→ · · · .

Theorem A.10 (Dolbeaut resolution of O(X)). The complex

(20) 0 → A0,0(X)
∂̄−→ A0,1(X)

∂̄−→ A0,2(X)
∂̄−→ · · ·

is a resolution of O(X).

Proof. Since ∂̄ commutes with the restriction map, we can construct a double complex (C∗,∗, d1, d2) with

Cp,q := C p(∆,A0,q), d1 := δp, d2 := (−1)q∂̄.
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Using the fact that each σ◦ is affine, one can first compute the cohomologies of d2 to show that the
only possible nonzero terms on the first page of the spectral sequence associated to the filtration given
by index p is I Ep,0

1 = C p(∆, O). So the spectral sequence degenerate at the second page and the only
nonzero term is I E0,0

2 = O(X) by applying Proposition A.3. One can also first compute the cohomologies
of d1 by applying Proposition A.9. The result is that the only possible nonzero terms on the first page
of the spectral sequence associated to the filtration given by index q is I I E0,q

1 = Ã0,q(X). So the spectral
sequence must also degenerate at the second page and one must have I I E0,0

2 = O(X). □

APPENDIX B. REGULARIZED INTEGRAL

In this appendix, we outline a generalization of the theory of regularized integrals due to Si Li and
Jie Zhou [35] to arbitrary dimensions. Since no additional essential difficulty appears, we will omit the
proofs and cite the corresponding results in [35] instead.

Let M be a compact complex manifold of dimension n, possibly with boundary ∂M. Let D be a simple
normal crossing divisor in M which does not meet ∂M. Let

Ω•
M(⋆D) :=

⋃
n≥0

Ω•
M(nD)

be the sheaf of meromorphic forms which are holomorphic on M − D but possibly with arbitrary orders
of poles along D. Denote

Ap,q(M, ⋆D) := A0,q(M, Ωp(⋆D)), Ak(M, ⋆D) :=
⊕

p+q=k

Ap,q(M, ⋆D).

By definition, ω ∈ Ak(M, ⋆D) if and only if ω is smooth on M − D and locally around any p ∈ D, ω is
of the form

α

zm1
1 · · · zml

l
;

here z1, · · · , zn are local coordinates around p such that D is defined by the equation z1 · · · zl = 0, l ≤ n,
mi’s are non-negative integers and α is a smooth k-form around p.

The complex A•,•(M, ⋆D) is a bi-graded complex with natural differentials ∂ and ∂̄. Moreover,

A•,•(M, log D) ⊂ A•,•(M, ⋆D)

is a bi-graded subcomplex. The following results are the counterparts of Lemma 2.1 and Theorem 2.4 in
[35] respectively.

Lemma B.1. Any ω ∈ Ap,•(M, ⋆D), p ≥ 1 can be written as

ω = α + ∂β, where α ∈ Ap,•(M, log D), β ∈ Ap−1,•(M, ⋆D).

The support of α, β can be chosen to be contained in the support of ω.

Theorem B.2. Let ω ∈ A2n(M, ⋆D). Then there exist α ∈ A2n(M, log D) and β ∈ An−1,n(M, ⋆D) such that
ω = α + ∂β. The integral

∫
M α is absolutely convergent and the sum∫

M
α +

∫
∂M

β
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does not depend on the choices of α and β.

Definition B.3. We define the regularized integral

−
∫

M
ω :=

 0 if ω ∈ A<2n(M, ⋆D) ,∫
M α +

∫
∂M β if ω = α + ∂β ∈ A2n(M, ⋆D) .

Here α ∈ A2n(M, log D), β ∈ An−1,n(M, ⋆D).

Parallel to [35, Theorem 2.4], the proof of Theorem B.2 relies on the vanishing of the limit of a con-
tour integral. A careful investigation of this contour integral leads to the following version of Poincaré
residue map. Let U be a small neighbourhood of p ∈ D with coordinates z1, · · · , zn such that

D ∩ U = {z1 · · · zl = 0}

for some l ≤ n. For any ω ∈ Ap,q(M, ⋆D), we can write

(21) ω = dz̄1 ∧ α +
dz1

zm1
1

∧ β + γ,

where β does not contain dz̄1 and γ does not contain dz1 or dz̄1. Furthermore, we can write

β = ∑
J,K:1/∈J,1/∈K

hJKdzJ ∧ dz̄K,

where dzJ = ∧j∈Jdzj, dz̄K = ∧k∈Kdz̄k. Assume D1 ∩ U = {z1 = 0}, then we can put

ResD1(ω) := ∑
J,K:1/∈J,1/∈K

1
(m1 − 1)!

(
∂

∂z1
)m1−1hJK|z1=z̄1=0dzJ ∧ dz̄K

on D1 ∩ U. It is straightforward to verify that ResD1(ω) is globally defined and we thus get

ResD1(ω) ∈ Ap−1,q(D1, ⋆(D1 ∩ ∪j ̸=1Dj)).

In the same way we can define ResDi (ω), 2 ≤ i ≤ l. By definition, for any ω ∈ Ap,q(M, ⋆D) we have

(22) ResDi (z̄iω) = ResDi (dz̄i ∧ ω) = 0.

Theorem B.4. Let M be a compact complex manifold possibly with boundary ∂M. Let ω ∈ A2n−1(M, ⋆D).
Then we have the following version of Stokes formula for the regularized integral

−
∫

M
dω = −2πi

l

∑
j=1

−
∫

Dj

ResDj(ω) +
∫

∂M
ω .

If M is a noncompact complex manifold without boundary, letting A•,•
c (M, ⋆D) ⊂ A•,•(M, ⋆D)

be the subspace of forms with compact support, we can then define the regularized integral of ω ∈
A•,•

c (M, ⋆D) on M. In particular, we have the following Stokes formula.

Theorem B.5. Let M be a noncompact complex manifold and ω ∈ A2n−1
c (M, ⋆D). Then

−
∫

M
dω = −2πi

l

∑
j=1

−
∫

Dj

ResDj(ω) .
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[20] E. González and H. Iritani, Seidel elements and potential functions of holomorphic disc counting, Tohoku Math. J. (2) 69 (2017), no.

3, 327–368.
[21] M. Gross, Mirror symmetry for P2 and tropical geometry, Adv. Math. 224 (2010), no. 1, 169–245.
[22] M. Gross, Tropical geometry and mirror symmetry, CBMS Reg. Conf. Ser. Math. 114, American Mathematical Society, Providence,

RI, 2011.
[23] M. Gross, P. Hacking and S. Keel, Mirror symmetry for log Calabi-Yau surfaces I, Publ. Math. Inst. Hautes Études Sci. 122 (2015),

65–168.
[24] M. Gross and B. Siebert, Mirror symmetry via logarithmic degeneration data. I, J. Differential Geom. 72 (2006), no. 2, 169–338.
[25] H. Hong, Y.-S. Lin and J. Zhao, Bulk-deformed potentials for toric Fano surfaces, wall-crossing, and period, Int. Math. Res. Not.

IMRN(2022), no. 16, 12699–12766.
[26] K. Hori and C. Vafa, Mirror symmetry, preprint (2000), arXiv:hep-th/0002222.
[27] H. Iritani, Quantum D-modules and generalized mirror transformations, Topology 47 (2008), no. 4, 225–276.



PRIMITIVE FORMS FROM LOG LG TORIC MIRRORS 39

[28] H. Iritani, A mirror construction for the big equivariant quantum cohomology of toric manifolds, Math. Ann. 368 (2017), 279–316.
[29] F. Kato, Log smooth deformation theory, Tohoku Math. J. (2) 48 (1996), no. 3, 317–354.
[30] K. Kato, Logarithmic structures of Fontaine-Illusie, in ‘Algebraic analysis, geometry, and number theory’ (Baltimore, MD, 1988),

191–224, Johns Hopkins University Press, Baltimore, MD, 1989
[31] M. Kontsevich, Lectures at ENS Paris, spring 1998, set of notes taken by J. Bellaiche, J.-F. Dat, I. Martin, G. Rachinet and H.

Randriambololona, 1998.
[32] C. Li, S. Li and K. Saito, Primitive forms via polyvector fields, preprint (2013), arXiv:1311.1659 [math.AG].
[33] C. Li, S. Li, K. Saito, Y. Shen, Mirror symmetry for exceptional unimodular singularities, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 4,

1189–1229.
[34] S. Li and H. Wen, On the L2-Hodge theory of Landau-Ginzburg models, Adv. Math. 396 (2022), Paper No. 108165, 48 pp.
[35] S. Li, J. Zhou, Regularized integrals on Riemann surfaces and modular forms, Comm. Math. Phys. 388 (2021), no. 3, 1403–1474.
[36] B. Lian, K. Liu and S.-T. Yau, Mirror principle. III, Asian J. Math. 3 (1999), no. 4, 771–800.
[37] K. Liu, S. Rao and X. Wan, Geometry of logarithmic forms and deformations of complex structures, J. Algebraic Geom. 28 (2019), no.

4, 773–815.
[38] T. Reichelt, A construction of Frobenius manifolds with logarithmic poles and applications, Comm. Math. Phys. 287 (2009), no. 3,

1145–1187.
[39] T. Reichelt and C. Sevenheck, Logarithmic Frobenius manifolds, hypergeometric systems and quantum D-modules, J. Algebraic

Geom. 24 (2015), no. 2, 201–281.
[40] K. Saito, Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci. 19 (1983), no. 3, 1231–1264.
[41] M. Saito, On the structure of Brieskorn lattice, Ann. Inst. Fourier (Grenoble) 39 (1989), no. 1, 27-72.
[42] M. Saito, On the structure of Brieskorn lattices, II, J. Singul. 18 (2018), 248–271.

DEPARTMENT OF MATHEMATICS, THE CHINESE UNIVERSITY OF HONG KONG, SHATIN, HONG KONG

Email address: kwchan@math.cuhk.edu.hk

DEPARTMENT OF MATHEMATICS, SOUTHERN UNIVERSITY OF SCIENCE AND TECHNOLOGY, SHENZHEN, CHINA

Email address: mazm@sustech.edu.cn

SCHOOL OF MATHEMATICAL SCIENCES, NANKAI UNIVERSITY, TIANJIN, CHINA

Email address: wenhao@nankai.edu.cn


	1. Introduction
	Background
	Main results
	Relation with the toric A-side
	Organization of the paper
	Acknowledgement
	Notation summary

	2. The log LG model mirror to a projective toric manifold
	2.1. Constructions
	2.2. The state space isomorphism
	2.3. A homotopy formula
	2.4. Integration and the higher residue pairing
	2.5. Grading structure and good basis

	3. Deformation theory of log LG models
	3.1. Unfolding
	3.2. Gauss-Manin connection and the higher residue pairing
	3.3. Logarithmic Frobenius manifold
	3.4. Log LG mirrors of semi-Fano toric manifolds

	Appendix A. Dolbeault resolution
	Appendix B. Regularized integral
	References

