
A FORMULA EQUATING OPEN AND CLOSED GROMOV-WITTEN
INVARIANTS AND ITS APPLICATIONS TO MIRROR SYMMETRY
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Abstract. We prove that open Gromov-Witten invariants for semi-Fano toric
manifolds of the form X = P(KY ⊕OY), where Y is a toric Fano manifold, are
equal to certain 1-pointed closed Gromov-Witten invariants of X. As applica-
tions, we compute the mirror superpotentials for these manifolds. In particular,
this gives a simple proof for the formula of the mirror superpotential for the
Hirzebruch surface F2.
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1. Introduction

Let X be a compact complex n-dimensional toric manifold equipped with a
toric Kähler structure ω. Let L be a Lagrangian torus fiber of the moment map
associated to (X, ω). In [10], Fukaya, Oh, Ohta and Ono define open Gromov-
Witten invariants for (X, L) as follows. Let β ∈ π2(X, L) be a relative homotopy
class with Maslov index µ(β) = 2. Let M1(L, β) be the moduli space of holomor-
phic disks in X with boundaries lying in L and with one boundary marked point
representing the class β. A compactification of M1(L, β) is given by the moduli
space M1(L, β) of stable maps from genus 0 bordered Riemann surfaces (Σ, ∂Σ)
to (X, L) with one boundary marked point representing the class β. As shown
by Fukaya et al. in their monumental work [9], M1(L, β) is a Kuranishi space
with real virtual dimension n. By Corollary 11.5 in [10], there exists a virtual fun-
damental n-cycle [M1(L, β)]vir. The pushforward of this cycle by the evaluation
map ev : M1(L, β) → L at the boundary marked point then gives

cβ = ev∗([M1(L, β)]vir) ∈ Hn(L, Q) ∼= Q.
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By Lemma 11.7 in [10], the homology class cβ is independent of the pertubation
data (transversal multisections) used to define [M1(L, β)]vir. Hence, cβ is an open
Gromov-Witten invariant for (X, L).

Let Y be an (n − 1)-dimensional toric Fano manifold. Consider the P1-bundle
X = P(KY ⊕OY) over Y, where KY denotes the anti-canonical bundle of Y. Then
X is an n-dimensional toric manifold which is semi-Fano, i.e. the anti-canonical
bundle K−1

X is nef. Let h ∈ H2(X, Z) be the fiber class. Let α ∈ H2(X, Z) be an
effective class with c1(α) = c1(X) · α = 0. Consider the moduli space M0,1(X, h +
α) of genus 0 stable maps to X with one marked point representing the class h +

α.1 By [14], M0,1(X, h + α) is a Kuranishi space with complex virtual dimension
n. The pushforward of the virtual fundamental cycle [M0,1(X, h + α)]vir by the
evaluation map ev : M0,1(X, h + α) → X gives a 1-pointed closed Gromov-Witten
invariant of X:

GWX,h+α
0,1 ([pt]) = ev∗([M0,1(X, h + α)]vir) ∈ H2n(X, Q) ∼= Q,

where [pt] denotes the Poincaré dual of a point in X.
Now let ι0 : Y ↪→ X be the closed embedding of Y as the zero section of KY.

The image is a toric prime divisor D0 = ι0(Y) ⊂ X. As above, we equip X with a
toric Kähler structure ω and fix a Lagrangian torus fiber L in X. Corresponding
to D0 is a relative homotopy class β0 ∈ π2(X, L). More precisely, β0 ∈ π2(X, L)
is the class such that Di · β0 = δi0 for any toric prime divisor Di in X. The main
result of this paper is the following formula.

Theorem 1.1. For the P1-bundle X = P(KY ⊕OY) over a toric Fano manifold Y, we
have the equality

cβ0+α = GWX,h+α
0,1 ([pt])

for any effective class α ∈ H2(X, Z) with c1(α) = 0.

Note that β0 + α ∈ π2(X, L) is a Maslov index two class since c1(α) = 0. We
will prove this formula in Section 4 by comparing the Kuranishi structures of
M1(L, β0 + α) and M0,1(X, h + α).

We can apply this formula to study mirror symmetry. Recall that the mirror of
a compact toric n-fold X is given by a Landau-Ginzburg model (X∨, W) consisting
of a bounded domain X∨ ⊂ (C∗)n and a holomorphic function W : X∨ → C

called the mirror superpotential. In [10] (see also Cho-Oh [8], Auroux [1, 2], Chan-
Leung [6, 7]), Fukaya, Oh, Ohta and Ono show that the mirror superpotential
can be expressed as a power series whose coefficients are the open Gromov-
Witten invariants defined above. However, when X is non-Fano, these invariants
are in general very hard to compute. The only known examples are the mirror
superpotentials for the Hirzebruch surfaces F2 and F3, first computed by Auroux
in [2] using degeneration methods and wall-crossing formulas. More recently,
Fukaya, Oh, Ohta and Ono [12] give a different proof for the F2 case.

As an immediate application of our formula, we can express the mirror super-
potential of X = P(KY ⊕OY) in terms of 1-point closed Gromov-Witten invari-
ants (see Theorem 5.1). In particular, since F2 = P(KP1 ⊕OP1) and its Gromov-
Witten invariants are easy to compute as it is symplectomorphic to P1 × P1, this
gives a very simple proof of the formula for the mirror superpotential of F2. See

1Here the subscripts 0, 1 denote the genus and number of marked points respectively.
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the example in Section 5. Our formula has since then been applied to study mir-
ror symmetry for various classes of toric manifolds. See Lau-Leung-Wu [15, 16],
Chan-Lau-Leung [5] and Chan-Lau [4] for more details.

The rest of this paper is organized as follows. In Section 2, we briefly re-
view Kuranishi spaces and recall the results that we need in this paper. In Sec-
tion 3, we establish several preliminary results concerning the toric manifolds
X = P(KY ⊕ OY). In Section 4 we prove our formula by a direct comparison
of Kuranishi structures. In Section 5, we discuss applications of our formula to
mirror symmetry.
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2. Kuranishi structures

In this section, we briefly review the theory of Kuranishi spaces and recall
some of their properties for later use. We follow Appendix A1 in the book [9].
See also Section 3 in Fukaya-Ono [14].

Let M be a compact metrizable space.

Definition 2.1 (Definitions A1.1, A1.3, A1.5 in [9]). A Kuranishi structure on M of
(real) virtual dimension d consists of the following data:

(1) For each point σ ∈ M,
(1.1) A smooth manifold Vσ (with boundary or corners) and a finite group Γσ

acting smoothly and effectively on Vσ.
(1.2) A real vector space Eσ on which Γσ has a linear representation and such that

dim Vσ − dim Eσ = d.
(1.3) A Γσ-equivariant smooth map sσ : Vσ → Eσ.
(1.4) A homeomorphism ψσ from s−1

σ (0)/Γσ onto a neighborhood of σ in M.
(2) For each σ ∈ M and for each τ ∈ Im ψσ,

(2.1) A Γτ-invariant open subset Vστ ⊂ Vτ containing ψ−1
τ (τ).2

(2.2) A homomorphism hστ : Γτ → Γσ.
(2.3) An hστ-equivariant embedding φστ : Vστ → Vσ and an injective hστ-

equivariant bundle map φ̂στ : Eτ × Vστ → Eσ × Vσ covering φστ .
Moreover, these data should satisfy the following conditions:

(i) φ̂στ ◦ sτ = sσ ◦ φστ .3

(ii) ψτ = ψσ ◦ φστ .

2Here and in C2 below, we regard ψτ as a map from s−1
τ (0) to M by composing with the quotient

map Vτ → Vτ/Γτ .
3Here and after, we also regard sσ as a section sσ : Vσ → Eσ × Vσ .
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(iii) If ξ ∈ ψτ(s−1
τ (0) ∩ Vστ/Γτ), then in a sufficiently small neighborhood of ξ,

φστ ◦ φτξ = φσξ , φ̂στ ◦ φ̂τξ = φ̂σξ .

The spaces Eσ are called obstruction spaces (or obstruction bundles), the maps
{sσ : Vσ → Eσ} are called Kuranishi maps, and (Vσ, Eσ, Γσ, sσ, ψσ) is called a
Kuranishi neighborhood of σ ∈ M.

To define virtual fundamental chains, we need Kuranishi spaces with extra
structures.

Definition 2.2 (Definitions A1.14, A1.17 in [9]). A Kuranishi space is said to have
a tangent bundle if the differential of sσ in the direction of the normal bundle induces a
bundle isomorphism

(2.1) dsσ :
φ∗

στTVσ

TVστ

∼=
Eσ × Vστ

φ̂στ(Eτ × Vστ)

as Γτ-equivariant bundles on Vστ .
For a Kuranishi space with tangent bundle, an orientation consists of trivializations of

ΛtopE∗
σ ⊗ ΛtopTVσ compatible with the isomorphisms (2.1).

We will not give the precise definition of multisections here. See Definitions
A1.19, A1.21 in [9] for details. Roughly speaking, a multisection s is a system of
multi-valued perturbations {s′σ : Vσ → Eσ} of the Kuranishi maps {sσ : Vσ → Eσ}
satisfying certain compatibility conditions. For a Kuranishi space M with tangent
bundle, there exist (a family of) multisections s which are transversal to 0 (The-
orem A1.23 in [9]). Furthermore, suppose that M is oriented. Let ev : M → Y
be a strongly smooth map to a smooth manifold Y, i.e. a family of Γσ-invariant
smooth maps {evσ : Vσ → Y} such that evσ ◦ φστ = evτ on Vστ . Then, us-
ing these transversal multisections, one can define the virtual fundamental chain
ev∗([M]vir) as a Q-singular chain in Y (Definition A1.28 in [9]).

We will also need the notion of fiber products of Kuranishi spaces. See Ap-
pendix A1.2 in [9] for more details. As before, let ev : M → Y be a strongly
smooth map from a Kuranishi space M to a smooth manifold Y. Suppose that ev
is weakly submersive, i.e. each evσ : Vσ → Y is a submersion. Let W be another
manifold and g : W → Y be a smooth map. Consider the fiber product

Z = M×Y W = {(σ, p) ∈ M× W : ev(σ) = q(p)}.

Definition 2.3 (Definition A1.37 in [9]). Let (σ, p) ∈ Z and (Vσ, Eσ, Γσ, sσ, ψσ) be a
Kuranishi neighborhood of σ ∈ M. We set

V(σ,p) = {(τ, q) ∈ Vσ × W : evσ(τ) = g(q)}.

Then V(σ,p) is a smooth manifold since evσ is a submersion. We also set E(σ,p) =
Eσ, Γ(σ,p) = Γσ and define s(σ,p), ψ(σ,p) in the obvious way. This defines a Kuranishi
neighborhood of (σ, p) ∈ Z , and they glue together to give a Kuranishi structure on Z .

Lemma 2.1 (Lemma A1.39 in [9]). If the Kuranishi space M has a tangent bundle, so
does the Kuranishi structure on Z . Furthermore, if the Kuranishi structure on M and
the manifolds Y, W are all oriented, so is the Kuranishi structure on Z .

Let êv : Z → W be the projection map. We remark that this is a strongly
smooth map. The following lemma is crucial to the proof of our main result.
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Lemma 2.2 (Lemma A1.43 in [9]). Suppose that Y and W are oriented and compact
without boundary, and ∂M = ∅. Then we have

PD(êv∗([Z ]vir)) = g∗(PD(ev∗([M]vir))),

where PD denotes Poincaré dual.

3. A class of semi-Fano toric manifolds

Let Y be an (n − 1)-dimensional toric Fano manifold. Denote by KY its canoni-
cal line bundle. Consider the P1-bundle X = P(KY ⊕OY) over Y. In this section,
we shall establish some elementary properties of the toric manifold X which will
be of use later.

Let e1, . . . , en be the standard basis of a rank n lattice N ∼= Zn, and let N′ =
{v = ∑n

j=1 vjej ∈ N|vn = 0} ∼= Zn−1. Let NR = N ⊗Z R, N′
R = N′ ⊗Z R. Without

loss of generality, we can choose the primitive generators of the 1-dimensional
cones of the fan ∆ in NR defining X to be

v0 = en, v1 = w1 + en, . . . , vm = wm + en, vm+1 = −en,

where w1, . . . , wm ∈ N′ are the primitive generators of the 1-dimensional cones of
a fan ∆′ in N′

R defining Y.

Lemma 3.1. Let h ∈ H2(X, Z) be the fiber class of the P1-bundle X = P(KY ⊕OY).
Let ι0 : Y ↪→ X = P(KY ⊕ OY) be the closed embedding which maps Y to the zero
section of KY. ι0 induces an embedding ι0∗ : H2(Y, Z) ↪→ H2(X, Z). Then we have

Heff
2 (X, Z) ∼= Z≥0h ⊕ ι0∗Heff

2 (Y, Z).

Here, the superscript "eff" refers to effective classes. Moreover, we have c1(h) = 2 and
c1(α) = 0 for any α ∈ ι0∗Heff

2 (Y, Z). In particular, X is semi-Fano, i.e. the anti-
canonical bundle K−1

X is nef.

Proof. Recall that a subset P = {vi1 , . . . , vip} ⊂ {v0, . . . , vm+1} is called a primitive
collection if for each 1 ≤ k ≤ p, the elements of P \ {xik} generate a (p − 1)-
dimensional cone in ∆ but P itself does not generate a cone in ∆ (see Batyrev [3]).
The focus σ(P) of P is the cone in ∆ of the smallest dimension which contains
vi1 + . . . + vip . Let vj1 , . . . , vjq be the generators of σ(P). Then there exists positive
integers n1, . . . , nq such that

vi1 + . . . + vip = n1vj1 + . . . + nqvjq .

This is known as a primitive relation. Recall that the homology group H2(X, Z) is
given by the kernel of the surjective map Zd → N, Ei 7→ vi, where {E1, . . . , Ed}
is the standard basis of Zd. Also, the effective cone Heff

2 (X, Z) is generated by
primitive relations.

In our case, P0 := {v0, vm+1} is obviously a primitive collection for ∆. The
primitive relation v0 + vm+1 = 0 corresponds to the fiber class h of the P1-bundle
X → Y. It is obvious that we have c1(h) = c1(X) · h = 2.

By Proposition 4.1 in Batyrev [3], we have P ∩ P0 = ∅ for any other primitive
collection P ̸= P0. Suppose that P ̸= P0 is a primitive collection consisting of the
elements vi1 = wi1 + en, . . . , vip = wip + en, where 1 ≤ i1 < . . . < ip ≤ m. Then
P′ := {wi1 , . . . , wip} is obviously a primitive collection for the fan ∆′ defining Y.
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Now, let wj1 , . . . , wjq be the generators of the focus σ(P′) of P′. The primitive
relation for ∆′ is given by

(3.1) wi1 + . . . + wip = n1wj1 + . . . + nqwjq ,

for some n1, . . . , nq ∈ Z>0. Let γ ∈ Heff
2 (Y, Z) be the corresponding effective

class. Since Y is Fano, we have p − n1 − . . . − nq = c1(Y) · γ > 0. In terms of the
vi’s, (3.1) becomes a primitive relation

vi1 + . . . + vip = n1vj1 + . . . + nqvjq + (p − n1 − . . . − nq)v0

for ∆. This corresponds to the class α := ι0∗(γ) ∈ Heff
2 (X, Z), whose Chern

number is given by c1(α) = p − n1 − . . . − nq − (p − n1 − . . . − nq) = 0. �

As usual, denote by D0, D1, . . . , Dm, Dm+1 the toric prime divisors correspond-
ing to the primitive generators v0, v1, . . . , vm, vm+1 respectively. Note that D0 =
ι0(Y).

Lemma 3.2. Let φ : P1 → X be a nonconstant holomorphic map from P1 to X.

(1) Suppose that [φ(P1)] = h + α ∈ H2(X, Z) for some α ∈ ι0∗Heff
2 (Y, Z). Then

φ(P1) is contained in one of the toric prime divisors D0, D1, . . . , Dm.
(2) Suppose that [φ(P1)] = α ∈ ι0∗Heff

2 (Y, Z). Then φ(P1) is contained in the
toric prime divisor D0.

Proof. Suppose that φ : P1 → X is a nonconstant holomorphic map with class
h + α for some α ∈ ι0∗Heff

2 (Y, Z). From the proof of the above lemma, we know
that the class h + α corresponds to the primitive relation

(1 −
m

∑
i=1

ai)v0 +
m

∑
i=1

aivi + vm+1 = 0.

Moreover, we have ∑m
i=1 ai ≥ 1, and if ∑m

i=1 ai = 1, then there exists 1 ≤ i ≤ m
such that ai < 0. Hence there exists 0 ≤ i ≤ m such that Di · φ(P1) = Di · (h +
α) < 0. This implies that φ(P1) is contained in Di. This proves (1). (2) can be
proved in the same way. �

4. Proof of Theorem 1.1

We can now start our proof of Theorem 1.1.
We equip X = P(KY ⊕OY) with a toric Kähler structure ω. Let L ⊂ X be a

Lagrangian torus fiber of the associated moment map. For i = 0, 1, . . . , m, m + 1,
let βi ∈ π2(X, L) be the relative homotopy class such that Dj · βi = δij. Then each
βi is a Maslov index two class with ∂βi = vi, where ∂ : π2(X, L) → π1(L) is the
boundary map, and π2(X, L) is generated by β0, β1, . . . , βm, βm+1. Moreover, each
βi is represented by a family of holomorphic disks φi : (D2, ∂D2) → (X, L). Here,
D2 = {z ∈ C : |z| ≤ 1} is the unit disk.

Fix a nonzero effective class α ∈ Heff
2 (X, Z) with c1(α) = 0. Let M1(L, β0 + α)

be the moduli space of stable maps from genus 0 bordered Riemann surfaces to
(X, L) with one boundary marked point representing the class β0 + α. To simplify
notations, we denote M1(L, β0 + α) by ML. Similarly, we denote by MX the
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moduli space M0,1(X, h + α) of genus 0 stable maps to X with one marked point
representing the class h + α. We have evaluation maps4

ev : ML → L, ev : MX → X.

By [9], both ML and MX are oriented Kuranishi spaces with tangent bundles,
and the evaluation maps are both strongly smooth and weakly submersive. The
real virtual dimensions of ML and MX are n and 2n respectively. Moreover, since
µ(β0 + α) = 2, we have ∂ML = ∅ by Corollary 11.5 in [10]. It is also well-known
that MX has no boundary. Hence, they define virtual fundamental cycles

ev∗([ML]vir) ∈ Hn(L, Q), ev∗([MX ]vir) ∈ H2n(X, Q).

Fix a point p ∈ L ⊂ X. Let ι : {p} ↪→ L (resp. ι : {p} ↪→ X) be the inclusion of
the point p. We can then apply the construction in Definition 2.3 and Lemma 2.1
to give oriented Kuranishi structures with tangent bundles on the spaces:

ML
p := ML ×L {p}, MX

p := MX ×X {p}.

Both have real virtual dimension 0. Let êv : ML
p → {p}, êv : MX

p → {p} be the
induced (constant) maps. Then we have virtual fundamental cycles

êv∗([ML
p ]

vir), êv∗([MX
p ]

vir) ∈ H0({p}, Q) ∼= Q.

Now Lemma 2.2 says that

Proposition 4.1. We have

PD(êv∗([ML
p ]

vir)) = ι∗PD(ev∗([ML]vir))

PD(êv∗([MX
p ]

vir)) = ι∗PD(ev∗([MX ]vir))

in H0({p}, Q) ∼= Q.

Therefore, to prove Theorem 1.1, it suffices to show that ML
p and MX

p have the
same Kuranishi structures.

To do this, we first show that ML
p can naturally be identified with MX

p as a
set. Let us recall the following results proved by Cho and Oh in [8], which holds
for general toric manifolds.

Theorem 4.1 (Theorem 5.2 in [8]; see also Theorem 11.1 in [10]). Let (X, ω) be
a toric Kähler manifold and L be a Lagrangian torus fiber of its moment map. Let
D1, . . . , Dd be all the toric prime divisors in X and β1, . . . , βd ∈ π2(X, L) be the rel-
ative homotopy classes such that Dj · βi = δij.

(1) If φ : (D2, ∂D2) → (X, L) is a holomorphic map from a disk representing a
Maslov index two class β ∈ π2(X, L), then β = βi for some i ∈ {1, . . . , d}.

(2) For i = 1, . . . , d, let M1(L, βi) be the moduli space of stable maps from genus 0
bordered Riemann surfaces to (X, L) with one boundary marked point represent-
ing the class βi. Then the evaluation map ev : M1(L, βi) → L is an orientation
preserving diffeomorphism. In particular, for any p ∈ L and any i ∈ {1, . . . , d},
there is a unique (up to automorphisms of the domain) genus 0 bordered sta-
ble map whose boundary passes through p and whose domain is a disk which
represents the class βi.

4By a slight abuse of notations, we use ev to denote both evaluation maps. It should clear from
the context which one we are referring to.
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Now, let σL = ((ΣL, z), φ) be representing a point in ML
p . This consists of a

genus 0 bordered Riemann surface ΣL with a boundary marked point z ∈ ∂ΣL

and a stable map φ : (ΣL, ∂ΣL) → (X, L) such that φ(z) = p.

Proposition 4.2. ΣL can be decomposed as ΣL = ΣL
0 ∪ Σ1, where ΣL

0 = D2 is a disk
and Σ1 is a genus 0 nodal curve, such that the restrictions φ0 := φ|ΣL

0
and φ1 := φ|Σ1

represent the classes β0 and α respectively.

Proof. The Maslov index of β0 + α is µ(β0 + α) = 2 since c1(α) = 0. By Theorem
4.1(1), there does not exist any nonconstant holomorphic map from a disk to
(X, L) with class β0 + α, so ΣL must be singular. Decompose ΣL into irreducible
components. Let φj : (D2, ∂D2) → (X, L) and φk : P1 → X be the restriction of φ

to the disk and sphere components respectively. Then β0 + α = ∑j[φj] + ∑k[φk].
Notice that, by the proof of Lemma 3.1, any α ∈ H2(X, Z) with c1(α) = 0 cannot
be expressed as a Z-linear combination of βi’s with positive coefficients. Hence,
there must be only one disk component in Σ. Therefore, we can decompose Σ
into ΣL

0 ∪ Σ1, where ΣL
0 = D2 is a disk and Σ1 is a genus 0 nodal curve (i.e. a tree

of P1’s). Now, the restriction φ0 := φ|ΣL
0

is a nonconstant holomorphic map from

(D2, ∂D2) to (X, L). By Theorem 4.1(1) again, the class of φ0 must be β0. Hence
φ1 := φ|Σ1 represents α. �

Proposition 4.3. There exists a unique holomorphic map φm+1 : (D2, ∂D2) → (X, L)
representing the class βm+1 such that its boundary ∂φm+1 := φm+1|∂D2 is exactly given
by ∂φ0 := φ0|∂D2 with the opposite orientation, where φ0 is the map obtained in Propo-
sition 4.2

Proof. Let φm+1 : (D2, ∂D2) → (X, L) be a holomorphic map representing the
class βm+1 such that p ∈ φ(∂D2). By Theorem 4.1(2), there exists one and only
one such map up to automorphisms of D2. Consider the moduli space M0,1(X, h)
of genus 0 stable maps to X with one marked point which represent the fiber class
h. Since X → Y is a P1-bundle, the evaluation map ev : M0,1(X, h) → X is an
isomorphism. Hence, there exists a unique (up to automorphisms of the domain)
holomorphic map ϕ : P1 → X representing the class h which passes through
p ∈ L ⊂ X. The image of this map is the fiber Cp ∼= P1 of X → Y which contains
p. Now, the intersection Cp ∩ L ∼= S1 splits the fiber Cp into two disks. This gives
two holomorphic maps φ′

0 : (D2, ∂D2) → (X, L) and φ′
m+1 : (D2, ∂D2) → (X, L)

with classes β0 and βm+1 respectively. By Theorem 4.1(2), they must be the same
as φ0, φm+1 up to automorphisms of D2. Hence, by composing φm+1 with an
automorphism of D2, which is uniquely determined by φ0, we get the desired
unique holomorphic map representing the class βm+1. �

By Proposition 4.3, we can glue the maps φ : (ΣL, ∂ΣL) → (X, L) and φm+1 :
(D2, ∂D2) → (X, L) together to give a holomorphic map φ′ : Σ → X which
represents the class β0 + βm+1 + α = h + α, where Σ is the union of ΣL and D2

with their boundaries identified in the obvious way. It is easy to see that this map
is stable. Hence, σX := ((Σ, z), φ′) represents a point in MX = M0,1(X, h + α)
and we have ev(σ) = p. This defines a map

j : ML
p → MX

p , [σL] 7→ [σX ].
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j is well-defined: Any automorphism of σL = ((ΣL, z), φ) acts trivially on the
component ΣL

0 because φ is nonconstant on this component. So any representa-
tive of [σL] is mapped to the same isomorphism class in MX

p . We need to show
that j is bijective.

Let σX = ((Σ, z), φ) be representing a point in MX
p . This consists of a genus

0 nodal curve Σ with a marked point z ∈ Σ and a stable map φ : Σ → X
representing the class h + α such that φ(z) = p. The following is an analog
of Proposition 4.2.

Proposition 4.4. Σ can be decomposed as Σ = Σ0 ∪ Σ1, where Σ0 ∼= P1 is irreducible,
such that the restrictions φ0 := φ|Σ0 and φ1 := φ|Σ1 represent the classes h and α
respectively.

Proof. By Lemma 3.2(1), there does not exist any nonconstant holomorphic map
from P1 to X representing the class h + α whose image is not contained entirely
in the toric divisors. Hence, Σ must be singular. Decompose Σ into components
Σ =

∪
a Σa, where each Σa ∼= P1 is irreducible. Then we have

∑
a
[φ(Σa)] = h + α.

Since h is primitive, there exists a0 such that φ(Σa0) = h + α′ and ∑a ̸=a0
[φ(Σa)] =

α” for some α′, α” ∈ ι0∗Heff
2 (Y, Z) ⊂ Heff

2 (X, Z) with α = α′ + α”. By Lemma 3.1,
we have c1(α

′) = c1(α”) = 0. Then, by Lemma 3.2(2), the images of
∪

a ̸=a0
Σa is

contained entirely in the zero section D0. So the image of Σa0 must be intersecting
with L at p. Applying Lemma 3.2(1) again, we see that α′ must be zero. The result
follows. �

Note that φ0 is a nonconstant holomorphic map from P1 to X whose image
contains p. Arguing as in the proof of Proposition 4.3, we see that the image of φ0
is the fiber Cp of the P1-bundle X → Y which contains p, and φ0(P

1) ∩ L = S1.
We can then split Σ0 ∼= P1 into two disks Σ0 = Σ′

0 ∪ Σ0” ∼= D2 ∪ D2, and split φ0
into two holomorphic maps φ′

0 : (Σ′
0, ∂Σ′

0) → (X, L) and φ′
m+1 : (Σ0”, ∂Σ0”) →

(X, L) which represent the classes β0 and βm+1 respectively. Now, let ΣL := Σ′
0 ∪

Σ1 and φ′ := φ|ΣL . Then φ′ : (ΣL, ∂ΣL) → (X, L) is a genus 0 bordered stable map
such that φ(∂ΣL) contains p, and σL := ((ΣL, z), φ′) represents a point in ML

p . By
our constructions, j([σL]) = [σX ]. This defines a map j−1 : MX

p → ML
p . Again,

since any automorphism of σX = ((Σ, z), φ) acts trivially on the component Σ0,
the map j−1 is well-defined. It is obvious that this is the inverse map of j. Hence,
j is a bijective map.

Proposition 4.5. Under the bijective map j : ML
p → MX

p , the Kuranishi structures on
ML

p and MX
p can be naturally identified.

Proof. We shall first briefly recall the constructions of Kuranishi neighborhoods
from [14] and [9].

We begin with ML
p . Let σL = ((ΣL, z), φ) be representing a point in ML

p .
By Proposition 4.2, we can decompose ΣL into irreducible components ΣL =
Σ0 ∪ Σ1 ∪ . . . ∪ Σk, where Σ0 = D2 is a disk and Σ1, . . . , Σk are copies of P1,
such that the restrictions of φ to Σ0 and

∪k
a=1 Σa represent the classes β0 and α

respectively.
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For each a = 0, 1, . . . , k, let W1,p(Σa; φ∗(TX); L) be the space of sections v of
φ∗(TX) of W1,p class such that the restriction of v to ∂Σa lies in φ∗(TL), and
W0,p(Σa; φ∗(TX)⊗ Λ0,1) be the space of sections of φ∗(TX)⊗ Λ0,1 of W0,p class.
Note that L does not play a role in the definition of W1,p(Σa; φ∗(TX); L) for a =

1, . . . , k. Then, let W1,p(ΣL; φ∗(TX); L) be the subspace of
⊕k

a=0 W1,p(Σa; φ∗(TX); L)
consisting of elements {u = (ua) ∈ ⊕k

a=0 W1,p(Σa; φ∗(TX); L) such that for
any singular point w ∈ ΣL which is the intersection of two irreducible com-
ponents Σa and Σb, we have ua(w) = ub(w). Also let W0,p(ΣL; φ∗(TX)⊗ Λ0,1) =⊕k

a=0 W0,p(Σa; φ∗(TX)⊗Λ0,1). Consider the linearization of the Cauchy-Riemann
operator ∂̄:

Dφ∂̄ : W1,p(ΣL; φ∗(TX); L) → W0,p(ΣL; φ∗(TX)⊗ Λ0,1).

This is a Fredholm operator by ellipticity.
To construct the obstruction space, choose open subsets Wa of Σa whose closure

is disjoint from the boundary of each of Σa and from the singular and marked
points. Then, for each a = 0, 1, . . . , k, by the unique continuation theorem, we can
choose a finite dimensional subset Ea of C∞

0 (Wa; φ∗(TX)) such that

Im Dφ∂̄ +
k⊕

a=0
Ea = W0,p(ΣL; φ∗(TX)⊗ Λ0,1).

We also choose
⊕k

a=0 Ea to be invariant under the group ΓσL of automorphisms
of σL. We set EσL =

⊕k
a=0 Ea.

Let Π : W0,p(ΣL; φ∗(TX)⊗ Λ0,1) → W0,p(ΣL; φ∗(TX)⊗ Λ0,1)/EσL be the pro-
jection map. Let Vmap,σL be the kernel of the operator Π ◦ Dφ∂̄. Now, consider
the automorphism group Aut(ΣL, z) of the marked bordered Riemann surface
(ΣL, z). The group Aut(ΣL, z) may not be finite since some components may be
unstable. However, we can naturally embed the Lie algebra Lie(Aut(ΣL, z)) into
Vmap,σL . Take its L2 orthogonal complement (with respect to a certain metric).
Then let V′

map,σL be a small neighborhood of the zero of it.
On the other hand, let Vdeform,σL be a small neighborhood of the origin in the

space of first order deformations of the stable components of (ΣL, z). Also let
Vresolve,σL be a small neighborhood of the origin in the space

⊕
w TwΣa ⊗ TwΣb,

where the sum is over singular points w ∈ ΣL \ Σ0 and Σa, Σb are the two com-
ponents such that Σa ∩ Σb = {w}. There is a family of marked semi-stable bor-
dered Riemann surfaces {(ΣL

ζ , z) : ζ ∈ Vdeform,σL × Vresolve,σL} over the product
Vdeform,σL ×Vresolve,σL . We remark that, since we do not deform the singular point
in Σ0, each ΣL

ζ is singular and can be decomposed as ΣL
ζ = Σ0 ∪ Σ′

ζ .
Let V′

σL = V′
map,σL × Vdeform,σL × Vresolve,σL . By the proof of Proposition 12.23

in [14], there exist a ΓσL -equivariant smooth map sσL : V′
σL → EσL and a family

of smooth maps φu,ζ : (ΣL
ζ , ∂ΣL

ζ ) → (X, L) for (u, ζ) ∈ V′
σL such that ∂̄φu,ζ =

sσL(u, ζ). Now we set VσL = {(u, ζ) ∈ V′
σL : φu,ζ(z) = p}. By abuse of notations,

denote the restriction of sσL to VσL also by sσL . Then by [14], there is a map
ψσL mapping s−1

σL (0)/ΓσL onto a neighborhood of [σL] in ML
p . This finishes the
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review of the construction of a Kuranishi neighborhood (VσL , EσL , ΓσL , sσL , ψσL) of
[σL] ∈ ML

p .
For a point in MX

p represented by σX = ((Σ, z), φ), using Proposition 4.4,
we decompose Σ into irreducible components Σ = Σ0 ∪ Σ1 ∪ . . . ∪ Σk, where
Σ0, Σ1, . . . , Σk are all copies of P1, such that the restrictions of φ to Σ0 and

∪k
a=1 Σa

represent the classes h and α respectively. The construction of a Kuranishi neigh-
borhood (VσX , EσX , ΓσX , sσX , ψσX ) of [σX ] ∈ MX

p is more or less the same as above,
except that W1,p(Σ0; φ∗(TX); L) is replaced by the space W1,p(Σ0; φ∗(TX)) of sec-
tions v of φ∗(TX) of class W1,p.

We can now go back to the proof of the proposition.
Let [σL] ∈ ML

p , [σX ] ∈ MX
p be such that j([σL]) = [σX ]. First of all, it is

obvious that the automorphism groups ΓσL and ΓσX are the same. Next, since the
moduli space of maps from (D2, ∂D2) to (X, L) with class β0 is unobstructed, we
can choose E0 = 0 for the obstruction space EσL . Similarly, since the moduli space
of maps from P1 to X with class h is unobstructed, we can also choose E0 = 0 for
the obstruction space EσX . Hence, the obstruction spaces EσL and EσX are both of
the form 0 ⊕ E1 ⊕ . . . ⊕ Ek and can be identified naturally.

We can identify Vdeform,σL with Vdeform,σX since the component Σ0 in ΣL has no
nontrivial deformations and the component Σ0 in Σ is unstable. It is also clear that
we can identify Vresolve,σL with Vresolve,σX . Now, let (u = (u0, u1, . . . , uk), ζ) ∈ VσL .
Because E0 = 0, we have Dφ∂̄u0 = 0. From the construction of the family of
smooth maps φu,ζ : (ΣL

ζ , ∂ΣL
ζ ) → (X, L), it follows that the restriction of φu,ζ to

the component Σ0 is a holomorphic map with class β0. We also have φu,ζ(z) = p.
But there is a unique (up to automorphisms of the domain) holomorphic map
from (D2, ∂D2) to (X, L) with class β0 whose boundary passes through p, which
is given by φ|Σ0 . So we must have u0 = 0. By a similar argument, all (u, ζ) ∈ VσX

also have u0 = 0. Therefore, we can naturally identify VσL and VσX .
Finally, we can identify the families of maps {φu,ζ : (ΣL

ζ , ∂ΣL
ζ ) → (X, L) :

(u, ζ) ∈ VσL} with {φu,ζ : Σζ → X : (u, ζ) ∈ VσX} by the gluing construction that
we used in the definition of the map j. Hence, the maps sσL and ψσL can also be
naturally identified with the maps sσX and ψσX respectively.

This completes the proof of the proposition. �

Theorem 1.1 now follows from Propositions 4.1 and 4.5.

5. Applications to mirror symmetry

In this section, we apply Theorem 1.1 to study mirror symmetry for the toric
manifolds X = P(KY ⊕ OY). We shall first briefly review the constructions of
the mirrors for toric manifolds, following Cho-Oh [8], Auroux [1, 2], Fukaya-Oh-
Ohta-Ono [10, 11] and Chan-Leung [6, 7].

As usual, N ∼= Zn is a rank n lattice, M = Hom(N, Z) is the dual lattice and
⟨·, ·⟩ : M × N → Z is the dual pairing. Also let NR = N ⊗Z R, MR = M ⊗Z R,
and denote by TN and TM the real tori NR/N and MR/M respectively.

Let X = X∆ be an n-dimensional smooth projective toric variety defined by a
fan ∆ in NR. Let v1, . . . , vd be the primitive generators of the 1-dimensional cones
in ∆. We equip X with a toric Kähler structure ω. Let P be the corresponding
moment polytope and µ : X → P be the moment map. P is defined by a set of
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inequalities
P = {x ∈ MR|⟨x, vi⟩ ≥ λi for i = 1, . . . , d},

for some λ1, . . . , λd ∈ R. For i = 1, . . . , d, we let li : MR → R be the affine linear
function defined by li(x) = ⟨x, vi⟩ − λi.

We are interested in the mirror symmetry for the Kähler manifold X, equipped
with the toric Kähler structure ω and the nowhere zero meromorphic n-form
Ω = d log w1 ∧ . . . ∧ d log wn, where w1, . . . , wn are the standard complex coor-
dinates on the open dense orbit U = N ⊗Z C∗ ∼= (C∗)n ⊂ X. From the point
of view of Auroux [1], we are looking at the mirror symmetry for X relative to
the toric divisor D∞ =

∪d
i=1 Di = X \ U. As before, Di is the toric prime divisor

in X corresponding to vi. The mirror geometry is given by a Landau-Ginzburg
model (X∨, W) consisting of a bounded domain X∨ ⊂ (C∗)n and a holomorphic
function W : X∨ → C called the mirror superpotential.

As discussed in Auroux [1] and Chan-Leung [6, 7], the mirror manifold X∨

can be obtained by dualizing Lagrangian torus fibrations (so-called T-duality) as
follows. Restricting the moment map µ : X → P to the open dense orbit U ⊂ X
gives a torus bundle µ : U → Int(P), where Int(P) denotes the interior of the
polytope P. In fact this bundle is trivial, so we have U = Int(P)×

√
−1TN . The

mirror manifold X∨ is given by the total space of the dual torus bundle, i.e.

X∨ = Int(P)×
√
−1T∨

N = Int(P)×
√
−1TM.

X∨ comes with a natural Kähler structure. In particular, as a complex mani-
fold, X∨ is biholomorphic to a bounded domain in (C∗)n = MR ×

√
−1TM. If

y = (y1, . . . , yn) ∈ (R/2πZ)n are the fiber coordinates on TM and the complex
coordinates on (C∗)n are given by zj = exp(−xj −

√
−1yj), j = 1, . . . , n, where

x = (x1, . . . , xn) ∈ Int(P), then X∨ ⊂ (C∗)n can be written as

X∨ = {(z1, . . . , zn) ∈ (C∗)n : |eλi zi| < 1, i = 1, . . . , d}.

Geometrically, X∨ should be viewed as the moduli space of pairs (L,∇) con-
sisting of a (special) Lagrangian torus fiber of the moment map µ : X → P
together with a flat U(1)-connection ∇ on the trivial line bundle C over L. More
precisely, to a point z = (z1 = exp(x1 +

√
−1y1), . . . , z1 = exp(x1 +

√
−1y1)) ∈

X∨, we associate the flat U(1)-connection ∇y = d +
√
−1
2 ∑n

j=1 yjduj on the triv-
ial line bundle C over the Lagrangian torus Lx = µ−1(x) ∼= TN , where u =
(u1, . . . , un) ∈ (R/2πZ)n are the fiber coordinates on TN . This picture is moti-
vated by the SYZ conjecture for mirror Calabi-Yau manifolds proposed by Stro-
minger, Yau and Zaslow [17] in 1996.

On the other hand, it turns out that the mirror superpotential W : X∨ → C

acts as the mirror of the obstruction m0 to the Floer homology of Lagrangian
torus fibers in X.5 As shown in [9], m0 comes from the virtual counting of Maslov
index two holomorphic disks in X with boundary in the Lagrangian torus fibers
L. This leads to the following expression for W: For β ∈ π2(X, L), we define a
holomorphic function Zβ on X∨ by

Zβ(L,∇) = exp
(
− 1

2π

∫
β

ω
)

hol∇(∂β).

5In their works [9, 10, 11], Fukaya, Oh, Ohta and Ono call W the potential function and they define
it over the Novikov ring Λ0 instead of C.
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Then the mirror superpotential W : X∨ → C is given by the following holomor-
phic function

(5.1) W(L,∇) = ∑
β∈π2(X,L), µ(β)=2

cβZβ(L,∇),

assuming that the sum converges. See Cho-Oh [8], Auroux [1, 2] and Fukaya-Oh-
Ohta-Ono [10, 11] for more details.

For i = 1, . . . , d, let βi ∈ π2(X, L) be the relative homotopy class such that
Dj · βi = δij. Then, by the symplectic area formula of Cho and Oh (Theorem 8.1
in [8]), we have ∫

βi

ω = 2πli(x) = 2π(⟨x, vi⟩ − λi),

where x ∈ Int(P) is the image of L under the moment map (i.e. L = µ−1(x)).
Hence, for the basic classes βi, the function Zβi is given in local coordinates by

Zβi (Lx,∇y) = exp(−li(x)) exp(−
√
−1⟨y, vi⟩) = eλi zvi ,

where zv denotes the monomial zv1

1 · · · zvn
n .

Furthermore, by Theorem 4.1, we have cβi = 1 for i = 1, . . . , d. In particular,
when X is Fano (i.e. the anticanonical bundle K−1

X is ample), β1, . . . , βd ∈ π2(X, L)
are the only Maslov index two classes. Hence, the mirror superpotential is given
explicitly by

W = Zβ1 + . . . + Zβd = eλ1 zv1 + . . . + eλd zvd .
However, in the non-Fano cases, the invariants cβ and hence W are in general very
hard to compute. The only non-Fano examples whose mirror superpotentials are
explicitly computed are the Hirzebruch surfaces F2 and F3, first computed by
Auroux in [2]. Later, Fukaya, Oh, Ohta and Ono gave a different proof for the F2
case in [12].

Let’s go back to our toric manifolds X = P(KY ⊕OY). We want to compute
their mirror superpotentials using Theorem 1.1.

Lemma 5.1. If β ∈ π2(X, L) is a Maslov index two class with cβ ̸= 0, then β must either
be one of β1, . . . , βm, βm+1 or of the form β0 + α for some effective class α ∈ H2(X, Z)
with c1(α) = 0.

Proof. First of all, since X is semi-Fano, c1(α) ≥ 0 for any effective class α ∈
H2(X, Z). Hence, if β ∈ π2(X, L) is a Maslov index two class, then it must
be of the form βi + α for some i = 0, 1, . . . , m, m + 1 and some effective class
α ∈ H2(X, Z) with c1(α) = 0. Let φ : (ΣL, ∂ΣL) → (X, L) be a stable map
from a genus 0 bordered Riemann surface (ΣL, ∂ΣL) to (X, L) representing the
class βi + α. Suppose that α ̸= 0. Then, by the proof of Proposition 4.2, we can
decompose ΣL into ΣL

0 ∪ Σ1, where ΣL
0 = D2 is a disk and Σ1 is a genus 0 nodal

curve, such that the restrictions φ0 := φ|ΣL
0

and φ1 := φ|Σ1 represent the classes βi

and α respectively. However, by Lemma 3.2(2), the image of φ1 must be contained
entirely in the toric prime divisor D0. Since φ(ΣL

0 ) · D0 = δ0i and the domain of
φ is connected, we must have i = 0. Hence cβi+α = 0 unless i = 0 or α = 0. �

Theorem 5.1. For the P1-bundle X = P(KY ⊕OY) over a toric Fano manifold Y, the
mirror superpotential W : X∨ → C is given by

W = CZβ0 + Zβ1 + . . . + Zβm + Zβm+1 ,



14 K. CHAN

where
C = 1 + ∑

α∈Heff
2 (X,Z),

α ̸=0, c1(α)=0

GWX,h+α
0,1 ([pt])qα,

and qα = exp(− 1
2π

∫
α ω).

Proof. This is a consequence of formula (5.1), Lemma 5.1 and Theorem 1.1. �
Example: The Hirzebruch surface F2. Consider X = F2 = P(KP1 ⊕OP1). We
choose the primitive generators of the 1-dimensional cones in the fan ∆ defining
F2 to be6

v0 = (0,−1), v1 = (1, 0), v2 = (−1,−2), v3 = (0, 1)
in N = Z2. We equip F2 with a toric Kähler structure so that moment polytope
P is given by

P = {(x1, x2) ∈ R2|x1 ≥ 0, x2 ≥ 0, x2 ≤ t2, x1 + 2x2 ≤ t1 + 2t2},

where t1, t2 > 0. See Figure 1 below.

- v1

6
v3

?
v0

�
�

�
���

v2

6
x2

- x1

. .................................................................................... .

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

......................
......................

.

..............0

t2

t1 + 2t2

D1

D3

D0

D2

Figure 1. The fan ∆ defining F2 (left) and its moment polytope P (right).

The effective cone Heff
2 (F2, Z) is generated by two primitive relations

v0 + v3 = 0, v1 + v2 − 2v0 = 0.

Let h := (1, 0, 0, 1), α := (−2, 1, 1, 0) ∈ Heff
2 (F2, Z) be the corresponding homol-

ogy classes, which represent the fiber and the base of F2 respectively. Then

t1 =
∫

α
ωX , t2 =

∫
h

ωX .

Let qi = exp(−ti) for i = 1, 2. We also have c1(h) = 2 and c1(α) = 0.
Now, the mirror manifold X∨ is a bounded domain in (C∗)2. By Theorem 5.1,

the mirror superpotential W : X∨ → C is given by

W = CZβ0 + Zβ1 + Zβ2 + Zβ3 = C
q2

z2
+ z1 +

q1q2
2

z1z2
2
+ z2,

where

C =
∞

∑
k=0

GWF2,h+kα
0,1 (PD[pt])qk

1,

6Note that this choice of generators is different from the one in Section 3. This does not alter any
of our results. We make this choice just to make our notations consistent with those in Auroux [2]
and Fukaya-Oh-Ohta-Ono [12].
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and z1, z2 are the standard coordinates on (C∗)2. F2 is symplectomorphic to
F0 = P1 × P1 with induced isomorphism on degree-2 homology given by

H2(F2, Z) → H2(F0, Z)

α 7→ l1 − l2
h 7→ l2,

where l1, l2 ∈ H2(F0, Z) are the line classes in the two P1 factors. Since Gromov-
Witten invariants are symplectic invariants, the Gromov-Witten invariants of F2
are all equal to those of F0. So we have

GWF2,h+kα
0,1 (PD[pt]) = GWF0,kl1+(1−k)l2

0,1 (PD[pt])

=

{
1 if k = 0 or k = 1
0 otherwise.

Hence, cβ0+kα = 0 for k ≥ 2 and cβ0+α = cβ0 = 1. We conclude that C = 1 + q1
and the mirror superpotential is given by

W = z1 + z2 +
q1q2

2
z1z2

2
+

q2 + q1q2

z2
.

This agrees with the formula in Proposition 3.1 in Auroux [1]. �

The formula in Theorem 1.1 has been applied to investigate mirror symmetry
for various classes of toric manifolds. In [15], the formula was generalized and
used to compute open Gromov-Witten invariants for toric Calabi-Yau 3-folds. In
[5] and [16], the formula and its generalization in [15] were used to obtain an
enumerative meaning for the (inverse) mirror maps for toric Calabi-Yau 2- and
3-folds. In particular, this explains why we always get integral coefficients for the
Taylor expansions of these mirror maps. In [4], the formula was used to compute
mirror superpotentials for all semi-Fano toric surfaces.
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