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Abstract

We study homological mirror symmetry for not necessarily compactly supported

coherent sheaves on the minimal resolutions of An-singularities. An emphasis is put

on the relation with the Strominger-Yau-Zaslow conjecture.

1 Introduction

Let Y be the affine hypersurface

Y =
{
(z, u, v) ∈ C

× × C
2
∣∣ uv = z−1f(z)

}
, (1.1)

where f(z) = (z − a0)(z − a1) · · · (z − an) is a polynomial of degree n + 1 with mutually
distinct positive real zeros 0 < a0 < a1 < · · · < an. We equip Y with the symplectic form

ω = −
√
−1

2

(
dz ∧ dz̄
|z|2 + du ∧ du+ dv ∧ dv

)∣∣∣∣
Y

.

The projection

π : Y → C
×, (z, u, v) 7→ z (1.2)

is a conic fibration whose discriminant is given by the zeros ∆ = {a0, . . . , an} of the
polynomial f . Using this, one can show that the map

ρ : Y → B, (z, u, v) 7→
(
log |z|, 1

2
(|u|2 − |v|2)

)
(1.3)

is a Lagrangian torus fibration over the base B = R2, whose discriminant locus is given
by

Γ := {(s0, 0), (s1, 0), . . . , (sn, 0)},
where si = log ai for i = 0, . . . , n. Each fiber L of this Lagrangian torus fibration is special
in the sense that one has

Im

(
e
√
−1θΩ

)∣∣∣
L
= 0

for some θ ∈ R, where

Ω = Res
dz ∧ du ∧ dv
zuv − f(z)

= d log z ∧ d log u (1.4)
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is a nowhere-vanishing holomorphic 2-form on Y.
Strominger, Yau, and Zaslow [SYZ96] conjectured that any Calabi-Yau manifold ad-

mits a special Lagrangian torus fibration, and its mirror is obtained as the dual torus
fibration. In this paper, we apply their ideas on the fibration (1.3), which we will refer to
as the SYZ fibration.

Given the SYZ fibration ρ : Y → B, one can equip the complement Bsm := B \ Γ of
the discriminant with two tropical affine structures. One is called the symplectic affine

structure, and the other is called the complex affine structure. Here a manifold with a
tropical affine structure is a manifold which is obtained by gluing open subsets of Rm by
the action of the affine linear group Rm ⋊ GLm(Z) (or Rm ⋊ SLm(Z) if the manifold is
oriented). An integral affine manifold is the special case when the gluing maps belong to
Zm ⋊ GLm(Z). The symplectic affine structure is defined by first taking a basis {γ1, γ2}
of the space of local sections of the relative homology bundle (R1ρ∗Z)

∨ and integrating
the symplectic form ω along these cycles to obtain 1-forms on B; dxi =

∫
γi
ω. Local affine

coordinate on Bsm are primitives of these 1-forms. The complex affine structure is defined
similarly by using Im(e

√
−1θΩ) instead of ω, and is Legendre dual to the symplectic affine

structure [Hit01].
Following earlier works (cf. e.g. [Fuk05, KS06a, GS11, Aur07, Aur09, CLL12, AAK]

and references therein), the mirror Y̌ of Y is identified in [Cha13] with the complement
of an anti-canonical divisor in the minimal resolution of the An-singularity. This mirror
Y̌ admits a special Lagrangian torus fibration, which is an SYZ mirror in the sense that
the symplectic and complex affine structures are interchanged between Y and Y̌ .

Let E1, . . . , En ⊂ Y̌ be the irreducible components of the exceptional divisor in the
minimal resolution. Then there is an isomorphism

deg : Pic Y̌ → Zn

∈ ∈

L 7→ (degL|Ei
)ni=1

(1.5)

of abelian groups. We write the line bundle associated with d ∈ Zn as Ld.
Given an SYZ fibration, it is expected that Lagrangian sections of the original manifold

and holomorphic line bundles on the mirror manifold are related by a kind of Fourier
transform [AP01, LYZ00], which we refer to as the SYZ transform. We introduce the
notion of a strongly admissible path in C× \∆, and associate an exact Lagrangian section
Lγ ⊂ Y of the SYZ fibration (1.3) to each strongly admissible path. The winding number

w(γ) = (w1(γ), . . . , wn(γ)) ∈ Zn of a strongly admissible path is defined as the intersection
numbers with the closed intervals [ai−1, ai] for i = 1, . . . , n.

The first main result in this paper is the following:

Theorem 1.1. For a strongly admissible path γ, the SYZ transform of the Lagrangian

Lγ is given by the line bundle L−w(γ).

Next we consider another symplectic manifold defined by

Y ′ =

{
(z, u, v) ∈ C

× × C
2

∣∣∣∣ uv =
1

z
+ zn

}
. (1.6)
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Note that Y ′ is related to Y by moving ai to the roots of unity, and hence is symplec-
tomorphic to it. The map (1.3) gives a special Lagrangian torus fibration on Y ′, whose
discriminant consists only of the origin.

The mirror Y̌ for Y ′ is the smooth stack obtained by removing an anti-canonical divisor
from the total space K of the canonical bundle of the weighted projective line P(1, n).
Although the McKay correspondence [KV00] gives a derived equivalence

Db coh Y̌ ∼= Db coh Y̌ , (1.7)

the Picard groups are not isomorphic:

Pic Y̌ ∼= PicP(n, 1) ∼= Z 6∼= Z
n ∼= Pic Y̌ .

Let OY̌(i) be the line bundle on Y̌ obtained by restricting the pull-back of OP(1,n)(i).
Homological mirror symmetry [Kon95, Kon98] for P(1, n) gives an equivalence

Db cohP(1, n) ∼= Db FukW, (1.8)

where FukW is a Fukaya category associated with the Lefschetz fibration

W : C× → C

∈ ∈
z 7→ 1/z + zn.

This is a special case of (a generalization to toric stacks of) the work of Abouzaid [Abo06,
Abo09] on homological mirror symmetry for toric varieties. There are also works by Fang
[Fan08] and Fang, Liu, Treumann and Zaslow [FLTZ12, FLTZ11] on homological mirror
symmetry for toric varieties, which are also motivated by the Strominger-Yau-Zaslow
conjecture but different from the work of Abouzaid.

Under the equivalence (1.8), the collection (OP(1,n)(i))
n
i=0 of line bundles is mapped to

Lefschetz thimbles (∆i)
n
i=0. These Lefschetz thimbles can be lifted to Lagrangian sections

(Li)
n
i=0 of the SYZ fibration for Y ′. Let W ′ be the full subcategory of the wrapped Fukaya

category of Y ′ consisting of (Li)
n
i=0.

The second main result in this paper is the following:

Theorem 1.2. There is an equivalence

DbW ′ ∼= Db coh Y̌ (1.9)

of triangulated categories sending Li to OY̌(i) for i = 0, . . . , n.

The proof is based on an analysis of the behavior of the wrapped Fukaya category
under suspension, and depends heavily on the work of Pascaleff [Pas]. We expect that
(Li)

n
i=0 generates the wrapped Fukaya category, so that the left hand side of (1.9) is the

whole wrapped Fukaya category.
Theorems 1.1 and 1.2 are compatible in the following sense: There exists a symplec-

tomorphism Y
∼−→ Y ′ which induces an equivalence

DbW ∼−→ DbW ′,
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so that the Lagrangians (Li)
n
i=0 in Y ′ are images of Lagrangians (Lγi)

n
i=0 in Y associated

with certain strongly admissible paths γ0, γ1, . . . , γn in C× \ ∆. One can then choose a
derived equivalence

Db coh Y̌ ∼−→ Db coh Y̌

in such a way that the images of (Lγi)
n
i=0 under the composition

DbW ∼−→ DbW ′ ∼−→ Db coh Y̌ ∼−→ Db coh Y̌

of equivalences are precisely given by their SYZ transforms described in Theorem 1.1.
This shows that homological mirror symmetry for non-compact branes is realized by SYZ
just as for compact branes [Cha13].

This paper is organized as follows: In Section 2, we briefly recall the SYZ construction
of the mirror manifold Y̌ from [Cha13, Section 3]. In Section 3, we introduce the notion of
a strongly admissible path to which we associate a noncompact Lagrangian submanifold
in (Y, ω), which is a section of the SYZ fibration ρ. In Section 4, we describe holomorphic
line bundles on Y̌ obtained as SYZ transforms of noncompact Lagrangian submanifolds
associated with strongly admissible paths and prove Theorem 1.1. The proof of Theo-
rem 1.2 is given in Section 5.

Acknowledgment: K. C. is supported by Hong Kong RGC Direct Grant for Research
2011/2012 (Project ID: CUHK2060434). K. U. is supported by JSPS Grant-in-Aid for
Young Scientists No.24740043. A part of this paper was worked out while K. U. was vis-
iting the Chinese University of Hong Kong, whose hospitality is gratefully acknowledged.

2 SYZ mirror symmetry

We start with the Hamiltonian S1-action on (Y, ω):

e2π
√
−1t · (u, v, z) =

(
e2π

√
−1tu, e−2π

√
−1tv, z

)
,

whose moment map is given by

µ(u, v, z) =
1

2

(
|u|2 − |v|2

)
.

Let B := R2. Then the map ρ : Y → B defined by

ρ(u, v, z) = (log |z|, µ) =
(
log |z|, 1

2

(
|u|2 − |v|2

))

is a Lagrangian torus fibration on Y , whose discriminant locus is given by the finite set

Γ := {(s0, 0), (s1, 0), . . . , (sn, 0)} ⊂ B,

where we denote si := log ai for i = 0, . . . , n. This is usually called an SYZ fibration of
(Y, ω).

Let Bsm := B\Γ be the smooth locus. Then the fiber Ts,λ over a point (s, λ) ∈ Bsm is a
smooth Lagrangian torus in Y , and each of the fiber Tsi,0 over (si, 0) ∈ Γ is singular with
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one nodal singularity. Furthermore, the locus of Lagrangian torus fibers which bound
nonconstant holomorphic disks is given by a union of vertical lines:

H := {(s, λ) ∈ B | s = si for some i = 0, 1, . . . , n}.

Each connected component of H is called a wall in B.
The Lagrangian torus fibration ρ : Y → B induces an integral affine structure on

Bsm, called the symplectic affine structure. As we have mentioned, integrality of the
affine structure means that the transition maps between charts on Bsm are elements of
the integral affine linear group

Aff(Z2) := GL2(Z)⋊ Z
2.

This ensures that Λ ⊂ TBsm, the family of lattices locally generated by ∂/∂x1, ∂/∂x2
where x1, x2 are local affine coordinates on Bsm, is well-defined.

The Strominger-Yau-Zaslow (SYZ) conjecture [SYZ96] suggested that a mirror of
(Y, ω) can be constructed by fiberwise-dualizing an SYZ fibration on (Y, ω). More pre-
cisely, one defines the semi-flat mirror of (Y, ω) as the moduli space Y̌0 of pairs (Ts,λ,∇)
where ∇ is a flat U(1)-connection (up to gauge equivalence) on the trivial line bundle
C := C× Ts,λ over a smooth Lagrangian torus fiber Ts,λ. Topologically, Y̌0 is simply the
quotient TBsm/Λ of the tangent bundle TBsm by Λ. This is naturally a complex manifold
where the local complex coordinates are given by exponentiations of complexifications of
local affine coordinates on Bsm (while the quotient T ∗Bsm/Λ∨ of the cotangent bundle
T ∗Bsm by the dual lattice Λ∨, which is canonically a symplectic manifold, is contained
in Y as an open dense subset such that the restriction of ω to it gives the canonical
symplectic structure). However, this is not quite the correct mirror manifold because the
natural complex structure on Y̌0 is not globally defined due to nontrivial monodromy of
the affine structure around each singular point (si, 0) ∈ Γ.

A more concrete description of this phenomenon is as follows. For i = 0, 1, . . . , n,
consider the strip Bi := (si−1, si+1) × R (where we set s−1 := −∞ and sn+1 := +∞). A
covering of Bsm is given by the open sets

Ui := Bi \ [si, si+1)× {0}, Vi := Bi \ (si−1, si]× {0}.

i = 0, 1, . . . , n. The intersection Ui ∩ Vi consists of two connected components:

Ui ∩ Vi = B+
i ∪B−

i ,

where B+
i (resp. B−

i ) corresponds to the component in which λ > 0 (resp. λ < 0).
On Ui (resp. Vi), denote by ui (resp. vi+1) the exponentiation of the complexification

of the left-pointing (resp. right-pointing) affine coordinate. (Our convention is that for
a real number x ∈ R, its complexification is given by −x +

√
−1y.) Also, denote by w

the exponentiation of the complexification of the upward-pointing affine coordinate. See
Figure 2.1.

Now w is a globally defined coordinate. Geometrically, it can be written as

w(Ts,λ,∇) =

{
exp

(
−
∫
α
ω
)
hol∇(∂α) for λ ≥ 0,

exp
(∫

α
ω
)
hol∇(−∂α) for λ ≤ 0,
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Figure 2.1: The base affine manifold B.

where α ∈ π2(Y, Tsi,λ) is the class of the holomorphic disk in Y bounded by Tsi,λ for some
i = 0, 1, . . . , n, and hol∇(∂α) is the holonomy of the flat U(1)-connection ∇ around the
boundary ∂α ∈ π1(Tsi,λ). The class α changes to −α when one moves from λ > 0 to
λ < 0.

But the other coordinates ui and vi+1 are not globally defined: Since the monodromy
of the affine structure going counter-clockwise around (si, 0) ∈ Γ is given by the matrix

(
1 1
0 1

)
,

the coordinates (ui, w) and (vi+1, w) glue on Ui ∩ Vi according to

ui = v−1
i+1 on B+

i ,

ui = v−1
i+1w on B−

i .

Hence, the monodromy of the complex coordinates going counter-clockwise around the
point (si, 0) is nontrivial and given by

ui 7→ uiw, v−1
i+1 7→ v−1

i+1w.

In particular, these complex coordinates on TBi/Λ do not form a globally defined complex
structure on Y̌0.

The examples in [Aur07, Aur09, CLL12, AAK] suggest the following construction
(we should mention that these are all special cases of the constructions in Kontsevich-
Soibelman [KS06b] and Gross-Siebert [GS11], but those general constructions largely
ignore the symplectic aspects and hence Lagrangian torus fibration structures - they build
the mirror family directly from tropical data in the base B): in order to get the genuine
mirror manifold, we need to modify the gluing of complex charts on Y̌0 by quantum
corrections from disk instantons

ui = v−1
i+1 + v−1

i+1w = v−1
i+1(1 + w) on B+

i , (2.1)

ui = v−1
i+1w + v−1

i+1 = v−1
i+1w(1 + w−1) on B−

i . (2.2)
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Geometrically, the term v−1
i+1w in the first formula (2.1) should be viewed as multiplying

v−1
i+1 by w where w corresponds to the unique nonconstant holomorphic disk bounded by
the Lagrangian torus T0,λ whose area is given by

λ = − log |w| > 0.

This means that we are correcting the term v−1
i+1 by adding the contribution from the

holomorphic disk bounded by T0,λ when we cross the upper half of the wall {si}×R ⊂ H .
In the same way, the term v−1

i+1 in the second formula (2.2) is given by multiplying v−1
i+1w

by w−1 where w−1 now corresponds to the unique nonconstant holomorphic disk bounded
by the Lagrangian torus T0,λ whose area is equal to

−λ = log |w| = − log |w−1| > 0.

So we are correcting v−1
i+1w by the disk bounded by T0,λ when we cross the lower half of

the wall {si} × R ⊂ H .
The formulas (2.1), (2.2) can actually be interpreted as wall-crossing formulas for

the counting of Maslov index two holomorphic disks in Y bounded by Lagrangian torus
fibers. To see this, we need to partially compactify Y by allowing z to take values in C

and replacing ρ by the map

(u, v, z) 7→ (|z|, µ) =
(
|z|, 1

2

(
|u|2 − |v|2

))
.

Then the base becomes an affine manifold with both singularities and boundary: it is a
right half-space B̄ in R2, and the boundary ∂B̄ corresponds to the divisor in Y defined by
z = 0. In this situation, each of the local coordinates ui, v

−1
i+1 and v

−1
i+1w can be expressed

as in the form

exp

(
−
∫

β

ω

)
hol∇(∂β),

for a suitable relative homotopy class β ∈ π2(Y, Ts,λ) of Maslov index two (cf. Auroux
[Aur07, Aur09]).

In any case, the modification of gluing cancels the monodromy and defines global
complex coordinates ui, vi, w on TBi/Λ (topologically, TBi/Λ ∼= (C×)2) related by

ui = v−1
i , ui+1 = v−1

i+1 and uivi+1 = 1 + w. (2.3)

The instanton-corrected mirror Y̌ is then obtained by gluing together the pieces TBi/Λ
(i = 0, 1, . . . , n) according to (2.3). On the intersection (TBi−1/Λ) ∩ (TBi/Λ), we have

ui = v−1
i , uivi+1 = 1 + w = ui−1vi.

We remark that, by our definition, the mirror manifold Y̌ will have “gaps” because for
instance u, v, w are C×-valued. A natural way to “complete” the mirror manifold and
fill out its gaps is by rescaling the symplectic structure of Y and performing analytic
continuation; see [Aur07, Section 4.2] for a discussion of this “renormalization” process.

Finally, one observes that this is precisely the gluing of complex charts in the toric
resolution X → C2/Zn+1 of the An-singularity. We thus conclude that the mirror is
precisely given by the complex manifold

Y̌ := X \D,
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where X = XΣ is the toric surface defined by the 2-dimensional fan Σ ∈ R
2 generated by

{vi := (i− 1, 1) ∈ N | i = 0, 1, . . . , n+ 1},

and D is the hypersurface in XΣ defined by h := χ(0,1) = 1. Here h : X → C is the
holomorphic function whose zero locus is the union of all the toric divisors in X . For
i = 1, . . . , n, if we let Si denote the interval (si−1, si)×{0} ⊂ B, then (the closure of) the
quotient TSi/TSi ∩ Λ in Y̌ is one of the n exceptional divisors in XΣ, each of which is a
(−2)-curve. We denote this exceptional divisor by Ei ⊂ Y̌ .

Let M = Hom(N,Z) be the lattice of characters of the dense torus of XΣ and Σ(1) =
{v0, . . . , vn+1} be the set of one-dimensional cones of the fan Σ. If we write the toric divisor
on XΣ corresponding to vi ∈ Σ(1) as Di, then we have Di = Ei for i = 1, . . . , n, and D0

and Dn+1 are non-compact divisors. One can easily show from the divisor sequence

0 → M → Z
Σ(1) → PicXΣ → 0

that PicXΣ is generated by O(Di) for i = 0, . . . , n− 1, and the map

deg : PicXΣ → Zn
∈ ∈

L 7→ (degL|Di
)ni=1

is an isomorphism of abelian groups. Since Y̌ = XΣ \D is the complement of a principal
divisor, the restriction map PicXΣ → Pic Y̌ and hence the map (1.5) is an isomorphism
of abelian groups.

3 Lagrangian submanifolds fibred over paths

Consider the projection map

π : Y → C
×, (u, v, z) 7→ z.

Each fiber is a conic {(u, v) ∈ C2 | uv = z−1f(z)} which degenerates to the cone uv = 0
over a zero of the polynomial f . Recall that we denote by

∆ = {a0, a1, . . . , an}

the set of zeros of the polynomial f(z), which we have assumed to be real and positive,
and in the ordering

0 < a0 < a1 < . . . < an.

The symplectic fibration π : Y → C× induces a connection on the tangent bundle of Y
where the horizontal subspace at y ∈ Y0 is given by the symplectic orthogonal complement
to the vertical subspace:

Hy := Ker(dπy)
⊥ω .

Given a smooth embedded path γ : I → C× \ ∆ where I ⊂ R is an interval, par-
allel transport with respect to the above connection along γ yields symplectomorphisms
between smooth fibers

τ t2t1 : π−1(γ(t1)) → π−1(γ(t2)),
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for t1 < t2 ∈ I. These symplectomorphisms are S1-equivariant since the S1-action is
Hamiltonian. The vanishing cycle Vt in a smooth fiber π−1(γ(t)) is given by its equator
µ = 0 (i.e. |u| = |v|). Vanishing cycles are invariant under parallel transport, so that the
Lefschetz thimble Lγ along γ, given by the union of all vanishing cycles Vt ⊂ π−1(γ(t))
for t ∈ I, is a Lagrangian submanifold in (Y, ω). If γ is a matching path, i.e. a path
connecting two critical values of π in C×, then Lγ is a Lagrangian sphere in (Y, ω).

Other Lagrangian submanifolds can be constructed in a similar way, as in the work of
Pascaleff [Pas].

Definition 3.1. Let γ : R → C× \∆ be a smooth embedded path. We call the path γ
admissible if the following conditions are satisfied:

(1) (boundary conditions) limt→−∞ |γ(t)| = 0 and limt→∞ |γ(t)| = ∞.

(2) γ intersects transversally with each of the line segments ǫi := [ai−1, ai] for i =
1, . . . , n.

Given an admissible path γ : R → C×, we fix t0 ∈ R and choose a Lagrangian cycle C0

in the conic fiber π−1(γ(t0)). Then the submanifold Lγ,C0
contained inside π−1(γ) swept

out by the parallel transport of C0 along γ is a Lagrangian submanifold in (Y, ω) (cf.
[Aur07, Section 5.1] and [Pas, Section 3.3]).

Definition 3.2. Let γ : R → C× \∆ be an admissible path. For i = 1, . . . , n, we define
the i-th winding number wi(γ) of γ to be the topological intersection number between
γ(R) and the line segment ǫi = [ai−1, ai] ⊂ C×.

Notice that the winding numbers of γ are invariant when we deform γ in a fixed
homotopy class relative to the boundary conditions limt→−∞ |γ(t)| = 0 and limt→∞ |γ(t)| =
∞. In particular, we can deform γ so that γ(t) lies on the negative real axis for t < −T
for some fixed positive T . Then we consider the Lagrangian (real locus)

Ct := {(u, v, z) ∈ π−1(γ(t)) | u, v ∈ R}.

in the conic fiber π−1(γ(t)) for each t < −T , which is ‘dual’ to the vanishing cycle Vt.
Notice that Ct is invariant under symplectic parallel transport for all t < −T , meaning
that

τ t2t1 (Ct1) = Ct2

for all t1 < t2 < −T . Let Lγ be the submanifold in Y swept out by parallel transport of
Ct (t < −T ):

Lγ :=
⋃

t∈(−∞,−T )

Ct ∪
⋃

t∈[−T,∞)

τ t−T (C−T ).

This defines a Lagrangian submanifold in (Y, ω) which is homeomorphic to R2. Note that
the curve C−T := {(u, v, z) ∈ π−1(γ(−T )) | u, v ∈ R} in the conic fiber π−1(γ(−T )) is
being twisted by Dehn twists in vanishing cycles (i.e. the equator λ = 0 in a fiber of
π : Y → C×) as one goes along γ.

Furthermore, given an admissible path γ, we can deform it (again with respect to the
boundary conditions limt→−∞ |γ(t)| = 0 and limt→∞ |γ(t)| = ∞) so that the following
condition is satisfied:
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Definition 3.3. An admissible path γ : R → C
× \∆ is strongly admissible if the modulus

|γ| : R → R>0 is strictly increasing.

Proposition 3.4. Let γ : R → C× be a strongly admissible path. Then the Lagrangian

submanifold Lγ is a section of the SYZ fibration ρ : Y → B.

Proof. By definition, Lγ is invariant under parallel transport, so it is a Lagrangian sub-
manifold in (Y, ω). Moreover, it is clear that the moment map µ when restricted to Ct for
t < −T is a one-to-one map. Since the symplectomorphisms τ t−T are all S1-equivariant,
the value of µ is preserved under parallel transport. Thus the restriction of µ to τ t−T (C−T )
remains a one-to-one map. Together with the condition that |γ(t)| is strictly increasing,
this implies that Lγ intersects each fiber Ts,λ of the SYZ fibration ρ : Y → B at one point.
Hence Lγ is a section of ρ : Y → B.

By deforming γ in a fixed homotopy class if necessary, one can furthermore assume
that a strongly admissible path γ : R → C× \∆ satisfies |γ(s)| = es for any s ∈ R and
γ(si) = −ai for i = 0, . . . , n (recall that si = log ai for each i). Then there exists a unique
lift γ̃ : R → R of γ/|γ| : R → S1 such that γ̃(s0) = 0, and the winding numbers of γ can
be computed as

wi(γ) =
1

2π
(γ̃(si)− γ̃(si−1))

for i = 1, . . . , n.
As an example, consider the path

γ0 : R → C
×, t 7→ −et,

which is clearly strongly admissible. The corresponding Lagrangian submanifold L0 :=
Lγ0 is simply the Cartesian product of the real locus Cs0 inside the conic fiber Cs0 =
π−1(−a0) with the negative real axis (which is the image γ0(R) of the path). As a section
of the SYZ fibration ρ : Y → B, the Lagrangian L0 can be explicitly written as

σ : B → Y, (s, λ) 7→ (u(s, λ), v(s, λ), z(s, λ)),

where

u(s, λ) =

√√
λ2 + |f(−es)|2 + λ,

v(s, λ) = (−1)n−1

√√
λ2 + |f(−es)|2 − λ,

z(s, λ) = −es.

4 SYZ transforms

Consider Λ∨ ⊂ T ∗Bsm, the family of lattices locally generated by dx1, dx2. As before,
x1, x2 here denote local affine coordinates on Bsm. As in [Cha13], we will assume that
x2 = −λ is the globally defined coordinate. Let

ω0 := dx1 ∧ dξ1 + dx2 ∧ dξ2
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be the canonical symplectic structure on the quotient T ∗Bsm/Λ∨ of the cotangent bundle
T ∗Bsm by Λ∨, where (ξ1, ξ2) are fiber coordinates on T

∗Bsm so that (x1, x2, ξ1, ξ2) ∈ T ∗Bsm

denotes the cotangent vector ξ1dx1 + ξ2dx2 at the point (x1, x2) ∈ Bsm. In the previous
section, we have constructed a global Lagrangian section L0 of the SYZ fibration ρ :
Y → B. Then a theorem of Duistermaat [Dui80] says that there exists a fiber-preserving
symplectomorphism

Θ : (T ∗Bsm/Λ∨, ω0)
∼=−→ (ρ−1(Bsm), ω)

so that L0 corresponds to the zero section of T ∗Bsm/Λ∨.
This symplectomorphism can be constructed as follows. Let b ∈ Bsm. Then for every

α ∈ T ∗
b B

sm, we can associate a vector field vα on the fiber ρ−1(b) by

ιvαω = ρ∗α.

Let φτ
α be the flow of vα at time τ ∈ R. Then we define an action θα of α on ρ−1(b) by

the time-1 flow
θα(y) = φ1

α(y), y ∈ ρ−1(b).

Now the covering map

T ∗Bsm → ρ−1(Bsm), α 7→ θα(σ(pr(α))),

where pr : T ∗Bsm → Bsm denotes the projection map, induces a symplectomorphism
Θ : T ∗Bsm/Λ∨ → ρ−1(Bsm).

Now let y1, y2 be the fiber coordinates on TBsm dual to ξ1, ξ2, i.e. (x1, x2, y1, y2) ∈
TBsm denotes the tangent vector y1∂/∂x1 + y2∂/∂x2 at the point (x1, x2) ∈ Bsm. Given
a strongly admissible path γ : R → C×, the noncompact Lagrangian submanifold Lγ

is a section of the SYZ fibration ρ : Y → B by Proposition 3.4 (and as we mentioned
before, every admissible path can be deformed to a strongly admissible one). Via the
symplectomorphism Θ, we can write Lγ in the form

Lγ = {(x1, x2, ξ1, ξ2) ∈ T ∗Bsm/Λ∨ | (x1, x2) ∈ Bsm, ξj = ξj(x1, x2) for j = 1, 2} ,

where ξj = ξj(x1, x2), j = 1, 2, are smooth functions on Bsm. Since Lγ is Lagrangian, the
functions ξ1, ξ2 satisfy

∂ξj
∂xl

=
∂ξl
∂xj

for j, l = 1, 2 (see [LYZ00, AP01, Cha13]).
Lying at the basis of the SYZ proposal [SYZ96] is the fact that the dual T ∗ of a torus

T can be viewed as the moduli space of flat U(1)-connections on the trivial line bundle
C := C × T over T . So a Lagrangian section L = {(x, ξ(x)) ∈ T ∗U/T ∗U ∩ Λ∨ | x ∈ U}
over an open set U ⊂ Bsm corresponds to a family of connections {∇ξ(x) | x ∈ U} patching
together to give a U(1)-connection which can locally be written as

∇̌U = d+ 2π
√
−1 (ξ1dy1 + ξ2dy2)

over TU/TU ∩ Λ ⊂ Y̌ . As shown in [LYZ00, AP01] (see also [Cha13, Section 2]), the
(0, 2)-part F (0,2) (and also (2, 0)-part F (2,0)) of the curvature two form of ∇̌U is trivial.
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Recall that a covering of Bsm is given by the open sets

Ui := Bi \ [si, si+1)× {0}, Vi := Bi \ (si−1, si]× {0}.

for i = 0, 1, . . . , n. Now, the restriction of the Lagrangian section Lγ to each Ui (resp. Vi)
is transformed to a U(1)-connection ∇̌Ui

over TUi/TUi ∩Λ (resp. ∇̌Vi
over TVi/TVi∩Λ).

These connections can be glued together according to the gluing formulas (2.1), (2.2).
Since the (0, 2)-part F (0,2) of the curvature two form vanishes, this defines a holomorphic
line bundle Lγ over Y̌ .

Definition 4.1. Let γ : R → C× be a strongly admissible path and Lγ be the noncompact
Lagrangian submanifold in (Y, ω) associated to γ. We define the SYZ transform of Lγ to
be the holomorphic line bundle Lγ over Y̌ , i.e.

F(Lγ) := Lγ.

Notice that the isomorphism class of Lγ is unchanged when we deform Lγ in a fixed
Hamiltonian isotopy class (or deforming γ is a fixed homotopy class relative to the bound-
ary conditions limt→−∞ |γ(t)| = 0 and limt→∞ |γ(t)| = ∞). Henceforth, we will regard
this as defining the SYZ transform of the Hamiltonian isotopy class of the Lagrangian
submanifold Lγ ⊂ Y as an isomorphism class of holomorphic line bundle over Y̌ .

As an immediate example, the SYZ transform of the zero section L0 = Lγ0 gives the
structure sheaf OY̌ over Y̌ .

The main goal of this section is to compute (the isomorphism class of) the line bundle
Lγ in terms of the winding numbers of the path γ. To begin with, note that the isomor-
phism class of a line bundle over Y̌ is determined by the degrees of its restrictions to the
exceptional divisors Ei for i = 1, . . . , n. Given integers d1, . . . , dn ∈ Z, let us denote by
Ld1,...,dn the line bundle on Y̌ such that degLd1,...,dn |Ei

= di.
Now, given a Lagrangian section

Lγ = {(x1, x2, ξ1, ξ2) ∈ T ∗Bsm/Λ∨ | (x1, x2) ∈ Bsm, ξj = ξj(x1, x2) for j = 1, 2},

of the SYZ fibration ρ : Y → B, its SYZ transform is the connection ∇̌ which can locally
be expressed as

∇̌U = d+ 2π
√
−1(ξ1dy1 + ξ2dy2).

Let L be the line bundle determined by ∇̌. Then the degree of its restriction to Ei is
given by

degL|Ei
=

∫

Ei

√
−1

2π
F∇̌

= −
∫

Ei

(dξ1 ∧ dy1)

= −(ξ1(si)− ξ1(si−1)).

We have the second equality because y2 is constant (and x2 = −λ = 0) on Ei. Hence the
isomorphism class of the line bundle L is completely determined by the increment of the
angle coordinate ξ1 on the Lagrangian section L as one moves from (si−1, 0) to (si, 0).

Now we prove Theorem 1.1:
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Proof of Theorem 1.1. Recall that the Hamiltonian isotopy class of the Lagrangian sub-
manifold Lγ remains unchanged when we deform γ in a fixed homotopy class relative
to the boundary conditions limt→−∞ |γ(t)| = 0 and limt→∞ |γ(t)| = ∞. So, up to a re-
parametrization of γ, we can deform the restriction of γ to (si−1, si) to a path arbitrary
close to the concatenation of γ0|(si−1,si) (the negative axis) with a loop winding around
the circle ls := {z ∈ C×||z| = esi} for wi(γ) times. Along γ0, the angle coordinate ξ1 is
constantly zero, and ξ increases by one when we wind around ls once in the anti-clockwise
direction. Hence, the increment ξ1(si) − ξ1(si−1) is precisely given by the i-th winding
number wi(γ).

One way to visualize the Lagrangian submanifold Lγ is to observe that the curve
τ sis0 (Cs0) is given by twisting Cs0 in the vanishing cycle for

∑i
k=1wi(γ) times. Correspond-

ingly, the increment of the angle coordinate ξ1 as one goes from (si−1, 0) to (si, 0) is given
by the i-th winding number wi(γ) of γ.

5 Homological mirror symmetry

Let X be a smooth toric Fano stack of dimension d and K be the total space of its
canonical bundle. The mirror of X is given by a Laurent polynomial

W : (C×)d → C

whose Newton polytope coincides with the fan polytope of X . By choosing sufficiently
general W , one may assume that

• W is tame in the sense that the gradient ‖∇W‖ is bounded from below by a positive
number outside of a compact set,

• all the critical points of W are non-degenerate in the sense that the Hessian at each
critical point is a non-degenerate quadratic form,

• all the critical values of W are distinct, and

• the origin is not a critical value of W .

When X = P(1, n) is the weighted projective line of weight (1, n), one can take

W : C× → C, z 7→ z + 1/zn

as its mirror. This is related to the function 1/z + zn appearing in (1.6) by an automor-
phism z 7→ 1/z of the torus, and our choice here is made only for aesthetic reason (Figure
5.5 below looks nicer for this choice). The critical points ofW are given by z = n+1

√
nζ in+1,

i = 0, . . . , n, with critical values n+1
√
n(1 + 1/n)ζ in+1. Here ζn+1 = exp(2π

√
−1/(n+ 1)) is

a primitive (n+ 1)-st root of unity.
We equip (C×)d with the Kähler form

ω = −
√
−1

2

(
dz1 ∧ dz̄1

|z1|2
+ · · ·+ dzd ∧ dz̄d

|zd|2
)
,
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and define a horizontal distribution on (C×)d as the orthogonal complement to the tangent
spaces to fibers of W . Choose a sufficiently large closed disk B ⊂ C and a point ∗
on the boundary of B, so that all the critical values of W is contained in the interior
of B. The restriction W |S : S → B of W to the intersection S of W−1(B) and a
sufficiently large closed ball in (C×)d is a compact convex Lefschetz fibration [McL09,
Definition 2.14], i.e., a family of compact convex symplectic manifolds with at worst non-
degenerate critical points. Here, a compact convex symplectic manifold (also known as a
Liouville domain) is an exact symplectic manifold with boundary whose Liouville vector
field points strictly outward along the boundary. We will write W |S as W by abuse of
notation. By rounding the corners of S, one obtains a Liouville domainM . Its completion

M̂ = M ∪∂M (∂M × [1,∞)), obtained by gluing the positive half of the symplectization
to the boundary, is symplectomorphic to (C×)d.

When W = z + 1/zn, we fix a large positive real number ∗ as a base point, and let
B to be a closed disk of radius ∗ centered at the origin. Its inverse image S := W−1(B)
is symplectomorphic to a cylinder [0, L] × S1 for some L, equipped with the standard
symplectic form ω = dr ∧ dθ. The fiber S∗ := W−1(∗) consists of n + 1 points, one of
which is approximately ∗ and n of which are approximately n-th roots of 1/∗.

With a compact convex Lefschetz fibration, Abouzaid [Abo06, Abo09] associates a
category F(S, S∗) consisting of exact Lagrangian submanifolds L with boundaries, which
are admissible in the sense that

• the boundary ∂L is a Lagrangian submanifold in the interior of S∗,

• L projects by W to a curve γ ⊂ B in a neighborhood of ∂L, and

• L coincides with the parallel transport of ∂L along γ in this neighborhood.

See Figure 5.1 for a schematic picture of admissible Lagrangians.
For a pair (L1, L2) of admissible Lagrangian submanifolds, the space homF(S,S∗)(L1, L2)

of morphisms is defined as the Lagrangian intersection Floer complex CF (Lǫ1
1 , L2) between

Lǫ1
1 and L2. Here Lǫ1

1 is the Lagrangian submanifold obtained by perturbing the part of
L1 fibered over γ1 to another Lagrangian submanifold fibered over the curve γǫ11 starting
from ∗ such that arg γǫ11

′(0) < arg γ′2(0) < arg γǫ11
′(0) + π as in Figure 5.2, and one

only looks at intersection points in the interior of S. For a sequence (L1, . . . , Lk) of
admissible Lagrangians, the A∞-operation is defined by perturbing Li to L

ǫi
i such that

arg γǫ11
′(0) < arg γǫ22

′(0) < · · · < arg γǫkk
′(0) < arg γǫ11

′(0)+π and counting virtual numbers
of holomorphic disks bounded by these Lagrangian submanifolds. This gives an A∞-
precategory, which can be promoted to an A∞-category by [Efi11, Theorem 1.2].

L1

L2

Figure 5.1: Admissible Lagrangians

Lǫ1
1L2

Figure 5.2: Perturbing L1

A vanishing path is an embedded path γ : [0, 1] → B from the base point ∗ to a critical
value of π avoiding other critical values. We assume that γ does not pass through the ori-
gin. By arranging the vanishing cycles along a vanishing path, one obtains an admissible
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Lagrangian submanifold of S called the Lefschetz thimble. A distinguished basis of vanish-

ing paths is a sequence γ = (γ1, . . . , γm) of mutually non-intersecting vanishing paths, one
for each critical value and ordered according to − arg γ′i(0). The corresponding sequence
of Lefschetz thimbles will be written as ∆ = (∆1, . . . ,∆m), and the full subcategory of
F(S, S∗) consisting of ∆ will be denoted by F(∆). It is expected that

• ∆ is a full exceptional collection in DbF(S, S∗), so that DbF(∆) is equivalent to
DbF(S, S∗) and hence is independent of the choice of ∆, and

• DbF(S, S∗) is equivalent to the derived category DbF(W ) of the Fukaya-Seidel cat-
egory of W , defined in [Sei08b, Definition 18.12] as the Z/2Z-invariant part of the
Fukaya category of a branched double cover of a slight enlargement of S.

Homological mirror symmetry for toric Fano stacks can be formulated as follows:

Conjecture 5.1 (Kontsevich [Kon98]). There exists an equivalence

Ψ : DbF(∆) → Db cohX (5.1)

of triangulated categories.

Let σ : S → S be a Hamiltonian diffeomorphism which covers the Dehn twist σ :
B → B along a circle near the boundary of B. The resulting push-forward functor
σ∗ : F(S, S∗) → F(S, S∗) is an autoequivalence of the Fukaya category, which wraps a
Lagrangian as shown in Figure 5.3.

∆

σ(∆)

Figure 5.3: The functor σ∗

One can equip the direct sum

A =

m⊕

i,j=0

∞⊕

k=0

HomF(S,S∗)(σ
k(∆i),∆j)

with a ring structure given by

Hom(σk2(∆i2),∆i3) ⊗ Hom(σk1(∆i1),∆i2) → Hom(σk1+k2(∆i1),∆i3)

∈ ∈ ∈

x2 x1 7→ m2(x2, σ
k2
∗ (x1)).
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The continuation map

t : HomF(S,S∗)(σ
k(∆i),∆j) → HomF(S,S∗)(σ

k+1(∆i),∆j)

in Floer theory, obtained by counting solutions to inhomogeneous Cauchy-Riemann equa-
tion (cf. e.g [AS10, (3.35)]), induces an endomorphism T of this ring.

On the mirror side, there is a distinguished autoequivalence

S(−) = −⊗ ωX [d] : D
b cohX → Db cohX

called the Serre functor [BK89]. Let s ∈ H0(ω∨
X ) be a section characterized by the

property that the zero locus s−1(0) is the union of all the toric divisors of X . This section
induces a natural transformation

s : S[−d] → id (5.2)

which acts on objects by multiplication by s : S[−d](X) = X ⊗ ωX → id(X) = X. One
can equip the direct sum

B =

m⊕

i,j=0

∞⊕

k=0

HomX (Ei ⊗ ωk
X , Ej)

with a ring structure given by

Hom(Ei2 ⊗ ωk2
X , Ei3)⊗ Hom(Ei1 ⊗ ωk1

X , Ei2)
∼−→ Hom(Ei2 ⊗ ωk2

X , Ei3)⊗Hom(Ei1 ⊗ ωk1+k2
X , Ei2 ⊗ ωk2

X )

→ Hom(Ei1 ⊗ ωk1+k2
X , Ei3).

The natural transformation (5.2) induces a ring endomorphism S of B.
Assume that the collection (Ei)

m
i=1 is cyclic in the sense that

Exti(Ek ⊗ ωj
X , Eℓ) = 0 for any i 6= 0, any j ≥ 0 and any k, ℓ ∈ {1, . . . , m}.

This implies that the ring B is concentrated in degree zero, so that there are no higher
A∞-operations for degree reason. Although cyclicity is a strong condition, it is known
that any toric Fano stack in dimension two has a cyclic full exceptional collection of line
bundles [IU]. It is not known whether any toric Fano stack has a cyclic full exceptional
collection of complexes.

Conjecture 5.2 (Kontsevich, Seidel [Sei09, Example 5]). There is a ring isomorphism

A ∼−→ B sending the ring endomorphism T to S.

It is further expected that t is the first component of a canonical natural transform

t : σ∗ → id (5.3)

which is mirror to the natural transformation (5.2).
When W = z + 1/zn, we take a distinguished basis (γi)

n
i=0 of vanishing paths as in

Figure 5.4. The corresponding Lefschetz thimbles (∆i)
n
i=0 are Lagrangian submanifolds
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γ0

γ1γ2

γn−1

γn

Figure 5.4: Vanishing paths on the W -plane

∆0

∆1

∆2

∆n

Figure 5.5: Lefschetz thimbles on the z-plane

of S with boundaries on S∗ as shown in Figure 5.5. The Hamiltonian diffeomorphism
σ : S → S behaves as z 7→ exp(2π

√
−1)z for |z| ≫ 1, and z 7→ exp(−2π

√
−1/n)z for

|z| ≪ 1. We write the images of the Lefschetz thimbles as ∆−(n+1)k+i = σk(∆i).
On the mirror side, we write the homogeneous coordinate ring of X = P(1, n) as C[x, y]

where deg x = 1 and deg y = n. The canonical bundle is given by ωX = OX (−n− 1), and
the full exceptional collection

(E0, E1, . . . , En) = (OX ,OX (1), . . . ,OX (n))

of line bundles is cyclic.

Theorem 5.3. Conjecture 5.2 holds for X = P(1, n) and W = z + 1/zn.

Proof. The Lefschetz thimble ∆−k(n+1)+i starts from the critical point n+1
√
nζ in+1 and ex-

tends in two directions: One wraps around the origin k/n times and goes to the point in
S∗ approximated by ζ i−k

n · ∗−1/n. The other wraps around infinity k times and asymptotes
to the point in S∗ approximated by ∗. Figure 5.6 shows the picture of two Lefschetz
thimbles. Here the top and the bottom edges of the rectangle are identified to form the
cylinder [0, L]× S1, which is symplectomorphic to S. The vertical dotted line shows the
locus where the absolute value is n+1

√
n. The Lefschetz thimble ∆0 is just the real line, and

the Lefschetz thimble ∆−k(n+1)+i is obtained from the Lefschetz thimble ∆i by wrapping
k times.

Write k(n + 1) − i = k′n + i′ for k′ ∈ Z and i′ ∈ {0, . . . , n − 1}. Then the thimbles
∆−k(n+1)+i and ∆0 intersect at k

′+1 points, and we label these intersection points by the
basis of Hom(OP(1,n)(−k(n+1)+ i),OP(1,n)) as shown in Figure 5.6. Intersections between
other Lefschetz thimbles can be labeled similarly. By choosing the standard grading on S
determined by the holomorphic volume form dz/z and suitable gradings on ∆i’s, one can
arrange that HomF(S,S∗)(∆i,∆j) for i ≤ j have degree zero (and those for i > j have degree
one). It follows that the ring A =

⊕m
i,j=0

⊕∞
k=0HomF(S,S∗)(σ

k(∆i),∆j) is concentrated in
degree zero, so that there are no higher A∞-operations on A. The multiplication on A
comes from a triangle on S, which is either of the ones shown in Figures 5.7 and 5.8. This
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2(i−k)π
n

2iπ
n+1 ∆0

∆−k(n+1)+i

xi
′

yk
′

xk+n−iyk−1xk−iyk
xk

′n+i′

(0,−π)

x(k
′−1)n+i′y

(L, π)(0, π)

(L,−π)
Figure 5.6: Intersections of Lefschetz thimbles

∆k0 ∆k1

∆k2

xi0yj0

xi1yj1

xi2yj2

Figure 5.7: A triangle

∆k0 ∆k1

∆k2

xi0yj0

xi1yj1
xi2yj2

Figure 5.8: Another triangle

clearly matches the multiplication on B (which is just the multiplication of polynomials),
and Theorem 5.3 is proved.

For q ∈ HomF(S,S∗) (σ
w(∆i0),∆i1), we define ord(q) as the maximal integer d such that

x is in the image of

td : HomF(S,S∗)

(
σw−d(∆i0),∆i1

)
→ HomF(S,S∗) (σ

w(∆i0),∆i1) .

Proposition 5.4 below is an analogue of [Pas, Proposition 4.3], which will be useful later.

Proposition 5.4. If a holomorphic triangle ϕ : D2 → S contributes to the composition

xi2yj2 = m2(x
i1yj1, xi0yj0) for xi0yj0 ∈ HomF(S,S∗)(∆k0 ,∆k1), x

i1yj1 ∈ HomF(S,S∗)(∆k1 ,∆k2),
and xi2yj2 ∈ HomF(S,S∗)(∆k0 ,∆k2), then the intersection number between this triangle and

the divisor S0 is given by

ϕ(D2) · S0 = ord(xi2yj2)− ord(xi0yi0)− ord(xi1yj1). (5.4)

Proof. Since n+1
√
n is close to 1, one can perturb Figure 5.6 slightly to set the dotted

vertical line to be the unit circle on C× without changing the intersections of triangles
with S0. Then S0 is equidistributed on the dotted vertical line with vertical coordinates
(2j + 1)π/(2n+ 2) for j = 0, . . . , n.

We write dℓ = ord(xiℓyjℓ) and xiℓyjℓ = (xy)dℓxiℓ−dℓyjℓ−dℓ for ℓ = 0, 1, 2. If iℓ − dℓ = 0
for ℓ = 0, 1 or jℓ − dℓ = 0 for ℓ = 0, 1, then the whole triangle is either on the left or
on the right of the dotted vertical line in Figure 5.6, and both sides of (5.4) is zero. If
a := i0 − d0 > 0 and b := j1 − d1 > 0, then the triangle D looks as in Figure 5.7, and
the vertical dotted line cuts D into two. The number of points in S0 on the part of the
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vertical dotted line bounded by ∆i0 and ∆i1 is given by a, and that by ∆i1 and ∆i2 is
given by b (here we are working on the universal cover of the cylinder S). The vertical
dotted line is on the right or the left of the vertex xi2yj2 depending on whether a > b or
a < b (and exactly on the line if a = b). It follows that both sides of (5.4) is given by
max{a, b} in this case. The case j0 − d0 > 0 and i1 − d1 > 0 is similar, and Proposition
5.4 is proved.

An admissible Lagrangian submanifold ∆ of S can be completed to a Lagrangian
submanifold ∆̂ := ∆ ∪∂∆ (∂∆ × [1,∞)) of the completion M̂ . Given a pair (∆1,∆2) of
admissible Lagrangians, the wrapped Floer cohomology [AS10] is defined by

HW (∆̂1, ∆̂2) := lim−→
w

HF (φw(∆̂1), ∆̂2),

where φw is the time w flow by a Hamiltonian H which behaves as H(x, r) = r on the
cylindrical end (x, r) ∈ ∂M × [1,∞) of M̂ .

Let
Y ′ := {(z, u, v) ∈ (C×)d × C

2 | W (z) = uv}
be the fiber of the double suspension of W .

Theorem 5.5 (Seidel [Sei10, Theorem 1]). Assume that the derived Fukaya-Seidel cate-

gory DbF(W ) is quasi-equivalent to the derived category of coherent sheaves on X as an

A∞-category. Then there exists a full embedding

Db coh0K →֒ DbF(Y ′)

of triangulated categories, where Db coh0K is the full subcategory of Db cohK consisting of

complexes whose cohomologies are supported on the zero-section, and F(Y ′) is the Fukaya

category of Y ′.

The manifold Y ′ is an affine algebraic variety, and hence a Stein manifold of finite type,
so that it is symplectomorphic to the completion N̂ of the Liouville domain N obtained
by intersecting it with a sufficiently large ball. Consider the projection

̟ : N → (C×)d

∈ ∈

(z, u, v) 7→ z

and set E = N ∩ ̟−1(S). The restriction ̟|E : E → S of the projection, which we will
write ̟ by abuse of notation, is a compact convex Lefschetz fibration, whose discriminant
locus is S0 := W−1(0). The completion Ê of E, obtained by first completing in the
direction of the fiber of ̟ and then extending it to the completion of the base S, is
symplectomorphic to Y ′.

We define the Lagrangian submanifolds Li ⊂ E which are R-fibrations over the Lef-
schetz thimbles ∆i ⊂ S as in Section 3. WhenW = z+1/zn, the Lagrangian submanifold
L0 is given by

L0 :=
{
(z, u, v) ∈ E

∣∣ z, u, v ∈ R
>0
}
, (5.5)
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and other Lagrangian submanifolds Li are given by Li = ζ in+1 · L0, where ζ
i
n+1 acts on E

by sending (z, u, v) to (ζ in+1z, ζ
i
n+1u, v).

Recall from [McL09, Definition 2.21] that a Lefschetz admissible Hamiltonian is a
smooth function H(z, u, v) on Y ′ which can be written, outside of a compact set, as the
sum Hb(z) + Hf(u, v) of admissible Hamiltonians Hb(z) and Hf(u, v) on the base and
the fiber respectively. The map ̟ is not an honest Lefschetz fibration but a Bott-Morse
analogue of a Lefschetz fibration in general. It is an honest Lefschetz fibration when
W = z + 1/zn for dimensional reason.

The Lefschetz wrapped Floer cohomology is defined as the direct limit

HW l(L̂i, L̂j) := lim−→
w

HF (φw(L̂i), L̂j)

where φw : Y ′ → Y ′ is the time w flow defined by the Hamiltonian H . Set

Aw :=

m⊕

i,j=1

HF (φw(L̂i), L̂j)

and

A := lim−→
w→∞

Aw =
m⊕

i,j=1

HW l(L̂i, L̂j).

The map
φA

w+1,w : HF (φw(L̂i), L̂j) → HF (φw+1(L̂i), L̂j)

in the definition of the inductive limit is the continuation map for the Hamiltonian dif-
feomorphism φ1 : Y

′ → Y ′. The universal map to the inductive limit is denoted by

φA

∞,w : HF (φw(L̂i), L̂j) → A .

The C-vector space A has a ring structure coming from

HF (φw2
(L̂j), L̂k)⊗HF (φw1

(L̂i), L̂j) → HF (φw1+w2
(L̂i), L̂j)

∈ ∈

q ⊗ r 7→ m2(q, (φw2
)∗(r)).

One can show the ring isomorphism [CPU, Theorem A.2]

A ∼=
n⊕

i0,i1=1

HW (L̂i0 , L̂i1)

with the ordinary wrapped Floer cohomology along the lines of [McL09, Theorem 2.22].
Note that the monodromy of the conic fibration ̟ : E → S around the discriminant

S0 is given by the Dehn twist along the vanishing cycle, which is inverse to the wrapping
on the fiber. It follows that for a positive integer w, the intersection points φw(L̂i0) ∩ L̂i1

can be parametrized as qj for some q ∈ σw(∆i0) ∩∆i1 and an integer j ∈ [0, ord(q) + w]
indicating the position in the fiber of ̟ counted from the top as shown in Figures 5.9
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∆j

∆i

0

σ(∆i)

Figure 5.9: Wrapping once

∆j

∆i

0

σ2(∆i)

Figure 5.10: Wrapping twice

and 5.10. The continuation map φA

w+1,w : Aw → Aw+1 is written as φA

w+1,w(qj) = t(q)j+1

in this parametrization. We write q = tord(q)(q′), and consider the C-linear map

ψw : HF (φw(L̂i0), L̂i1) →
⊕2w

k=0HomX (Ei0 ⊗ ωk
X , Ei1)

∈ ∈

qj 7→ (s− 1)jQ′
(5.6)

whereQ′ ∈ HomX (Ei0⊗ω
w−ord(q)
X , Ei1) corresponds to q

′ ∈ HomF(S,S∗)

(
σw−ord(q)(∆i0),∆i1

)

under the ring isomorphism in Theorem 5.3.
Let

B := lim−→
w→∞

Bw, Bw :=

2w⊕

k=0

n⊕

i,j=0

HomX (Ei ⊗ ωk
X , Ej)

be the direct limit of the right hand side of (5.6) with respect to the map

φB

w+1,w : Bw → Bw+1

given by the multiplication by 1− s

2w⊕

k=0

n⊕

i,j=0

HomX (Ei ⊗ ωk
X , Ej)

1−s−−→
2w+1⊕

k=0

n⊕

i,j=0

HomX (Ei ⊗ ωk
X , Ej)

followed by the inclusion

2w+1⊕

k=0

n⊕

i,j=0

HomX (Ei ⊗ ωk
X , Ej) →֒

2w+2⊕

k=0

n⊕

i,j=0

HomX (Ei ⊗ ωk
X , Ej).
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The multiplication in B is defined by

Bw2
⊗ Bw1

→ Bw1+w2

∈ ∈

Q⊗ R 7→ Q · R.

Proposition 5.6. One has an isomorphism

B
∼−→

n⊕

i,j=0

HomY̌(π
∗Ei|Y̌ , π∗Ej |Y̌) (5.7)

of rings.

Proof. By combining

n⊕

i,j=0

HomK(π
∗Ei, π

∗Ej) ∼=
n⊕

i,j=0

HomX (Ei, π∗π
∗Ej)

∼=
n⊕

i,j=0

HomX (Ei, Ej ⊗ π∗OK)

∼=
n⊕

i,j=0

HomX

(
Ei, Ej ⊗

( ∞⊕

k=0

ω−k
X

))

∼= lim−→
w→∞

w⊕

k=0

n⊕

i,j=0

HomX (Ei ⊗ ωk
X , Ej)

with

Hom(M |Y̌ , N |Y̌) = lim−→
(
Hom(M,N)

1−s−−→ Hom(M,N)
1−s−−→ · · ·

)

for any objects M and N of Db cohK (cf. [Sei08a, (1.13)]), one obtains an isomorphism

n⊕

i,j=0

HomY̌(π
∗Ei|Y̌ , π∗Ej |Y̌) ∼= lim−→

w→∞

2w⊕

k=0

n⊕

i,j=0

HomX (Ei ⊗ ωk
X , Ej)

of C-vector spaces. The multiplication in B commutes with this C-linear isomorphism,
and Proposition 5.6 is proved.

Proposition 5.7. The maps ψw are compatible with the composition, i.e.,

ψw1+w2
(m2(qj, rk)) = ψw2

(qj) · ψw1
(rk) (5.8)

for any qj ∈ φw2
(L̂i1) ∩ L̂i2 and rk ∈ φw1

(L̂i0) ∩ L̂i1.

Proof. Since the Lagrangian submanifolds L̂i are fibered over ∆i, any holomorphic triangle
in ϕ̃ : D2 → E contributing to m2(qj , rk) projects to a holomorphic triangle ϕ = ̟ ◦ ϕ̃ :
D2 → S contributing to m2(q, r). Given a holomorphic triangle ϕ : D2 → S contributing

22



to p = m2(q, r), the contributions to m2(qj , rk) of holomorphic triangles ϕ̃ : D2 → E
projecting to ϕ is computed by Pascaleff [Pas, Proposition 4.4] as

m2(qj , rk) =
ℓ∑

t=0

(
ℓ

t

)
pj+k+t,

where ℓ = ϕ(D2) · S0 is the intersection number of the triangle and the discriminant S0

of the fibration ̟ : E → S. It follows that

ψw1+w2
(m2(qj, rk)) =

ℓ∑

t=0

(
ℓ

t

)
ψw1+w2

(pj+k+t)

=
ℓ∑

t=0

(
ℓ

t

)
(s− 1)j+k+tP ′.

On the right hand side of (5.8), one has

ψw2
(qj) · ψw1

(rk) = (s− 1)jQ′ · (s− 1)kR′

= (s− 1)j+kQ′R′

= (s− 1)j+ksℓ
′

P ′

=
ℓ′∑

t=0

(
ℓ′

t

)
(s− 1)j+k+tP ′

where ℓ′ = ord(p)− ord(q)− ord(r). Now one has ℓ = ℓ′ by Proposition 5.4, and Propo-
sition 5.7 is proved.

Proposition 5.8. The maps ψw induce an isomorphism ψ : A
∼−→ B of rings.

Proof. The maps ψw induce a map ψ : A → B between inductive limits since

ψw+1(φ
A

w+1,w(qi)) = ψw+1(qi+1)

= (s− 1)i+1 ·Q′

= φB

w+1,w((s− 1)i ·Q′)

= φB

w+1,w(ψw(qi)).

For any element q ∈ HomY̌(π
∗Ei|Y̌ , π∗Ej |Y̌), one can take sufficiently large w1 so that

(s−1)w1q extends to an element of HomK(π
∗Ei, π

∗Ej). Then one takes another sufficiently
large w2 so that (s − 1)w1q comes from

⊕w2

k=0HomX (Ei ⊗ ωk
X , Ej) ⊂ HomK(π

∗Ei, π
∗Ej).

Then q is in the image of ψ ◦ φA

∞,w1+w2
: Aw1+w2

→ B, which shows that ψ is surjective.
Note that the map φB

∞,w : Bw → B is injective since each map φB

w+1,w : Bw → Bw+1 is
injective. The map ψw is also injective, and hence the map ψ◦φA

∞,w = φB
∞,w◦ψw : Aw → B

is injective. This implies the injectivity of ψ, and Proposition 5.8 is proved.

Now we prove Theorem 1.2.
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ǫn

ǫ1

ǫ2

ǫn−1

Figure 5.11: The dual cycles

Proof of Theorem 1.2. Recall that an object E in a triangulated category is acyclic if
End∗(E) is concentrated in degree zero. It is a generator if Hom(E , X) = 0 implies X ∼= 0.
An acyclic generator is called a tilting object. Since the exceptional collection (Ei)

n
i=0 is

full, the pull-back
⊕n

i=0 π
∗Ei is a generator of Db cohK. Cyclicity of (Ei)

n
i=0 implies the

acyclicity of
⊕n

i=0 π
∗Ei. This shows that

⊕n
i=0 π

∗Ei is a tilting object. It follows that the
restriction

⊕n
i=0 π

∗Ei|Y̌ is a tilting object. (In general, the restriction of a generator to an
open subset is a generator, and the restriction of an acyclic object to the complement of
a principal divisor is acyclic.) Morita theory for derived categories [Ric89, Bon89] shows
that Db coh Y̌ is equivalent to the derived category of finitely-generated modules over
End

(⊕n
i=0 π

∗Ei|Y̌
)
.

The direct sum
⊕

i L̂i is acyclic by Proposition 5.8, and it is a generator of W ′ by
definition. It follows that DbW ′ is equivalent to to the derived category of finitely-

generated modules over End
(⊕n

i=0 L̂i

)
, which is isomorphic to End

(⊕n
i=0 π

∗Ei|Y̌
)
by

Proposition 5.8. This concludes the proof of Theorem 1.2.

Finally we discuss the compatibility of Theorem 1.1 and Theorem 1.2. Let (ǫ1, . . . , ǫn)
be the collection of line segments on E connecting points in W−1(0) as in Figure 5.11, so
that the intersection numbers with Lefschetz thimbles are given by

∆i · ǫj = δij, i = 0, . . . , n, j = 1, . . . , n.

One can choose a symplectomorphism Y
∼−→ Y ′ in such a way that these intersec-

tion numbers correspond precisely to the winding numbers in Definition 3.2. The SYZ
transforms of the resulting Lagrangians in Y are then given by line bundles (Li)

n
i=0 on Y̌

satisfying
degLi|Ej

= δij

for i = 0, . . . , n and j = 1, . . . , n. One can easily see, either from [KV00, Section 2] or
by a direct calculation, that the endomorphism rings of

⊕n
i=0 π

∗Ei|Y̌ and
⊕n

i=0 Li are

isomorphic, so that there is an equivalence Db coh Y̌ ∼−→ Db coh Y̌ sending π∗Ei|Y̌ to Li.
This gives the compatibility of Theorem 1.1 and Theorem 1.2 discussed in Introduction.
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Birkhäuser, 1995, pp. 120–139. MR MR1403918 (97f:32040)

[Kon98] , Lectures at ENS Paris, spring 1998, set of notes taken by J. Bellaiche,
J.-F. Dat, I. Martin, G. Rachinet and H. Randriambololona, 1998.

[KS06a] Maxim Kontsevich and Yan Soibelman, Affine structures and non-Archimedean

analytic spaces, The unity of mathematics, Progr. Math., vol. 244, Birkhäuser
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