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ABSTRACT. In 2002, Fukaya [19] proposed a remarkable explanation of mirror symmetry detailing
the SYZ conjecture [47] by introducing two correspondences: one between the theory of pseudo-
holomorphic curves on a Calabi-Yau manifold X and the multi-valued Morse theory on the base
B of an SYZ fibration p: X — B, and the other between deformation theory of the mirror X
and the same multi-valued Morse theory on B. In this paper, we prove a reformulation of the
main conjecture in Fukaya’s second correspondence, where multi-valued Morse theory on the base
B is replaced by tropical geometry on the Legendre dual B. In the proof, we apply techniques of
asymptotic analysis developed in [7, 9] to tropicalize the pre-dgBV algebra which governs smoothing
of a maximally degenerate Calabi-Yau log variety X' introduced in [§]. Then a comparison between
this tropicalized algebra with the dgBV algebra associated to the deformation theory of the semi-flat
part Xs C X allows us to extract consistent scattering diagrams from appropriate Maurer-Cartan
solutions.

1. INTRODUCTION

Two decades ago, in an attempt to understand mirror symmetry using the SYZ conjecture [47],
Fukaya [19] proposed two correspondences:

e Correspondence I: between the theory of pseudo-holomorphic curves (instanton corrections)
on a Calabi-Yau manifold X and the multi-valued Morse theory on the base B of an SYZ
fibration p: X — B, and

e Correspondence II: between deformation theory of the mirror X and the same multi-valued
Morse theory on the base B.

In this paper, we prove a reformulation of the main conjecture [19, Conj 5.3] in Fukaya’s Correspon-
dence II, where multi-valued Morse theory on the SYZ base B is replaced by tropical geometry on
the Legendre dual B. Such a reformulation of Fukaya’s conjecture was proposed and proved in [7]
in a local setting; the main result of the current paper is a global version of the main result in loc.
cit. A crucial ingredient in the proof is a precise link between tropical geometry on an integral affine
manifold with singularities and smoothing of maximally degenerate Calabi—Yau varieties.

The main conjecture [19, Conj. 5.3] in Fukaya’s Correspondence II asserts that there exists a
Maurer—Cartan element of the Kodaira—Spencer dglLa associated to deformations of the semi-flat
part X of X that is asymptotically close to a Fourier expansion ([19, Eq. (42)]), whose Fourier
modes are given by smoothings of distribution-valued 1-forms defined by moduli spaces of gradient
Morse flow trees which are expected to encode counting of non-trivial (Maslov index 0) holomorphic
disks bounded by Lagrangian torus fibers (see [19, Rem. 5.4]). Also, the complex structure defined
by this Maurer—Cartan element can be compactified to give a complex structure on X. At the same
time, Fukaya’s Correspondence I suggests that these gradient Morse flow trees arise as adiabatic
limits of loci of those Lagrangian torus fibers which bound non-trivial (Maslov index 0) holomorphic
disks. This can be reformulated as a holomorphic/tropical correspondence, and much evidence has
been found [I8, 20, 39, 40, [T, 12}, B8, 10, 4.
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The tropical counterpart of such gradient Morse flow trees are given by consistent scattering dia-
grams, which were invented by Kontsevich-Soibelman [36] and extensively used in the Gross—Siebert
program [29] to solve the reconstruction problem in mirror symmetry, namely, the construction of
the mirror X from smoothing of a maximally degenerate Calabi-Yau variety °X. It is therefore
natural to replace the distribution-valued 1-form in each Fourier mode in the Fourier expansion
[19, Eq. (42)] by a distribution-valued 1-form associated to a wall-crossing factor of a consistent
scattering diagram. This was exactly how Fukaya’s conjecture [19, Conj. 5.3] was reformulated and
proved in the local case in [7].

In order to reformulate the global version of Fukaya’s conjecture, however, we must also relate
deformations of the semi-flat part X with smoothings of the maximally degenerate Calabi—Yau
variety X . This is because consistent scattering diagrams were used by Gross-Siebert [28] to study
the deformation theory of the compact log variety °XT (whose log structure is specified by slab
functions), instead of Xg. For this purpose, we consider the open dense part

OX g :=p~ " (Wo) C X,

where p: °X — B is the generalized moment map in [43] and W C B is an open dense subset such
that B \ Wy contains the tropical singular locus and all codimension 2 cells of B.

Equipping X with the trivial log structure, there is a semi-flat dgBV algebra PV** governing
its smoothings, and the general fiber of a smoothing is given by the semi-flat Calabi—Yau X that
appeared in Fukaya’s original conjecture [19, Conj. 5.3]. However, the Maurer—Cartan elements
of PV** cannot be compactified to give complex structures on X. On the other hand, in our
previous work [8] we constructed a Kodaira—Spencer—type pre-dgBV algebra PV** which controls
the smoothing of °X. A key observation is that a twisting of PV** by slab functions is isomorphic
to the restriction of PV** to "X (Lemma .

Our reformulation of the global Fukaya conjecture now claims the existence of a Maurer—Cartan
element ¢ of this twisted semi-flat dgBV algebra that is asymptotically close to a Fourier expansion
whose Fourier modes give rise to the wall-crossing factors of a consistent scattering diagram. This
conjecture follows from (the proof of) our main result, stated as Theorem below, which is a
combination of Theorem the construction in and Theorem [5.24

Theorem 1.1. There exists a solution ¢ to the classical Maurer—Cartan equation (4.11)) giving rise
to a smoothing of the mazximally degenerate Calabi-Yau log variety *XT over C[[q]], from which a
consistent scattering diagram D(¢) can be extracted by taking asymptotic expansions.

A brief outline of the proof of Theorem [I.1] is now in order. First, recall that the pre-dgBV
algebra, PV** which governs smoothing of the maximally degenerate Calabi-Yau variety °X was
constructed in [8, Thm. 1.1 & §3.5], and we also proved a Bogomolov—Tian—Todorov—type theorem
[8, Thm. 1.2 & §5] showing unobstructedness of the extended Maurer—Cartan equation , under
the Hodge-to-de Rham degeneracy Condition [4.16] and a holomorphic Poincaré Lemma Condition
(both proven in [28, [I7]). In Theorem we will further show how one can extract from the
extended Maurer—Cartan equation a smoothing of °X, described as a solution ¢ € PV 11 (B)
to the classical Maurer—Cartan equation

0+ 316,9] +1=0,

together with a holomorphic volume form e w which satisfies the normalization condition

(1-1) /Tefw =1,

where T is a nearby vanishing torus in the smoothing.
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Next, we need to tropicalize the pre-dgBV algebra PV**. However, the original construction
of PV** in [§] using the Thom-Whitney resolution [49, [I4] is too algebraic in nature. Here, we
construct a geometric resolution exploiting the affine manifold structure on B. Using the generalized
moment map pu: °X — B [43] and applying the techniques of asymptotic analysis (in particular
the notion of asymptotic support) in [7], we define the sheaf T* of monodromy invariant tropical
differential forms on B in According to Definition [5.5] a tropical differential form can be
regarded as a distribution-valued form supported on polyhedral subsets of B. Using the sheaf T*,
we can take asymptotic expansions of elements in PV**, and hence connect differential geometric
operations in dgBV/dglLa with tropical geometry. In this manner, we can extract local scattering
diagrams from Maurer—Cartan solutions as we did in [7], but we need to glue them together to get
a global object.

To achieve this, we need the aforementioned comparison between PV** and the semi-flat dgBV
algebra PV:f’* which governs smoothing of the semi-flat part X := =1 (W) € °X equipped with
the trivial log structure. The key Lemmal5.10]says that the restriction of PV** to the semi-flat part
is isomorphic to PV:f’* precisely after we twist the semi-flat operator 0, by elements corresponding
to the slab functions associated to the initial walls of the form:

Gin = — Z 5v,p ® lOg(fU,p)adp§

vep

here the sum is over vertices in codimension one cells p’s which intersect with the essential singular
locus 8¢ (defined in , dv,p is a distribution-valued 1-form supported on a component of p \ 8.
containing v, 8(;,) is a holomorphic vector field and f, ,’s are the slab functions associated to the
initial walls. We remark that slab functions were used to specify the log structure on °X as well as
the local models for smoothing °X in the Gross-Siebert program; see §2| for a review.

Now, the Maurer—Cartan solution ¢ € PV ~11(B) obtained in Theorem defines a new oper-
ator 5¢ on PV** which squares to zero. Applying the above comparison of dgBV algebras (Lemma
5.10)) and the gauge transformation from Lemma we show that, after restricting to Wy, there
is an isomorphism

(PY=1W0), 05) 2= (PV(W0), 3. + [ + 61, )

for some element ¢g, where ‘s’ stands for scattering terms. From the description of 7%, the element
¢s, to any fixed order k, is written locally as a finite sum of terms supported on codimension one
walls/slabs (Definitions and For the purpose of a brief discussion in this introduction, we
will restrict ourselves to a wall w below, though the same argument applies to a slab; see for
the details. In a neighborhood Uy, of each wall w, the operator 0, + [¢im + ¢s, -] is gauge equivalent
to 0o via some vector field Oy, € PV;fl’O(WO), ie.

e[ewv‘} fe) 50 o e_[ew’.] = 5@ + [¢1n + ¢S7 ]

Employing the techniques for analyzing the gauge which we developed in [7, Ol 37], we see that the
gauge will jump across the wall, resulting in a wall-crossing factor O, satisfying

(O, ] 9W|C+ on Uw N C+,
elfwy |Cj: — .
id on Uy NC_,

where C4 are the two chambers separated by w. Then from the fact that the volume form ef w
is normalized as in , it follows that ¢g is closed under the semi-flat BV operator A, and
hence we deduce that the wall-crossing factor O, lies in the tropical vertex group. This defines a
scattering diagram D(¢) on the semi-flat part W} associated to ¢. Finally, we prove consistency of
the scattering diagram D(¢) in Theorem We emphasize that the consistency is over the whole
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B even though the diagram is only defined on Wy, because the Maurer—Cartan solution ¢ is globally
defined on B.

Remark 1.2. Our notion of scattering diagrams (Deﬁmtion s a little bit more relazed than
the usual notion defined in [36], 29] in two aspects: One is that we do not require the generator
of the exponents of the wall-crossing factor to be orthogonal to the wallE| The other is that we
allow possibly infinite number of walls/slabs approaching strata of the tropical singular locus. See
the paragraph after Definition for more details. In practice, this simply means that we are
considering a larger gauge equivalence class (or equivalently, a weaker gauge equivalence), which is
natural from the point of view of both the Bogomolov—Tian—Todorov Theorem and mirror symmetry
(in the A-side, this amounts to flexibility in the choice of the almost complex structure). We also
have a different, but more or less equivalent, formulation of the consistency of a scattering diagram;

see Definition[5.21) and §5.3.1]

Along the way of proving Fukaya’s conjecture, besides figuring out the precise relation between
the semi-flat part Xy and the maximally degenerate Calabi-Yau log variety "X T, we also find the
correct description of the Maurer—Cartan solutions near the singular locus, namely, they should be
extendable to the local models prescribed by the log structure (or slab functions), as was hinted by
the Gross—Siebert program. This is related to a remark by Fukaya [19, Pt. (2) after Conj. 5.3].

Another important point is that we have established in the global setting an interplay between
the differential-geometric properties of the tropical dgBV algebra and the scattering (and other
combinatorial) properties of tropical disks, which was speculated by Fukaya as well ([19, Pt. (1)
after Conj. 5.3]) although he considered holomorphic disks instead of tropical ones.

Furthermore, by providing a direct linkage between Fukaya’s conjecture with the Gross—Siebert
program [27, 28, 29] and Katzarkov—Kontsevich—Pantev’s Hodge theoretic viewpoint [33] through
PV** (recall from [§] that a semi-infinite variation of Hodge structures can be constructed from
PV**  using the techniques of Barannikov—Kontsevich [3| 2] and Katzarkov—Kontsevich—Pantev
[33]), we obtain a more transparent understanding of mirror symmetry through the SYZ framework.

Remark 1.3. A future direction is to apply the framework in this paper and the works [T, 8] to
develop a local-to-global approach to understand genus 0 mirror symmetry. In view of the ideas of
Seidel [46] and Kontsevich [35], and also recent breakthroughs by Ganatra—Pardon—Shende [24} 26] 25]
and Gammage—Shende 22| 23], we expect that there is a sheaf of L algebras on the A-side mirror
to (the Loy enhancement of) PV** that can be constructed by gluing local models. More precisely, a
large volume limit of a Calabi-Yau manifold X can be specified by removing from it a normal crossing
divisor D which represents the Kihler class of X. This gives rise to a Weinstein manifold X\E, and
produces a mirror pair X\ D < °X at the large volume/complex structure limits. In [23], Gammage—
Shende constructed a Lagrangian skeleton A(®) € X \ D from a combinatorial structure ® called
fanifold, which can be extracted from the integral tropical manifold B equipped with a polyhedral
decomposition P (here we assume that the gluing data s is trivial). They also proved an HMS
statement at the large limits. We expect that an A-side analogue of PV** can be constructed from
the Lagrangian skeleton A(®) in X \ D, possibly together with a nice and compatible SYZ fibration
on X \ D, via gluing of local models. A local-to-global comparsion on the A-side and isomorphisms
between the local models on the two sides should then yield an isomorphism of Frobenius manifolds.

1t seems reasonable to relax this orthogonality condition because one cannot require such a condition in more
general settings [0l [37].
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LI1ST OF NOTATIONS

M, My lattice, M4 := M ®z A for any Z-module A

N, Ny dual lattice of M, N4 := N ®z A for any Z-module A

(B,P) integral tropical manifold equipped with a polyhedral
decomposition

Ao lattice generated by integral tangent vectors along o

intye(7) relative interior of a polyhedron 7

U, open neighborhood of intye(7)

Q- lattice generated by normal vectors to 7

Sr:Ur = Qrgr fan structure along 7

p complete fan in Q;r constructed from S-

Ko K0 =R>0S;(c NU;) is a cone in ¥ corresponding to o

T, lattice of integral tangent vectors of B at =

monodromy polytope of 7, dual monodromy polytope of 7
sheaf of affine functions on B

PLyp sheaf of piecewise affine functions on B with respect to P

MPLyp sheaf of multi-valued piecewise affine functions on B
with respect to P

%) strictly convex multi-valued piecewise linear function

1%, localization of the fan ¥, at 7

Vi(r) local affine scheme associated to 7 used for open gluing

PM(7) group of piecewise multiplicative maps on 771%,

D(u, p,v) number encoding the change of y € PM(7) across p through v

0X . closed stratum of X associated to 7

C; cone defined by the strictly convex function @,: 3 — R
representing

P monoid of integral points in C;

q=2z2° parameter for a toric degeneration

N, line bundle on °X p having slab functions f, as sections

fop local slab function associate to p in the chart V(v)

i 0X, — Prei toric morphism induced from the monodromy polytope A;(7)

P, toric monoid describing the local model of toric degeneration
near z € X,

Qra 2.4 toric monoid isomorphic to Py /(0 + Prg)

N 2.4 normal fan of a polytope 7

p: °X - B 3.1 generalized moment map
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T, §3.2) coordinate chart on W(7) C B

S (resp. 8¢) §3.3) (resp. essential) tropical singular locus in B

v: °X - B Def. surjective map with v(Z) C 8,

W= {Wy}to good cover (Condition of B with V,, := v=1(W,) being Stein
Ry, S k*P-order local smoothing model of V,,

kgj; Def. sheaf of k'-order holomorphic relative log polyvector fields on ki,
Ik Def. sheaf of k™-order holomorphic log de Rham differentials on V7,
ﬁlCz 3 sheaf of k*-order holomorphic relative log de Rham differentials on Ry,
ke Def. E kth-order relative log volume form on kVL

kA, 51 BV operator on *G,

kpva* Def. 4.8 local sheaf of ktP-order polyvector fields

kALY Def. [4.9] local sheaf of kt'-order de Rham forms

kpys Def. [4.13| global sheaf of k'"-order polyvector fields from gluing of * PV ;"’s
kAx* Def. [4.13| global sheaf of k™ -order de Rham forms from gluing of * A% *’s

T* Def. [5.6|  global sheaf of tropical differential forms on B

Wo §5.2.1 semi-flat locus

k G §5.2.1 sheaf of k*M-order semi-flat holomorphic relative vector fields

kK;f §5.2.1 sheaf of k*P-order semi-flat holomorphic log de Rham forms

kg eqt. (5.2) sheaf of k*"-order semi-flat holomorphic tropical vertex Lie algebras
kPV:f’* Def. 5.9  sheaf of k*-order semi-flat polyvector fields

kA:f’* Def. [5.9]  sheaf of k*h-order semi-flat log de Rham forms

kTL:f Def. [5.12| sheaf of k*'-order semi-flat tropical vertex Lie algebras

(W, Ow) Def. [5.13] wall equipped with a wall-crossing factor

(b, Op) Def. [5.14] slab equipped with a wall-crossing factor

D Def. [5.17] scattering diagram

Wo(D) §5.3.1 complement of joints in the semi-flat locus

i §5.3.1 the embedding i: Wy(D) — B

kO §5.3.1 kth-order wall-crossing sheaf associated to D

Notation 1.4. We usually fix a rank s lattice K together with a strictly convex s-dimensional
rational polyhedral cone Qr C Kr = K ®z R. We call Q := Qr N K the universal monoid. We
consider the ring R := C[Q], a monomial element of which is written as ¢™ € R for m € Q, and
the mazimal ideal m := C[Q \ {0}]. Then *R := R/m**' is an Artinian ring, and we denote
by R = lglk kR the completion of R. We further equip R, *R and R with the natural monoid
homomorphism Q@ — R, m — ¢, which gives them the structure of a log ring (see [29, Definition
2.11]); the corresponding log analytic spaces are denoted as ST, kSt and St respectively.

Furthermore, we let Q% := R®c \"Kc, kQ*sT =*Roc N" K¢ and QET = Roc N Kc (here
Kc = K ®7 C) be the spaces of log de Rham differentials on ST, kSt and ST respectively, where we
write 1 ® m = dlogq¢™ for m € K; these are equipped with the de Rham differential O satisfying
I(g™) = ¢"dlogq™. We also denote by Ogi := R ®@c K¢, Ogr and (;)51, respectively, the spaces
of log derivations, which are equipped with a natural Lie bracket [-,-]. We write 0,, for the element
1 ®@ n with action 8,,(¢™) = (m,n)g™, where (m,n) is the natural pairing between K¢ and K.
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2. GROSS—SIEBERT’S CONE CONSTRUCTION OF MAXIMALLY DEGENERATE CALABI-YAU
VARIETIES

This section is a brief review of Gross—Siebert’s construction of the maximally degenerate Calabi-
Yau variety X from the affine manifold B and its log structures from slab functions [27, 28, 29].

2.1. Integral tropical manifolds. We first recall the notion of integral tropical manifolds from
[29, §1.1]. Given a lattice M of rank n, a rational convexr polyhedron o is a convex subset in Mg
given by a finite intersection of rational (i.e. defined over Mg) affine half-spaces. We usually drop
the attributes “rational” and “convex” for polyhedra. A polyhedron o is said to be integral if all
its vertices lie in M; a polytope is a compact polyhedron. The group Aff(M) := M x GL(M) of
integral affine transformations acts on the set of polyhedra in Mg. Given a polyhedron o C Mpg,
let A,k C Mg be the smallest affine subspace containing o, and denote by Ay := A,r N M the
corresponding lattice. The relative interior int,.(o) refers to taking the interior of ¢ in A, g. There
is an identification T5 ; = A, g for the tangent space at x € intye(0). Write 0o = o \ intye(c). Then
a face of o is the intersection of do with a supporting hyperplane. Codimension one faces are called
facets.

Let LPoly be the category whose objects are integral polyhedra and morphisms consist of the
identity and integral affine isomorphisms onto faces (i.e. an integral affine morphism 7 — o which
is an isomorphism onto its image and identifies 7 with a face of o). An integral polyhedral complex
is a functor F: P — LPoly from a finite category P to LPoly such that every face of F(o) still lies in
the image of F, and there is at most one arrow 7 — o for every pair 7,0 € P. By abuse of notation,
we usually drop the notation F and write o € P to represent an integral polyhedron in the image of
the functor. From an integral polyhedral complex, we obtain a topological space B := ligaefp o via

gluing of the polyhedra along faces. We further assume that:

(1) the natural map o — B is injective for each o € P, so that o can be identified with a closed
subset of B called a cell, and a morphism 7 — ¢ can be identified with an inclusion of
subsets;

(2) a finite intersection of cells is a cell; and

(3) B is an orientable connected topological manifold of dimension n without boundary which
in addition satisfies the condition that H'(B,Q) = 0.

Remark 2.1. The condition H'(B,Q) = 0 will be used only in Theorem to ensure that
H'(°X,0) = HY(B,C) = 0, where °X s the degenerate Calabi-Yau variety that we are going
to constructﬂ This corresponds to the condition that by = 0 for smooth Calabi—Yau manifolds.

The set of k-dimensional cells is denoted by P! and the k-skeleton by PI=K. For every 7 € P,
we define its open star by
U, = U intye (o),
oOT

which is an open subset of B containing int,e(7). A fan structure along T € PI—Hl is a continuous
map S;: U — RF such that

e S71(0) = intye(7),
e for every o D 7, the restriction S;[in,.(») is an integral affine submersion onto its image

(meaning that it is induced by some epimorphism A, — W N ZF for some vector subspace
W c RF), and

2In his recent work [15], Felten was able to prove Theorem without assuming that H*(B, Q) = 0.
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e the collection of cones {K,0 := R>0S;(c NU;)}so- forms a complete finite fan ..

Two fan structures along 7 are equivalent if they differ by composition with an integral affine
transformation of R¥. If S; is a fan structure along 7 and ¢ D 7, then U, C U, and there is a fan
structure along o induced from S, via the composition:

Uy = Ur - RF 5 R
where R — R¥ /RS, (0 N U,) = R is the quotient map.

Definition 2.2 ([29], Def. 1.2). An integral tropical manifold is an integral polyhedral complex
(B, P) together with a fan structure S; along each T € P such that whenever T C o, the fan structure
induced from S; is equivalent to S, .

Taking sufficiently small and mutually disjoint open subsets W, C U, for v € Pl and int,.(c) for
o € Pl there is an integral affine structure on Upepior Wo Ul epin intre(o). We will further choose
the open subsets W,’s and int,e(0)’s so that the affine structure is defined outside a closed subset
" of codimension two in B, as in [27), §1.3]. This affine structure allows us to use parallel transport
to identify the tangent spaces T, B for different points x outside the closed subset. For every 7 we
choose a maximal cell ¢ D 7 and consider the lattice of normal vectors Q. = A, /A, (we suppress
the dependence on ¢ because we will see that A, is monodromy invariant under the monodromy
transformation given by any two vertices of 7 and any two maximal cells containing 7). We can
identify Q, with Z* via S,, and write the fan structure as S;: U, — Q9 Rr.

Example 2.3. We take a 2-dimensional example from [1, Ex. 6.74] to illustrate the above defini-
tions. Let Z be the convex hull of the points

—1 3 -1 -1
po=|—1|,pr=|-1|,p2=1|3]|,p3=|"1],
—1 -1 -1 3

so 2 is a 3-simplex. Take B (as a topological space) to be the boundary of E. The polyhedral
decomposition P is defined so that the integral points are vertices as shown in Figure [1]

FiGure 1. The polyhedral decomposition

Then we define affine coordinate charts on |, cpm intre(0) U U, cpo) Wo as follows. On intre(o),
we take g : intye(0) = Ay r which maps homeomorphically onto its image. At a vertex v treated as
a vector in R3, we let v,: W, C R? — R3/Ruv, where R?> — R3/Ruv is the natural projection onto
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the quotient. By [1l, Prop. 6.81], this gives an integral affine manifold with singularities. The affine
structure can be extended to the complement of a subset I' consisting of 24 points lying on the six
edges of =, with each edge containing 4 points (colored in red in Figure . The fan structure S,
can be defined similarly.

Locally near each singular point p € T' contained in an edge p, the affine structure is described
as a gluing of two affine charts Uy C R\ {0} x R>q and Uy C R?\ 0 x R<q as in [30, §3.2]. The
change of coordinates from Uy to Uy is given by the restriction of the map Y from (R\ {0}) x R to

itself defined by
z,Y), z <0
(z,y) = (@)
(x,z+y), x>0.

The fan structure S,: U, — R is given as S,(z,y) = x and the fan ¥, is the toric fan for P'. Figure
[2 below illustrates the situation.

FIGURE 2. Affine coordinate charts

With the structure of an integral tropical manifold, the corners and edges in Figure[d] are flattened
via the affine coordinate charts, and we can view (B,P) as the 2-sphere equipped with a polyhe-
dral decomposition and with 24 affine singularities. Such an affine structure with singularities also
appears in the base B of an SYZ fibration of a K38 surface.

Example 2.4. A 3-dimensional example can be constructed as in [1, Ex. 6.74]. Take = to be the
convex hull of the points

—1 4 -1 -1 -1

—1 —1 4 —1 -1
Do = 1> p1 = 1> b2 = 1] p3 = 4 , P4 = 1>

—1 —1 -1 -1 4

which gives a 4-simplex. Take B (as a topological space) to be the boundary of Z. There are five 3-
dimensional maximal cells intersecting along ten 2-dimensional facets. The polyhedral decomposition
P on each facet is as in Figure[3,

The affine structure can be extended to the complement of codimension 2 closed subset I' whose
intersection with a triangle in Figure[3 is a Y -shaped locus. Locally near each of these triangles, it
looks like Figure[{d Z has ten 1-dimensional faces, each of which is an edge with affine length 5.
The polyhedral decomposition P divides each edge into 5 intervals as we can see in Figure[3. Locally



10 CHAN, LEUNG, AND MA

FiGURE 3. The polyhedral decomposition on a facet

/, o, “, v

P2

P3

v

(A) Y-vertex of type I (B) Y-vertex of type II

FIGURE 4. Two types of Y-vertex

near each of these length 1 intervals, there are three 2-cells of P intersecting along it. The locus T’
on each 2-cell intersects on the interval as shown in Figure [{l

Definition 2.5 ([27], Def. 1.43). An integral affine function on an open subset U C B is a
continuous function ¢ on U which is integral affine on U Ninty (o) for o € Pl and on U NW, for
v e PO We denote by Aff g (or simply Aff ) the sheaf of integral affine functions on B.

A piecewise integral affine function (abbrev. as PA-function) on U is a continuous function ¢ on
U which can be written as ¢ =1 + SE(p) on U NU; for every T € P, where ¢ € Aff(UNU;) and
@ 1s a piecewise linear function on Qrr with respect to the fan ;. The sheaf of PA-functions on B
is denoted by PLyp.

There is a natural inclusion Aff < PLgp, and we let MPLp be the quotient:
0— Aff - PLp > MPLpy — 0.

Locally, an element ¢ € I'(B, MPLy) is a collection of piecewise affine functions {¢y} such that on
each overlap U NV, the difference oy |y — ¢y |y is an integral affine function on U N'V.
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Definition 2.6 ([27], Def. 1.45 and 1.47). The sheaf MP Ly is called the sheaf of multi-valued piece-
wise affine functions (abbrev. as MPA-funtions) of the pair (B,P). A section ¢ € HO(B, MPLy) is
said to be convex (resp. strictly convex) if for any vertex {v} € P, there is a convex (resp. strictly
convex) representative ¢, on U,. (Here, convexity (resp. strict convezity) means if we take any
mazimal cone o C U, with the affine function l,: U, — R defined by requiring p,|, = ly, we always

have @y (y) > lo(y) (resp. wu(y) > lo(y)) for y € Uy \ o).

The set of all convex multi-valued piecewise affine functions gives a sub-monoid of H°(B, MPLyp)
under addition, denoted as H%(B, MPLp,N); we let Q be the dual monoid.

Definition 2.7 ([27], Def. 1.48). The polyhedral decomposition P is said to be regular if there exists
a strictly convex multi-valued piecewise linear function ¢ € HY(B, MPLy).

We always assume that P is regular with a fixed strictly convex ¢ € HY(B, MPLyp).

2.2. Monodromy, positivity and simplicity. To describe monodromy, we consider two maximal
cells o1 and two of their common vertices vy. Taking a path v going from v, to v_ through o,
and then from v_ back to v} through o_, we obtain a monodromy transformation 7. As in [27,
§1.5], we are interested in two cases. The first case is when vy is connected to v_ via a bounded
edge w € P, Let d,, € A,, be the unique primitive vector pointing to v_ along w. For an integral

tangent vector m € T, := T, 7B, the monodromy transformation T’ is given by
(2.1) T,(m) =m+ (m,n+°")d,
for some ng,™ 7" € QF o C Ty, where (-,-) is the natural pairing between T,, and T, . The

second case is when o and o_ are separated by a codimension one cell p € P11 Let dp € Q7 be
the unique primitive covector which is positive on ;. The monodromy transformation is given by

(2.2) T,(m) = m+ (m, dp>mﬁ+v_

for some m¥_ ,_ € A;, where 7 C p is the smallest face of p containing vy. In particular, if we fix
both v+ € w C p C o4, one obtains the formula

(2'3) T’Y(m) =m+ Kva<m7 dp>dw
for some integer k.

Definition 2.8 ([27], Def. 1.54). We say that (B,P) is positive if ry, > 0 for all w € P and
p € P with w C p.

Following [27, Definition 1.58], we package the monodromy data into polytopes associated to
7€ PH for 1 < k < n—1. The simplest case is when pE P11 whose monodromy polytope is
defined by fixing a vertex vy € p and setting

(2.4) A(p) := Conv{mf , |veEp, ve PO € A, g,

where Conv refers to taking the convex hull. It is well-defined up to translation and independent of
the choice of vg. The normal fan of p in A;R is a refinement of the normal fan of A(p). Similarly,

when w € P one defines the dual monodromy polytope by fixing o9 D w and setting
(2.5) A(w) := Conv{n? | 0 Dw, o € PP} ¢ QR

Again, this is well-defined up to translation and independent of the choice of og. The fan ¥, in
Qur is a refinement of the normal fan of A(w). For 1 < dimg(7) < n — 1, a combination of
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monodromy and dual monodromy polytopes is needed. We let P1(7) = {w | w € P, w c 7} and
Pn1(r)={p| pePPU p>7} Foreach pc P, 1(7), we choose a vertex vy € p and let
Ap(r) == Conv{mf , |[veT, ve PO © A, g.
Similarly, for each w € P1(7), we choose op D 7 and let
A (1) := Conv{n®? | o D7, 0 € P} Q' R
These are well-defined up to translation and independent of the choices of vy and oy respectively.

Definition 2.9 ([27], Def. 1.60). We say (B,?P) is simple if, for every 7 € P, there are disjoint
non-empty subsets

Ql,...,QpCfpl(T), Rl,...,RpCan_l(T)
(where p depends on T) such that
(1) forw e Pi(1) and p € Pp_1(7), Kup # 0 if and only if w € Q; and p € R; for some 1 < i < p;
(2) A,(T) is independent (up to translation) of p € R; and will be denoted by A;(7); similarly,

A, (1) is independent (up to translation) of w € Q; and will be denoted by A;(T);
(3) if {e1,...,ep} is the standard basis in ZP, then

A(T) := Conv {U A(T) X {ei}} . A(7) := Conv {U Ai(1) x {ei}}

i=1
are elementary simplices (i.e. a simplex whose only integral points are its vertices) in
(A @ZP)g and (Ui & ZP)g respectively.

We need the following stronger condition in order to apply [28, Thm. 3.21] in a later stage:

Definition 2.10. We say (B, P) is strongly simple if it is simple, and for every T € P, both A(T)
and A(1) are standard simplices.

Example 2.11. Consider the 2-dimensional example in Example . Following [1), Ex. 6.82(1)], we
may choose the two adjacent vertices in Figure to be vy = [—1 -1 —1]T and vo = [0 -1 —1]T
which bound a 1-cell p. The two adjacent maximal cells are given by o C {b | (wy,b) = 1} where
wy =100 0 —1]T and o— C {b | (w_,b) =1} where w_ = [0 -1 O]T
can be identified with Z3/7 - v1 equipped with the basis e; = [1 0 O]T, eg = [0 1 O]T. If we let
v be a loop going from vy to va through oy and going back to vy through o_, we have

Ty(m) =m+ ([0 1 —I]T,m>61
form € T,,. Therefore, we have p = 1, Ai(p) = Conv{0,e;} and Ai(p) = Conv{0,wy —w_}. This
is an example of a positive and strongly simple (B, P) (Deﬁnitions and .
Example 2.12. Next we consider the two types of Y -vertex in Example [2.]}

We begin with Y -vertex of type I in Figure . Following [1, Ex. 6.82(2)], the three vertices
v1, V2,3 can be chosen to be

. The tangent lattice T,

v=[-1 -1 -1 -1]", wp=[0 -1 -1 1], py=[-1 0 -1 —1]",

and o4 C {b € R* | (wy,b) =1}, o_ C {b € R* | (w_,b) = 1} are 3-cells of B lying in the affine
hyperplanes with dual vector wy = [O 0 —1 O]T and w_ = [0 00 —I]T
identify T, with A,, via parallel transport and choose the basis of Ay, as

respectively. If we

er=[1 00 0", ea=[0 =1 0 0]", es=[0 0 0 1],
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then the monodromy transformations are given by

10 1 10 -1 10 0
T,=10 10, T,=10 1 -1, T,=1[0 1 1],
00 1 00 1 00 1

where v; is the loop going from v; to v;11 through oy and going back to v; through o_, with indices
of v;’s taken modulo 3. In this case, we have p = 1, A1(p) = Conv{0, e1, —ea} is a 2-simplex and
Ai(p) = Conv{0, wy —w_} is a 1-simplex.
For the Y -vertex of type II in Figure[{l, we can choose
v=[-1 -1 -1 1", wm=0 -1 -1 -1,
which are the end-points of a 1-cell . We choose the three maximal cells o1, oo and o3 intersecting

at 7 to be the 3-cells lying in affine hyperplanes defined by {b | (w;, by = 1}, where
wi=[0 0 -1 0", wy=1[0 00 11", wg=[0 -1 0 0],

Let #; be the loop going from vy to vy through w; and then going back to vy through w;y1, with indices

taken to be modulo 3. Then the corresponding monodromy transformations are given by

10 1 110 1 -1 -1
T,=10 1 0|, T,=10 1 0|, 5,=1{0 1 0],
00 1 00 1 0 0 1

with respect to the basis

er=[1 00 0", ea=[0 10 0], e5=[0 0 -1 0]".
In this case, p =1, A1(1) = Conv{0, vy — v} is a 1-simplex and A1 (1) = Conv{0, w; — w2, w; —ws3}
is a 2-simplex.

Both examples are positive and strongly simple.

Throughout this paper, we always assume that (B, P) is positive and strongly simple. In partic-
ular, both A;(7) and A;(7) are standard simplices of positive dimensions, and Ax, () @+ @ Aa, ()
(resp. Ax () ® - ® AR () Is an internal direct summand of A (resp. Q7).

2.3. Cone construction by gluing open affine charts. In this subsection, we recall the cone
construction of the maximally degenerate Calabi-Yau °X = °X (B, P, s), following [27] and [29, §1.2].
For this purpose, we take K = Z and ) to be the positive real axis in Notation [1.4] Throughout
this paper, we will work in the category of analytic schemes.

We will construct X as a gluing of affine analytic schemes V' (v) parametrized by the vertices of
P. For each vertex v, we consider the fan 3, and take the analytic affine toric variety

V(U) = Specan(C[EUDa

where Spec,,, means analytification of the algebraic affine scheme given by Spec. Here, the monoid
structure for a general fan ¥ C My is given by

p+q if p,g € M are in a common cone of ¥,
ptq=

otherwise,

and we set 2°° = 0 in taking Spec(C[X]) (by abuse of notation, we use ¥ to stand for both the fan
and the monoid associated to a fan if there is no confusion); in other words, the ring C[X] is defined
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explicitly as

ClX] := @ C-2P, 2P.21=

{zpﬂ if p,g € M are in a common cone of X,
pE|Z|NM

0 otherwise,

where || denotes the support of the fan X.

To glue these affine analytic schemes together, we need affine subschemes {V(7)} associated to
7 € P with v € 7 and natural open embeddings V(1) < V(w) for v € w C 7. First, for 7 € P such
that v € 7, we consider the localization of 3, at T defined by

18, = {K,o + A;r | Kyo is a cone in 3, such that o D 7};

here recall that K,0 = R>¢S,(c NU,) is the cone in ¥, (see the definition of a fan structure before
Definition . This defines a new complete fan in 7}, g consisting of convex, but not necessarily
strictly convex, cones. If 7 contains another vertex v/, we can identify the fans 7=!'%, and 7712,
as follows: for each maximal o O 7, we identify the maximal cones K,o + A;r and Ko + Arr
by identifying the tangent spaces T, = T,/ using parallel transport through ¢ O 7. Patching these
identifications for all ¢ O 7 together, we get a piecewise linear transformation from T, to T,
identifying the fans 7713, and 7713,/ and hence the corresponding monoids. This defines the affine
analytic scheme
V(7) = Specy, (C[r %)),

up to a unique isomorphism. Notice that 77!¥, can be identified (non-canonically) with the fan
Yr X Arr in Q- r X ArR, so actually

V(T) = Specan(C[AT]) X Specan(C[ET])v
where Spec,, (C[A,]) = A¥ ®7 C* = (C*)! is a complex torus.

For any v € w C 7, there is a map of monoids w™'%, — 7%, given by

= D if p € Kyo + Ay r for some o D 7,
b oo otherwise

(though there is no fan map from w='%, to 7713, in general), and hence a ring map

i Clw s, = C[ris,).

This gives an open inclusion of affine schemes
twr: V(1) = V(w),
and hence a functor F': P — Sch,, defined by
F(r):=V (1), F(e):=1yr: V(1) = V(w)
for w C 7.

We can further introduce twistings of the gluing of the affine analytic schemes {V(7)},cp. Toric
automorphisms p of V(1) are in bijection with the set of C*-valued piecewise multiplicative maps on
T, N |771%,| with respect to the fan 771%,. Explicitly, for each maximal cone o € Pl with 7 C o,
there is a monoid homomorphism i, : A, — C* such that if o’ € Pl also contains 7, then o | Mgt =
to'|A,,,,,- Denote by PM(7) the multiplicative group of C*-valued piecewise multiplicative maps on
T, N |77 1%,|. The group PM(7) a priori depends on the choice of v € 7; however, for different
choices, say v and v/, the groups can be identified via the identification 7713, = 7='%,,. Forw C 7,
there is a natural restriction map |,: PM(w) — PM(7) given by restricting to those maximal cells
o Dwwith o D T.
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Definition 2.13 ([29], Def. 1.18). A choice of open gluing data (for the cone construction) for
(B,?) is a set s = (Swr)wcr of elements s, € PM(7) such that

(1) sz =1 forall T € P, and
(2) if w C T Cp, then

Swp = S7p * Swrlp-

Two choices of open gluing data s,s’ are said to be cohomologous if there exists a system {t;},co,
with t; € PM(7) for each 7 € P, such that s, = t,(ty|;) " 's,, whenever w C 7.

The set of cohomology classes of choices of open gluing data is a group under multiplication,
denoted as H'(P,Qp ® C*). For s € PM(7), we will denote also by s the corresponding toric
automorphism on V(7) which is explicitly given by s*(z™) = s,(m)z™ for m € ¢ D 7. If s is
a choice of open gluing data, then we can define an s-twisted functor Fs: P — Schy, by setting
Fy(1) := F(7) = V(7) on objects and Fy(w C 7) := F(w C 7)o s,l: V(7) — V(w) on morphisms.
This defines the analytic scheme

0X =9X(B,?,s) := lim F,.
—

Gross-Siebert [27] showed that °X (B, P,s) = °X (B, P, s) as schemes when s, s’ are cohomologous.

Remark 2.14. Given 7 € P one can define a closed stratum tr: °X; — °X of dimension k
by gluing together the k-dimensional toric strata Vy(w) C V(w) = Spec,,(Clw™1%,]) corresponding
to the cones K,7 + Ay r in WIS, for all w C 7. Abstractly, it is isomorphic to the toric variety
associated to the polyhedron T C Arr. Also, for every pair w C T, there is a natural inclusion
tor: °Xo — °X,. One can alternatively construct °X by gluwing along the closed strata °X,’s
according to the polyhedral decomposition; see [27, §2.2].

We recall the following definition from [27], which serves as an alternative set of combinatorial
data for encoding p € PM(7).

Definition 2.15 ([27], Def. 3.25 and [29], Def. 1.20). Let u € PM(7) and p € P~ with  C p.
For a vertex v € T, we define

fo(m) X
Dlu’7p7U ::7€C )
( ) MU/ (m/)
where 0,0’ are the two unique mazximal cells such that c Vo' = p, m € A, is an element projecting
to the generator in Q, = A, /A, = Z pointing to o', and m' is the parallel transport of m € A, to
Ay through v. D(p, p,v) is independent of the choice of m.

Let p € P and o, ,0_ be the two unique maximal cells such that o, No_ = p. Let dp € Q) be
the unique primitive generator pointing to o, . For any two vertices v,v" € 7, we have the formula

(2.6) D(p, p,v) = p(mb, )~ - D(p, p, ')

relating monodromy data to the open gluing data, where mﬁv, € A, is as discussed in . The
formula describes the interaction between monodromy and a fixed p € PM(7). We shall
further impose the following lifting condition from [27, Prop. 4.25] relating sy, s,/» € PM(7) and
monodromy data:

Condition 2.16. We say a choice of open gluing data s satisfies the lifting condition if for any two

vertices v,v' € T C p with p € P~ we have D(yr, p,v) = D(8y7, p,v') whenever m? , = 0.
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2.4. Log structures. We need to equip the analytic scheme °X = °X (B, P, s) with log structures.
The main reference is [27, §3 - 5.

Definition 2.17. Let X be an analytic space, a log structure on X is a sheaf of monoids Mx
together with a homomorphism ax: Mx — Ox of sheaves of (multiplicative) monoids such that
ax: a_l(O}) — O% s an isomorphism. The ghost sheaf My of a log structure is defined as the
quotient sheaf Mx /a1 (O%), whose monoid structure is written additively.

Example 2.18. Let X be an analytic space and D C X be a closed analytic subspace of pure
codimension one. We denote by j: X \ D < X the inclusion. Then the sheaf of monoids

Mx = ji(Ox\p) N Ox,

together with the natural inclusion ax: Mx — Ox defines a log structure on X.

We write X if we want to emphasize the log structure on X. A general way to define a log
structure is to take an arbitary homomorphism of sheaves of monoids

a: P — Ox,
and then define the associated log structure by
My = (P& O%)/H{(p.alp)™) [ p e a H(O%)}.

In particular, this allows us to define log structures on an analytic space Y by pulling back those
on another analytic space X via a morphism f: Y — X. More precisely, given a log structure on
X, the pullback log structure on Y is defined to be the log structure associated to the composition
ay: f1(Mx) = f1(Ox) — Oy. For more details of the theory of log structures, readers are
referred to, e.g., [27] §3].

Example 2.19. Taking a toric monoid P (i.e. P = CNM for a cone C C Mg), we can define
a: P — Ogpec(cip)) by sending m — 2™, where P is the constant sheaf with stalk P. From this we
obtain a log structure on the analytic toric variety Spec,,(C[P]). Note that this is a special case of

Ezample [2.18, where we take X = Spec,,,(C[P]) and D to be the toric boundary divisor.

Before we describe the log structures on °X = °X (B, P, s), let us first specify a ghost sheaf M
over "X . Recall that the polyhedral decomposition P is assumed to be regular, namely, there exists
a strictly convex multi-valued piecewise linear function ¢ € H°(B, MPLyp). For any 7 € P, we take
a strictly convex representative @, of ¢ on Q; g, and define

L(V(r),M):=P.=C-N(Q, ®Z),

where Cr := {(m,h) € Q,r @R |h > ¢-(m)}. For any w C 7, we take an integral affine function
Yy on Uy, such that ¢, + S5 (p,,) vanishes on K, 7, and agrees with SX(@;) on all of o N U, for
any o O 7. This induces a map C,, = Cyr := {(m,h) € Qur ER|h > 9,7 (m) + @, (m)} by sending
(m, h) = (m,h + 1yr(m)), whose composition with the quotient map Q, g @R — Q. r & R gives
a map C,, — C; of cones that corresponds to the monoid homomorphism P,, — P.. The P,’s glue
together to give the ghost sheaf M over °X. There is a well-defined section g € I'(°X, M) given by
gluing (0,1) € C; for each 7.

One may then hope to find a log structure on 9X which is log smooth and with ghost sheaf given
by M. However, due to the presence of non-trivial monodromies of the affine structure, this can
only be done away from a complex codimension 2 subset Z C °X not containing any toric strata.

Such log structures can be described by sections of a coherent sheaf ESI;Q supported on the scheme-

theoretic singular locus £D'¢ sing C 9X. We now describe the sheaf ES;}Q and some of its sections

called slab functions; readers are referred to [27, §3 and 4] for more details.



SMOOTHING, SCATTERING, AND A CONJECTURE OF FUKAYA 17

For every p € P11 we consider Lp: OXp — X, where OXp is the toric variety associated to the
polytope p C A, r. From the fact that the normal fan N, C A% ; of p is a refinement of the normal
fan Na(p) C A} g of the 7p-dimensional simplex A(p) (as in §2.2)), we have a toric morphism

(2.7) s, OX, — P,
Now, A(p) corresponds to O(1) on P'». We let N, := s;(O(1)) on 0X ,, and define
(2.8) LShe= P 1oslNy).

peip[nfl]

Sections of ES;,rre can be described explicitly. For each v € P9 we consider the open subscheme

V(v) of "X and the local trivialization
‘CS:)_re @ OVP (v)»

pvEp
whose sections over V(v) are given by (fup)vep. Given v,v" € 7 where 7 corresponding to V(7),
these local sections obey the change of coordinates given by

(2.9) D(syrrs p0') 80t (Frp) = 2™ Dlsur, py0) "0 (Fo),

where p O 7 and .7, 5,7, are part of the open gluing data s. The section f := (fy,)vep is said to be
normalized if f,, takes the value 1 at the 0-dimensional toric stratum corresponding to a vertex v,
for all p. We will restrict ourselves to normalized sections f of [,Spre The complex codimension 2
subset Z C °X is taken to be the zero locus of f on Xsmg.

Only a subset of normalized sections of LS, corresponds to log structures. For every vertex

v e PO and 7 € P2 containing v, we choose a cyclic ordering p1, ..., p; of codimension one cells
containing 7 according to an orientation of Q,r. Let d,, € Q3 be the positively oriented normal to
pi- Then the condition for f = (fy,)vep € ESgre\v(v) to define a log structure is given by

l
(2.10) [T © fonlviy =0@1, in Q3 @ T(Vy(0)\ 2,0}, ),
i=1
where the group structure on Q is additive and that on I'(V;(v) \ Z, O}, )) is multiplicative. If
f = (fop)vep is a normalized section satisfying this condition, we call the fvp s slab functions.

Theorem 2.20 ([27], Thm. 5.2). Suppose that B is compact and the pair (B,P) is simple and
positive. Let s be a choice of open gluing data satisfying the lifting condition (Condition .
0

Then there exists a unique normalized section f € T(°X, ES;re) which defines a log structure on °X

(i.e. satisfying the condition (2.10))).

From now on, we always assume that B is compact. To describe the log structure in Theorem
we first construct some local smoothing models: For each vertex v € PO we represent the
strictly convex piecewise linear function ¢ in a small neighborhood U of v by a strictly convex
piecewise linear ¢,: Q, g — R (so that ¢ = S;(¢,)) and set

Cy:={(m,h) € Qur®R|h > p,(m)}, P,:=CyN(Q ®Z).

The element ¢ = (0,1) € Q, ® Z gives rise to a regular function ¢ := 22 on Spec,, (C[P,]). We have
a natural identification

V(U) = Specan((C[Zv]) = Specan((c[Pv}/Q)a
through which we view V' (v) as the toric boundary divisor in Spec,,(C[P,]) that corresponds to the
holomorphic function ¢, and 7, : Spec,,(C[P,]) — Spec,,(C|q]) as a local model for smoothing V' (v).



18 CHAN, LEUNG, AND MA

Using these local models, we can now describe the log structure around a point z € °X\ Z. On a
neighborhood V' C V(v)\ Z of z, the local smoothing model is given by composing the two inclusions
p: V — V(v) and V(v) — Spec,, (C[P,]). The natural monoid homomorphism P, — C[P,] defined
by sending m — 2" determines a log structure on Spec,, (C[P,]) which restricts to one on the toric
boundary divisor V' (v) = Spec,, (C[X,]). We further twist the inclusion b: V — V(v) as

(2.11) 2" = By - 2™ for moe By,

here, for each m € ¥, h,, is chosen as an invertible holomorphic function on V' NZero(z™;v), where
we denote Zero(z";v) := {z € V(v) | 2™ € O}, and such that they satisfy the relations

(2.12) hin - byt = By, on VN Zero(zm””/; v).

Then pulling back the log structure on V' (v) via b: V < V(v) produces a log structure on V' which
is log smooth.

These local choices of h,,’s are also required to be determined by the slab functions f,,’s, up to
equivalences. Here, we shall just give the formula relating them; see [27, Thm. 3.22] for details. For
any p € P"~1 containing v and two maximal cells o+ such that o, No_ = p, we take m, € Q,NK,o
generating Q, with some mg € Q, N K, p such that mg—m € Q,NK,0_. Then the required relation
is given by
h2.,

Pmg—my * hmgtmy Vo)V

(2.13) fop = O, (i (Vo) V),

which is independent of the choices of mg and m..

By abuse of notation, we also let b: V' — ¥V be the k-th order thickening of V over C[q]/¢"*! in
the model Spec,, (C[P,]) under the above embedding. Then there is a natural divisorial log structure
on *Vt over ¥St coming from restriction of the log structure on Spec,,, (C[P,])T over ST (i.e. Example
which is the same as the one given by Example in this case). Restricting to V reproduces
the log structure we constructed above, which is the log structure of °XT over the log point °ST
locally around xz. We have a Cartesian diagram of log spaces

(2.14) Vi kyt

0gtc_ kgt

Next we describe the log structure around a singular point x € Z N (OX #\ Uwcr 0x w) for some
7. Viewing [ = Zpefp[n—l] [» where f, is a section of N, we let Z, = Z(f,) C OXp c %X and write
Z =\, Z,. For every 7 € P, we have the data (2;’s, R;’s, A;(7) and A;(7) described in Definition
because (B, P) is simple. Since the normal fan N, C A;R of 7 is a refinement of Ny, ) C A;R,
we have a natural toric morphism
(2.15) srit VX, — P

and the identification ¢7,(N,) = 3 ;(O(1)). By the proof of [27, Thm. 5.2], ¢5,(f,) is completely
determined by the gluing data s and the associated monodromy polytope A;(7) where p € R;. In
particular, we have 7,(f,) = ¢}, (fy) and Z, N 0X,=2Z,Nn"X, = Z] for p,p' € R;. Locally, if we
write V(1) = Spec,, (C[r713,]) by choosing some v € 7, then, for each 1 < i < p, there exists an
analytic function f,; on V(7) such that f, |y, ;) = Son (fup) for p € R;.

According to [28, §2.1], for each 1 < i < p, we have A;(1) C Q g, which gives
(2.16) Yi(m) = —inf{{(m,n) | n € Ay(7)}.
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By convention, we write ¢y := ¢,. By rearranging the indices i’s, we can assume that x € Z7N---NZ;
and x ¢ VARSNCRERNY Z;. We introduce the convention that 1, ; = v; for 0 <4 <r and 1, ; = 0 for
r < i < dimg(7). Then the local smoothing model near x is constructed as Spec,, (C[Pr ;]), where

(2.17) P, :={(m,ao,...,a;) € Q x Z" | a; > b :(m)},

[ = dimg(7), and the distinguished element o = (0, 1,0,...,0) defines a family
Specan (ClPrz]) = Specan(Clg))

by sending ¢ — 2z¢. The central fiber is given by Spec,, (C[@+z]), where

(2.18) Qre = {(m,a0,...,a1) | ap = Yy0(m)} = Pr./(0+ Pry)

is equipped with the monoid structure

! — {m+m’ iftm+m' € Qry,

00 otherwise.
We have the ring isomorphism C[Q; ] = C[¥, @ N'] induced by the monoid isomorphism defined
by sending (m, ag, a1, - az) = (1,01 — $1(m), - a1 — a(im)).

We also fix some isomorphism C[7~!%,] = C[%, ®Z!] coming from the identification of 77'%,, with
the fan ¥, ®R! = {w®R! | w is a cone of 7} in Q, g ®R!. Taking a sufficiently small neighborhood
V of x such that Z, NV = 0 if x ¢ Z,, we define a map V' — Spec,,(C[Q-]) by composing
V < Spec,, (C[t71%,]) = Spec,, (C[2, ®Z!]) with the map Spec,, (C[X,®Z!]) — Spec,, (C[Z,BN))
described on generators by

2" by - 2™ ifm e X
(2.19) Ui = foi if1<i<nr;
ui =z — zi(x) ifr<i<li;

here w; is the i-th coordinate function of C[N'], z; is the i-th coordinate function of C[Z!] chosen so

that (%f”rf)
%7 J1<i<r1<5<r

on V N Zero(z™;v), and they satisfy the equations (2.12) and (2.13) where we replace f,, by

Fo= Sor (fop) ifx & Z,
RN if z € Z,.

is non-degenerate on V'; also, each hy, is an invertible holomorphic functions

Letting b: V — ¥V be the k-th order thickening of V over C[g]/¢**! in the model Spec,, (C[P; .])
under the above embedding, we have a natural divisorial log structure on *V1 over S induced from
the inclusion Spec,,(C[Qr]) < Spec,,(C[Pr.]) (i.e. Example [2.18). Restricting it to V' gives the
log structure of *XT over the log point °S* locally around x.

3. A GENERALIZED MOMENT MAP AND THE TROPICAL SINGULAR LOCUS ON B

In this section, we recall the construction of a generalized moment map u: °X — B from [43),
Prop. 2.1]. Then we construct some convenient charts on the base tropical manifold B and study
its singular locus.
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3.1. A generalized moment map. From this point onward, we will assume the vanishing of an
obstruction class associated to the open gluing data s, namely, o(s) = 1, where the obstruction class
o(s) is written multiplicatively (see [27, Thm. 2.34]). Under this assumption, one can construct an
ample line bundle £ on °X as follows: For each polytope 7 C A, g, by identifying 9X . (a closed
stratum of X described in Remark with the projective toric variety associated to 7, we obtain
an ample line bundle £, on °X .. When the assumption holds, then there exists an isomorphism
hy: o5 (Lr) = L, for every pair w C 7, such that the isomorphisms h,,;’s satisfy the cocycle

condition, i.e. hyr o) (hys) = hys for every triple w C 7 C 0’E| In particular, the degenerate
Calabi-Yau °X = °X (B, P, s) is projective.

Sections of L correspond to the lattice points Bz C B. More precisely, given m € By, there is a
unique 7 € P such that m € int,(7), and this determines a section 1, » of £, by toric geometry.
This section extends uniquely as ¥, to ¢ D 7 such that h,;(¢,,) = ¥y, 7. Further extending ¥, by
0 to other cells gives a section of £ corresponding to m, called a (0%"-order) theta function. Now
for a vertex v € Pl we can trivialize £ over V(v) using ¥, as the holomorphic frame. Then, for m
lying in a cell o that contains v, ¥, is of the form gi,, where g is a constant multiple of 2.

Under the above projectivity assumption, one can define a generalized moment map
(3.1) w: °X - B

following [43, Prop. 2.1]: First of all, the theta functions {¥,,}mep, defines an embedding of
®: OX — PN. Restricting to each closed toric stratum X . € X, the only non-zero theta functions
are those corresponding to m € Bz N7. Also, there is an embedding j-: Tr 1= AJ g /AT, — U(1)N of
real tori such that the composition ®,: °X, — PV of ® with the inclusion X, < %X is equivariant.
The map p is then defined by setting

(3.2) Hoy, (2) =

! S () m,

2
ZmGBZﬁT |19m(2)’ meBzNT
which can be understood as a composition of maps
0] pp dj;
X, TN L RN T A

where pp is the standard moment map for PV and dj; : Aij — RY is the Lie algebra homomorphism
induced by j,: T, — U(1)V.

Fixing a vertex v € ‘.P[O], we can naturally embed A;r < T}, r for all 7 containing v. Furthermore,
we can patch the dj’s into a linear map dj*: (RN)* — T, r so that p, = dj* o up o ®, for each 7
which contains v. In particular, on the local chart V(7) = Spec,,,(C[r1X,]) associated with v € T,
we have the local description p|y () = dj* o pp o @|y(r) of the generalized moment map .

We consider the amoeba A := u(Z). As °X,NZ =J0_, Z7, where Z] is the zero set of a section
of 5 ;(O(1)) (see the discussion right after equation (2.15)), we can see that AN 7 = [Ji_; pur(Z])

is a union of amoebas A7 := p,(Z7). It was shown in [43] that the affine structure defined right
after Definition [2.2] extends to B\ A.

3.2. Construction of charts on B. For any 7 € P, we have

p(V(r)) = | intre(w) = W().

TCWw

3In fact, the vanishing of the obstruction class corresponds exactly to the validity of the cocycle condition.
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For later purposes, we would like to relate sufficiently small open convex subsets W C W (r) with
Stein (or strongly 1-completed, as defined in [I3]) open subsets U C V(7). To do so, we need to
introduce a specific collection of (non-affine) charts on B.

Recall that there are natural maps A, < 7%, and 7~!'%, — 3,. By choosing a piecewise linear
splitting split,: ¥, — 7713, we have an identification of monoids 7713, = ¥, x A, which induces
the biholomorphism

V(7) = Spec,,(C[r71%,]

where AJ ¢, = Spec,, (C[A7]) = AT ®z C*
{m;}iep, of the monoid ¥, which is not necessarily a minimal set, we can define an embedding
Spec,,(C[2,]) < CPBrl as an analytic subset using the functions z™’s. We consider the real torus
Tr1 = /97 & U(1)" and its action on Spec,, (C[X,]) defined by t - 2™ = 2™(tm) 2™ together
with an embedding T, | < U(1)Brl of real tori via ¢ + (€27(t™i)),p | so that Spec,, (C[%,]) — CIB7!
is T, | -equivariant.

= Spec,, (C[A;]) x Spec,, (C[X]),

R ~—

(C*)! is a complex torus. Fixing a set of generators

We consider the moment map fi-: Spec,, (C[X;]) — Q,r defined by

. Lo
(3.3) fir == —|2™ % - my,
2
1€B,

which is obtained by composing the standard moment map C/Brl — RES', (zi)ics, — (3lzi)ice,

with the projection Rl — Q,r, €; — m;. By [21], §4.2], [i, induces a homeomorphism between the
quotient Spec,, (C[X;])/T7 1 and Q; . Taking product with the log map log: A} ¢ — A} p (which
is induced from the standard log map log: C* — R defined by log(e?™(*+)) = z), we obtain a map
pr = (log, fir): V(7) = Al x QﬂRﬁ and the following diagram

(3.4) V(7)

HT
n

N x G T Wi(r),

where Y, is a homeomorphism which serves as a chart.

The homeomorphism T, exists because if we fix a vertex v € 7, then we can equip V(7) with
an action by the real torus T" := T'g /T such that both p and g, induce homeomorphisms from
the quotient V(7)/T" onto the images. The restriction of Tr to A}y x {o}, where {o} is the zero
cone, is a homeomorphism onto inty.(7) C W(7), which is nothing but (a generalized version of) the
Legendre transform (see [21} §4.2] for the explicit formula); also, this homeomorphism is independent
of the choices of the splitting split, and the generators {m;}ies. .

The dependences of the chart Y, on the choices of the splitting split.: ¥, — 77!'%, and the
generators {m;}; can be described as follows. First, if we choose another piecewise linear splitting
split.: X, — 7713, then there is a piecewise linear map b: ¥, — A; R recording the difference

between split,. and s/pvlitT. The two corresponding coordinate charts Y, and T, are then related by
a homeomorphism J such that

) ($7zyimi> = (%Zyz‘@“(b(mi)’@mz‘) ;

A depends on the choices of the splitting split_: ¥, — 77 '%, and the generators {m;};, but we omit these
dependencies from our notations.
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where y; = $[z™i|? for some point z € Spec,,(C[S;]) and i runs through m; € o, via the for-

mula T, = T, oJ. Second, if we choose another set of generators 1m;’s, then the corresponding
maps fir, fir: Spec,,(C[2;]) — Qg are related by a continuous map I Q;r — Q;pr which maps
each cone o € Y, back to itself. This is because both [, fi; induce a homeomorphism between
Spec,,(C[3;])/T,1 and Q- g.

Now suppose that w C 7. We want to see how the charts Y, T, can be glued together in a
compatible manner. We first make a compatible choice of splittings. So we fix a vertex v € w
and a piecewise linear splitting split,: ¥, — w™!'%,. We then choose a piecewise linear splitting
split,,.: X — X, such that K, o is mapped into Ko for any 0 O 7. Together with the natural
maps A, /A, — 7718, and 7718, — ¥, we obtain an isomorphism 77'%, = (A;/A,) x ¥,. By
composing together split, : ¥, — %, split,: ¥, — w™!¥, and the natural monoid homomorphism
wy, = 7718, we get a splitting split.: ¥, — 7715,

Using these choices of splittings, we have a biholomorphism
Speca, (Clr'50)) & (Ar/Aw)* @2 C* X Spec,, (C[])

which fits into the following diagram
(3.5)

R

A7 e X Spec,, (C[X4]) — Spec,, (Clw™1%,])
Fs(wCT)

A:;(C* X SpeCaH(C[Tilzw]) Specan( [Tﬁlzv])<,—18pecan(c[’rilzv])

Swr

o o o

(Aw @ Ar/Ay)* ®7 C* x Spec,, (C[X:])=—AF ¢ ¥ Specan(C[ET])?Aj’C* X Spec,, (C[2;]).

Here, the bottom left horizontal map is induced from a splitting (A;/A,) — A, obtained by com-
posing A, /A, — 7718, with the splitting 77!%, — 77}(w™'%,), and then identifying with the
image lattice A.. The appearance of s,, in the diagram is due to the twisting of V() by the open
gluing data (Sur)wcr when it is glued to V(w).

We also have to make a compatible choice of the generators {m;}icp, and {m;}ies,. First note
that the restriction of ji, to the open subset Spec,,(C[r71%,]) C Spec,,(C[X,]) depends only on
the subcollection {m;}icp,, of {m;}icp, which contains those m;’s that belong to some cone o D 7.
We choose the set of generators {m; }ics, for ¥,, with B = B,,c+, to be the projection of {m;}cs,,,
through the natural map 7', — ;. Each m; can be expressed as m; = split,,, (1;) + b; for some
b; € A+/A,, through the splitting split,,.: ¥, — X,. Notice that if m; € K, 7, then we have m; = o
and hence b; € K, 7. By tracing through the biholomorphism in and taking either the modulus
or the log map, we have a map

JI A:ZJR X (AT,R/Aw,R)* X QT,R — AZ},R X QUJR
satisfying

(36) ] (xl — Cwr,1, X2 — Cur,2, Z yi|5w‘r(5p“tw7(mi))|_2mi> = <SC1, Z yi64ﬂ<bi7w2>mi> s
i i
where y; = %|zﬁ”|2. Here, s, € PM(7) is the part of the open gluing data associated to w C T,
and cur = Cur1 + Cor2 € Al is the unique element representing the linear map log |sur|: Azr — R
defined by log|s..|(b) = log|sw-(b)|. For instance, the holomorphic function 2™ € C[r~1%,] is

identified with 2% -2 in (A, /A, )*®7C* xSpec,, (C[Z,]), resulting in the expression 3", y;e™0iw2)m;
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on the right hand side. We have Y, = T, o J, where we use the splitting (A;/A,) — A, to obtain
an isomorphism AY p X (Arr/AuRr)* = A% and an identification of the domains of the two maps
Y, and Y, o1J.

Lemma 3.1. There is a base B of open subsets of B such that the preimage pu~ (W) is Stein for
any W € B.

Proof. First of all, it is well-known that analytic spaces associated to affine varieties are Stein. So
V(7) is Stein for any 7. Now we fix a point = € int,(7) C B. It suffices to show that there is a
local base B, of x such that the preimage u~!(W) is Stein for each W € B,. We work locally on
plyry: V(r) = W(r). Consider the diagram and write T=!(z) = (z,0), where o € Q, g is the
origin. By [I3, Ch. 1, Ex. 7.4], the preimage log~*(W) under the log map log: (C*)! — AR is
Stein for any convex W C A7 p which contains z. Again by [13, Ch. 1, Ex. 7.4], any subset

N

({z € Specan(C[E) | If(2)] < €},

j=1
where f;’s are holomorphic functions, is Stein. By taking f;’s to be the functions 2"i’s associated
to the set of all non-zero generators in {m;};cg, and e sufficiently small, we have a subset

2
1

m]"2

at some point z € Spec,,(C[X;])

of Q; g such that the preimage fi7 (W) is Stein. Therefore, we can construct a local base B, of o
such that the preimage ji- (W) is Stein for any W € B,. Finally, since a product of Stein open
subsets is Stein, we obtain our desired local base B, by taking the products of these subsets. O

3.3. The tropical singular locus S of B. We now specify a codimension 2 singular locus § C B
of the affine structure using the charts Y, introduced in (3.4) for 7 such that dimg(7) < n. Given
the chart Y, that maps A;R to intye(7), we define the tropical singular locus 8 by requiring that

(3.7) T-HS Ninte (7)) = U ((intre(p) + ¢r) x {0}),
PENT;
dimp (p) <dimg (7)

where N, C A;R is the normal fan of the polytope 7, and {o} is the zero cone in ¥, C Q,;
here, ¢; = log |s,7| is the element in A;R representing the linear map log|s,-|: A;r — R, which is
independent of the vertex v € 7. A subset of the form 8, , := (intye(p) + ¢;) x {0} in is called
a stratum of 8§ in inty(7). The locus 8 is independent of the choices of the splittings split.’s and
generators {m; };cp. used to construct the charts T,’s.

Remark 3.2. Our definition of the singular locus is similar to those in [27, 29]; the only difference
is that our locus is a collection of polyhedra in A7 g, instead of intye(7). Note that A g is homeo-
morphic to int(7) by the Legendre transform. This modification is needed for our construction of
the contraction map C below, where we need to consider the convex open subsets in A;R, instead of
those in intye (7).

Lemma 3.3. For w C 7 and a stratum 8; , in intye(7), the intersection of the closure % i B with
intye(w) is a union of strata of 8 in intye(w).

Proof. We consider the map 1 described in equation (3.6 and take a neighborhood W' = W; x Qy
of a point (z,0) in AL g X Qu,r, where Wy is some sufficiently small neighborhood of z in Af, g. By
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shrinking W if necessary, we may assume that J=1(W) = W} x (a — intye(K,7")) X Q, g, where a
is some element in —intye(K,7") C (Arr/Ayr)*. Writing ¢ = ¢-1 + ¢r2, where ¢, 1,¢r 2 are the
components of ¢, according to the chosen decomposition A p = A¥ p x (Arr/AuRr)", the equality
¢r1 + Cur1 = ¢, follows from the compatibility of the open7gluing data in Definition If 8,
intersects the open subset 371 (W), then p C A7 g must be the dual cone of some face p/ CwCrT
in A;R. The intersection is of the form

(intye(p) + cr1) X (a — intye(Ku7Y)) x {0}

for some p € Ny, (cr2 is absorbed by a), where p C Aj, g 1s the dual cone of pY in A}, g, and hence
we have W N 8, = I((intre(p) + cr,1) X (@ — intre(Ky7")) x {0}). Therefore, the intersection of
8rp with A*  in the open subset W C Al g X Qur is given by (p + co) x {o}, which is a union of
strata. O

The tropical singular locus § is naturally equipped with a stratification, where a stratum is given
by 8:, for some cone p C N; of dimg(p) < dimg(7) for some 7 € Pl<nl. We use the notation §¥!
to denote the set of k-dimensional strata of 8. The affine structure on J, cpio) Wo U U, cpn) intre(o)
introduced right after Definition [2.2]in can be naturally extended to B\ 8 as in [29].

If we consider w C 7 C p for some w € P and p € P=1l " the corresponding monodromy
transformation 7', is non-trivial if and only if w € Q, and p € R,, where p is as in Definition
Therefore, the part of the singular locus § lying in Y- !(inte(7)) = A7 g x {0} is determined by
the subsets €1,’s. We may further define the essential singular locus 8. to include only those strata
contained in 8"~ with non-trivial monodromy around them. We observe that the affine structure
can be further extended to B\ 8.

More explicitly, we have a projection
ir =171 @ @irp: AT 5 AR () B BAL (),

in which A*A1(7') PP A*Ap(T) can be treated as a direct summand as in §2.2 So we can consider
the pullback of the fan Na, () X -+ X Na (r) via the map i, and realize N; C A7 as a refinement
‘ = S5, &) AAP(T) and the fan
NA1(T) X oo X NAP(T) in Q7 p under pullback via i,. The intersection S N intye(7) can be described

of this fan. Similarly, we have i, = i,7 & - @ inp: Qr — A*AI

by replacing p € N, with the condition p € i;l(NAl(T) X -+ x Np, (7)), with a stratum denoted by
8e,r,p- This gives a stratification on 8.

Lemma 3.4. For w C 7 and a stratum S -, in int,(7), the intersection of the closure 8, in B
with intye(w) is a union of strata of 8¢ in intye(w).

Proof. Given w C 7, we take a change of coordinate map J together with a neighborhood W as in the
proof of Lemma [3.3] We need to show that W N8, = I((intre(p) + ¢r1) X (a — intre (Ko7)) x {0})
for some cone p € i (V- Na, (). Let A1(7),...,Ax(7),...,Ay(7) be the monodromy polytopes
of 7, and Ay(w),...,Ap(w),...,Ap(w) be those of w such that Aj;(w) is the face of Aj;(7) parallel
to A, for j =1,...,7. Then we have direct sum decompositions Ax,(;) @ - @ Ax () D Ar = Ar
and Ap ) @ B A A(w) @ A, = A,. We can further choose an inclusion

Awr: AAH_l(w) ©---D AApl(w) ® Ay — Ar;

in other words, for every j =r+1,...,p/, any f € Rj C P,_1(w) in Definition is not containing
7. For every j =7+ 1,...,p and any f € R; C P,_1(7), the element m{ij is zero for any two
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vertices v1, vo of w. We have the identification

T

p
Ar/bo = DMa, ) /Aa,w) & D Aar) @ coker(au).
j=1 I=r+1

As aresult, any cone i1 ( ?:1 pj) € iyl ( I, NA,-(T)) of codimension greater than 0 intersecting
J71(W) will be a pullback of a cone under the projection to A*Al(T),R DB A*AT(T),R' Consider the
commutative diagram of projection maps

(3-8) Ao Arr

PwCT

: :
T T
[Ti=1 A% @ r [Ti=1 A5
we see that, in the open subset J7!(W), every cone of codimension greater than 0 coming from

pullback via p; is a further pullback via II,; o p;. As a consequence, it must be of the form
I((intre(p) + cr1) X (a — intye(KWw7Y)) X {0}) in W. O

wCT

3.3.1. Contraction of A to §. We would like to relate the amoeba A = u(Z) with the tropical
singular locus 8§ introduced above.

Assumption 3.5. We assume the existence of a surjective contraction map C: B — B which is
isotopic to the identity and satisfies the following conditions:

(1) C~Y(B\8) C (B\8) and the restriction Cle-1(m\s): C~Y(B\8) — B\S is a homeomorphism.
(2) C maps A into the essential singular locus 8.

(3) For each T € P, we have C71(intye (7)) C intye(7).

(4) For each 7 € P with 0 < dimg(7) < n, we have a decomposition

rneY(B\S8) U To
verlo]

of the intersection TNC~L(B\8) into connected components T, ’s, where each T, is contractible
and is the unique component containing the vertexr v € T.

(5) For each 7 € P and each point x € int,e(7) NS, C71(x) C intye(7) is a connected compact
subset.

(6) For each T € P and each point x € intye(7) NS, there exists a local base B, around x such
that (C o p)~Y(W) C V(7) is Stein for every W € B, and for any U D C~1(z), we have
C~Y W) C U for sufficiently small W € B,.

Similar contraction maps appear in [43, Rem. 2.4] (see also [45] [44]).

When dimg(B) = 2, we can take € = id because from [27, Ex. 1.62], we see that Z is a finite
collection of points, with at most one point lying in each closed stratum X ., and the amoeba A is
exactly the image of Z under the generalized moment map .

When dimg(B) = 3, the amoeba A can possibly be of codimension one and we need to construct
a contraction map as shown in Figure

For dimg(7) = 1, again from [27, Ex. 1.62], we see that if ANint,e(7) # 0, then there is exactly one
Q and Ry, and A(7) is a line segment of affine length 1. In this case, ZN°X, consists of only one
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FIGURE 5. Contraction map € when dimg(B) = 3

point, given by the intersection of the zero locus s} (f,,) with C* 22 V(1) C V(7). Taking m to be
the primitive vector in A, starting at v that points into 7, we can write s} (fy,) = 1+ s, (m)z™.
Applying the log map log: C* — R, we see that A N int.(7) = ¢,. Therefore, for an edge 7 € P,
we can define C to be the identity on 7.

\
i/_

FiGURE 6. Contraction at p

On a codimension one cell p such that intye(p) NA # () (see Figure @, we consider the log map
log: Spec,, (C[A,]) = (C*)? — A p= R?, and take a sufficiently large polytope P (colored purple in
Figure @ so that A\ int,e(P) is a disjoint union of legs. We first contract each leg to the tropical
singular locus (colored blue in Figure @ along the normal direction to the tropical singular locus.
Next, we contract the polytope P to the 0-dimensional stratum of S.. Notice that the restriction of
C to the tropical singular locus 8 is not the identity but rather a contraction onto itself. Once the
contraction map is constructed for all codimension one cells p, we can then extend it continuously to
the whole of B so that it is a diffeomorphism on int,. (o) for every maximal cell o. The map is chosen
such that the preimage C~!(x) for every point = € int,(p) is a convex polytope in R2. Therefore,
given any open subset U C R? which contains C~1(x), we can find some convex open neighborhood
Wi C U of €1 (z) giving the Stein open subset log~*(W;) C (C*)2. By taking W = W; x Ws in the
chart A;R x Q, R as in the proof of Lemma we have the open subset W that satisfies condition
(5) in Assumption
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In general, we need to construct €|y, () inductively for each 7 € P, so that the preimage
€1(z) C inty(r) is convex in the chart A% = int,(7) and the codimension one amoeba A is
contracted to the codimension 2 tropical siﬁgular locus 8.. The reason for introducing such a
contraction map is that we can modify the generalized moment map p to one which is more closely

related with tropical geometry:

Definition 3.6. We call the composition v := Co u: °X — B the modified moment map.

One immediate consequence of property (6) in Assumption is that we have Rv.(F) = vy (F)
for any coherent sheaf F on %X, thanks to Lemma and Cartan’s Theorem B:

Theorem 3.7 (Cartan’s Theorem B [6]; see e.g. Ch. IX, Cor. 4.11 in [I3]). For any coherent sheaf
F over a Stein space U, we have H>°(U, F) = 0.

3.3.2. Monodromy invariant differential forms on B. Outside of the essential singular locus 8., we
have a nice integral affine manifold B \ 8., on which we can talk about the sheaf Q* of (R-valued)
de Rham differential forms. But in fact, we can extend its definition to 8. as well using monodromy
nwvariant differential forms.

We consider the inclusion ¢: By := B\ 8, — B and the natural exact sequence
(3.9) 0—=Z— Aff = 1A, =0,

where A*BO denotes the sheaf of integral cotangent vectors on By. For any 7 € P, the stalk (L*A*Bo)x
at a point x € inty(7) NS, can be described using the chart YT, in . Using the description in
we have z € 8.7, = intre(p) X {0} for some p € 171 (N, ;) X -+ X Na,(r))- Taking a vertex
v € 7, we can consider the monodromy transformations T’,’s around the strata 8., ,’s that contain
z in their closures. We can identify the stalk t.(Ajp ). as the subset of invariant elements of Ty

under all such monodromy transformations. Since p C A is a cone, we have A, C AZ. Using the
natural projection map m,-: Ty — A7, we have the identification . (A )z = Ty (A,). There is a
direct sum decomposition L*(A*BO)Q; = A, ® Qf, depending on a decomposition T, = A, © Q.. This

gives the map
(3.10) x: Up — T (A)k

in a sufficiently small neighborhood Uy, locally defined up to a translation in ! (Ap)k- We need

to describe the compatibility between the map associated to a point x € 8, , and that to a point
T € 8¢5 such that 8., , C 8¢ 7 5.

The first case is when w = 7. We let Z € inty.(p) X {0} NU, for some p C p. Then, after choosing

suitable translations in 7} (A,)} for the maps x and %, we have the following commutative diagram:

T

(3.11) Uz N Up————m, (M)
P
Uz (A%

The second case is when w C 7. Making use of the change of charts J in equation (3.6), and the

=

description in the proof of Lemma we write
T € intye(p) X {0}
for some cone p = i;l(]_[?:l p;) € i71( H§:1 A*Aj(T)) of positive codimension. In I~} (W), we may

assume p is the pullback of a cone p via Il,cr o pr as in equation (3.8). Since 8., C 8¢ rj,
we have p C p,'(p) and hence p,t,(A,) C Aj. Therefore, from pycr © Tyr = Ty, We obtain
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Tl (A,) C ot (Ap), inducing the map p: m (Ap)h — Tl (Ay)%. As a result, we still have the

commutative diagram (3.11]) for a point Z sufficiently close to .

Definition 3.8. Given x € 8. as above, the stalk of Q* at x is defined as the stalk 2% = (x~10*),
of the pullback of the sheaf of smooth de Rham forms on m}(A,)%, which is equipped with the de
Rham differential d. This defines the complex (£2*,d) of monodromy invariant smooth differential
forms on B. A section o € Q*(W) is a collection of elements o, € QF, x € W such that each ay

can be represented by x ', in a small neighborhood U, C p~'(U,) for some smooth form 3, on U,
and satisfies the relation iz = %~ 1(p*By) in Q% for every & € U,.

Example 3.9. In the 2-dimensional case in Example|2.11], we consider a singular point
{z} = 8¢ Nintye(T)

for some T € P In this case, we can take p to be the 0-dimenisonal stratum in N, = i;l(NAl(T))
and we have L*(AEO);E = Q¥. Tuaking a generator of QF, we get an invariant affine coordinate
x: Uy — R which is the normal affine coordinate of 7. The stalk U is then identified with the
pullback of the space of germs of smooth differential forms from (R,0) via x. In particular, Q2 = 0.

For the Y -vertex of type II in Example the situation is similar to the 2-dimensional case.
For {x} = 8. Nintyo(7), we still have 1.(Ag )z = 9, and in this case, x: Uy — R* are the two
invariant affine coordinates. We can identify 2% as the pullback of the space of germs of smooth
differential forms from (R%,0) via x.

For the Y -vertex of type I in FExample we use the identification A7 p = intye(7) via Y, for
the 2-dimensional cell T separating two mazimal cells o4 and o_. In this case, 8¢ is as shown (in
blue color) in Figure @ and N = iT_l(NAl(T)) is the fan of P2. If x is the O-dimensional stratum of
Se Nintye(7), we have L*(A*BO)I = QF and x: Uy — R as an invariant affine coordinate. If x is a
point on a leg of the Y -vertex, we have x = (x1,%2): U, — R? with x1 coming from a generator of
A, and x3 coming from a generator of Q.

It follows from the definition that R — Q* is a resolution. We shall also prove the existence of a
partition of unity.

Lemma 3.10. Given any x € B and a sufficiently small neighborhood U, there exists o € Q°(U)
with compact support in U such that 0 < 0 < 1 and o = 1 near x. (Since Q° is a subsheaf of the
sheaf CY of continuous functions on B, we can talk about the value f(x) for f € Q°(W) andz € W.)

Proof. If x ¢ 8., the statement is a standard fact. So we assume that = € int,e(7) N 8. for some
7 € P. As above, we can write x € inte(p) X {0o}. Furthermore, since p is a cone in the fan
i;l(NAI(T) X - X Na(r)), A} has A*Al(T) O P A*Ap(r) as a direct summand, and the description
of L*(AEO)m is compatible with the direct sum decomposition of A%. We may further assume that
p=1and 7 = Ai(7) is a simplex.

If p is not the smallest cone (i.e. the one consisting of just the origin in N;), we have a decom-
position A¥ = A, © Q, and the natural projection p: A} — Q,. Then, locally near xy, we can write
the normal fan N, as p~1(3,) for some normal fan ¥, C Q, of a lower dimensional simplex. For
any vector v tangent to p at xg and the corresponding affine function [, locally near xg, we always
have % > 0. This allows us to construct a bump function o = > (L, (x) — Ly, (w0))? along the
A, r-direction. So we are reduced to the case when p = {0} is the smallest cone in the fan N;.

Now we construct the function ¢ near the origin o € N; by induction on the dimension of the
fan N,. When dimg(N,) = 1, it is the fan of P! consisting of three cones R_, {0} and R,. One
can construct the bump function which is equal to 1 near o and supported in a sufficiently small
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neighborhood of o. For the induction step, we consider an n-dimensional fan N,. For any point z
near but not equal to o, we have x € int,.(p) for some p # {o}. Then we can decompose N, locally
as A, ®Q,. Applying the induction hypothesis to Q, gives a bump function o, compactly supported
in any sufficiently small neighborhood of z (for the A, directions, we do not need the induction
hypothesis to get the bump function). This produces a partition of unity {g;} outside o. Finally,
letting 0 := 1 — ), 0; and extending it continuously to the origin o gives the desired function. [

Lemma produces a partition of unity for the complex (2*,d) of monodromy invariant dif-
ferential forms on B, which satisfies the requirement in Condition [4.7] below. In particular, the
cohomology of (2*(B),d) computes RI'(B,R). Given a point x € B\ 8., we can take an element
0 € Q"(B), compactly supported in an arbitrarily small neighborhood U, C B\ 8¢, to represent a
non-zero element in the cohomology H"(Q*,d) = H"(B,C) = C.

4. SMOOTHING OF MAXIMALLY DEGENERATE CALABI-YAU VARIETIES VIA DGBV ALGEBRAS

In this section, we review and refine the results in [§] concerning smoothing of the maximally
degenerate Calabi-Yau log variety °Xt over ST = Spec, (R)! = Spec,,(C[[¢]])} using the local
smoothing models V1 — kyts specified in In order to relate with tropical geometry on B, we
will choose V' so that it is the pre-image v~ (W) of an open subset W in B.

4.1. Good covers and local smoothing data. Given 7 € P and a point = € int,(7) C B, we
take a sufficiently small open subset W € B,. We need to construct a local smoothing model on the
Stein open subset V = v~1(W).

o If z ¢ 8., then we can simply take the local smoothing V1 introduced in (2.14)) in

o If x € 8, Nintye(7), we assume that €YW) NAT £ @ fori=1,...,7r and CH{W)NAT =0
for other i’s. Note that C~1(WW) N int.e(7) may not be a small open subset in int,(7) as we
may contract a polytope P via € (Figure @ If we write Ap,(7) @ @ Ap, () B Ar = Ar as
lattices, then for each direct summand Ap,(;), we have a commutative diagram

iT,i,(C* "
AT,(C* AAi (7),C*
llog log
1r4,R
* *
AT,]R AAi(T),R’

so that both Z7 and A] are coming from pullbacks of some subsets under the projection
maps i,;c+ and i, ;g respectively. From this, we see that C~1(W)N AT N---N AT # () and
vIIW)NZ7n---NZT # 0 while v=1 (W) N Z7 = 0 for other i’s. Now we take 1,,; = 1; for
1 <i < rand v¢,; = 0 otherwise accordingly. Then we can take P;, introduced in (2.17)
and the map V = v~ (W) — Spec,,(C[Z, @ N']) defined by

2" hy - 2™ ifm e X

(41) U; — fv,i if 1 <1< T

U; > Z; ifr<i<l
Note that the third line of this formula is different from that of equation (2.19) because we
do not specify a point x € Z] N---N Z]. By shrinking W if necessary, one can show that
it is an embedding using an argument similar to [28, Thm. 2.6]. This is possible because
we can check that the Jacobian appearing in the proof of 28, Thm. 2.6] is invertible for
all point in v~ !(x) = p~(€~1(x)), which is a connected compact subset by property (5) in
Assumption [3.5
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Condition 4.1. An open cover {Wy}q of B is said to be good if

(1) for each Wy, there exists a unique 1, € P such that Wy, € B, for some x € intye(7);
(2) Wap = Wo N W3 # 0 only when 7o C 73 or 78 C To, and if this is the case, we have either
intre(a) N Wapg # 0 or intye(8) N Weopg # 0.

Given a good cover {W,}, of B, we have the corresponding Stein open cover V := {V,}, of °X
given by V,, := v~! (W,,) for each a. For each VCI , the infinitesimal local smoothing model is given as a
log space V}, over ST (see ([@2:14)). Let ¥V, be the k*h-order thickening over St = Spec,, (R/m**1)f
and j: V,, \ Z < V,, be the open inclusion. As in [8, §8], we obtain coherent sheaves of BV algebras
(and modules) over V,, from these local smoothing models. But for the purpose of this paper, we

would like to push forward these coherent sheaves to B and work with the open subsets W,’s. This
leads to the following modification of [8, Def. 7.6] (see also [8, Def. 2.14 and 2.20]):

Definition 4.2. For each k € Z>q, we define

e the sheaf of k*™-order polyvector fields to be kg; =g (N GkVT/kST) (i.e. push-forward
of relative log polyvector fields on kVJ&);

e the k*'-order log de Rham complex to be le;; = v, (Q (i.e. push-forward of log de

ot o)
Rham differentials) equipped with the de Rham differential k8o = O which is naturally a dg
module over ngf ;

e the local log volume form w, as a nowhere vanishing element in vy j. (2

k+1)_

%L/ST) and the k-

order volume form to be *w, = w, (mod m
Given k > [, there are natural maps kot J(N" @kvf/ksT) — (" @lVT/lsT) which induce the
maps kol ’fg;; — lg;;. Before taking the push-forward g, each j.(A" @’“VT/’“ST) is a sheaf of flat

¥ R-modules with the property that j, (A" @’“VL/’“ST) ~ 5 (N @Hlvz/kﬂst) Qkr+1p ¥R by [17, Cor.
7.4 and 7.9]. In other words, we have a short exact sequence of coherent sheaves

L k+1
0*>j*(/\r @()VIX/OST)—q?j*(/\T @k+1VL/k+1ST)*>j*(/\T Gng/kST)HO-

Applying u., which is exact, we get

0o—r 'qk+1k+1 —r ko—r
0—=9g; g: [ p—
As aresult, we see that kg;’" is a sheaf of flat * R-modules on W, so we have ’“+1Q;T®k+1RkR = ’“g;r

for each r; a similar statement holds for *K7..
A natural filtration ¥KC¥ is given by *K¥ := kQEf A KICE[s] and taking wedge product defines
the natural sheaf isomorphism £o—1: ngT kg (BICE ) KICE[—7]) — RKC%/ 5K We have the space

ﬁ/Cj; =R /R 2 0,.(Q of relative log de Rham differentials.

¥
kVL/ kST)

There is a natural action v 4 ¢ for v € ’“g; and ¢ € FK* given by contracting a logarithmic
holomorphic vector field v with a logarithmic holomorphic form ¢. To simplify notations, for
v E ’“gg, we often simply write vy, suppressing the contraction J. We define the Lie derivative via
the formula £, := (=1)I?ld o (v1) — (v1) 0 8 (or equivalently, (—1)I’I£, := [9,v1]). By contracting
with Fw,, we get a sheaf isomorphism L %*wq : kg;’; — ﬁlC* which defines the BV operator ¥A, by

a

FAo () 25w :=*94(p 2 ¥w). We call it the BV operator because the BV identity:
(4.2) (—1)lv, w] == A(w Aw) — A@w) Aw — (=)l A A(w)
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for v,w € ’“g;, where we put A = *A,, defines a graded Lie bracket. This gives ’“g;; the structure
of a sheaf of BV algebras.

4.2. An explicit description of the sheaf of log de Rham forms. Here we apply the calcula-
tions in [28] [I7] to give an explicit description of the stalk k/cg,x.

Let us consider K = V*I(x) and the local model near K described in with P, and @, as in
[2.17), and an embedding V' — Spec,,, (C[Qr.]). We may treat K C V as a compact subset of
C' = Spec,, (C|N']) < Spec,, (C[Q+.]) via the identification Spec,,(C[X, & N!]) = Spec,, (C[Qr..])-
For each m € ¥, we denote the corresponding element (m, 1, 0(m),..., ¢z (m)) € Pr, by 1 and
the corresponding function by 2™ € C[P;,]. Similar to [I7, Lem. 7.14], the germs of holomorphic
functions Oky fr near K in the space MV = Spec,, (C[Pr../q"']) can be written as
(4.3)

- log |aum. 4
Oy ¢ = Z am,iq' 2" | am,i € Oci(U) for some neigh. U D K,  sup 10g lam.i| < oo},
mes,, 0<i<k mes,\{o} d(m)

where d: ¥; — N is a monoid morphism such that d=1(0) = 0, and it is equipped with the product
ZM. M2 = ptme (hut note that my + ma # g + g in general). Thus we have leg@ = kgg,x =

Ok -

To describe the differential forms, we consider the vector space & = Py, ¢, regarded as the space
of 1-forms on Spec,, (C[PE}]) 2 (C*)"*L. Write dlog 2P for p € P, c and set & := C(dlogu;)!_;,
as a subset of &. For an element m € Q; ¢, we have the corresponding 1-form dlog 2™ e P, ; c under
the association between m and 2. Let P be the power set of {1,...,l} and write u’ = [[;.; u; for
I € P. A computation for sections of the sheaf j, (QZW/C) from [28, Prop. 1.12] and [17, Lem. 7.14]
can then be rephrased as the following lemma.

Lemma 4.3 ([28, [I7]). The space of germs of sections of j.(Q
Owy ;¢ @ \* € given by elements of the form

a= 3N tmird 2™ @ g, Bur € N\ Emi = |\ (Erims ® Exmr ® (dlogq)),

meX, I
0<i<k

N .
ka/C)K near K is a subspace of

where €11 = (dlogu;)icr C €1 and the subspace Eop 1 C & is given as follows: we consider
the pullback of the product of mormal fans Hz‘gé[ NAi(r) to Q;r and take Eo 1 = (dlog 2™ for
m' € o, 1, where oy, 1 is the smallest cone in Hi¢] NAi(r) C Q;r containing m.

Here we can treat Higé 1 NA;(r) € Qrr since D, AR, (7 is a direct summand of Q7. A similar
description for 7, (sz /(CT) K is simply given by quotienting out the direct summand (dlog ) in the

above formula for «. In particular, if we restrict ourselves to the case k = 0, a general element «
can be written as

A * *
a= Z Zam,lzmul ® Bm,1»  Bm,g € /\ Em = /\ (E1,m,1 D E2m,1)-
meX, I

One can choose a nowhere vanishing element

Q=duy--duy@necu - u AN @ATImMEe, j*(ng/U)K

for some nonzero element n € An—dime(T) e, - which is well defined up to rescaling. Any element in
j*(QZ}Vf/CT)K can be written as fQ for some f =3} v fnz™ € Ooy k.



32 CHAN, LEUNG, AND MA

Recall that the subset K C C! is intersecting the singular locus Z7,...,Z7 (asin , where u;
is the coordinate function of C! with simple zeros along Z7 for i = 1,...,r. There is a change of
coordinates between a neighborhood of K in C! and that of K in (C*)! given by

Ui — fv,i|((c*)l if1<i< r;
Ui > 25 ifr<i<lL

Under the map log: (C*)! — R!, we have K = log™!(€) for some connected compact subset € C R!.
In the coordinates z1,...,2;, we find that dlogz; ---dlogz ® n can be written as f{2 near K for
some nowhere vanishing function f € Ooy f.

Lemma 4.4. When KNZ = 0 (i.e. r = 0 in the above discussion), the top cohomology group
H"(j*(ng/cT)K’ 9) = Jj« (ng/(cf)K/Im(a) is isomorphic to C, which is generated by the element
dlogz ---dlogz; ®n.

Proof. Given a general element fQ as above, first observe that we can write f = fo + f4, where
fr = ZmeET\{O} Jmz™ and fo € O¢t . We take a basis eq,...,es of Qj’R, and also a partition
I, ..., I, of the lattice points in ¥, \ {0} such that (e;,m) # 0 for m € I;. Letting

ZZ Im mdu1...dul®Lejn,

6
Jj mel; 3

we have 0(a) = f+. So we only need to consider elements of the form fpQ2. If Q2 = Jd(«) for
some «, we may take a = Zj ajduy -+ - dug - - - dup @ 1 for some a; € Ogt . Now this is equivalent
to foduy---du; = 8( Z]‘ ajduy - - EU\J . dul) as forms in chl 5 This reduces the problem to C!.

Working in (C*)! with coordinates z;’s, we can write

Oy kg = Z amz™ ‘ Z |am| ) < o0, for all v e W, for some open W D C %,

meZt meZt

using the fact that K is multi-circular. By writing Q?(C*)l x = Oy, xk®N\" F1 with Iy = (dlog zi)t g,
we can see that any element can be represented as cdlog z1 - - - dlog z; in the quotient Ql((c*)l K/Im(a),

for some constant c. O

From this lemma, we conclude that the top cohomology sheaf ’H”(HIC* 0) is isomorphic to the
locally constant sheaf C over B\ 8..

*

Lemma 4.5. The volume element °w is non-zero in ’H"(”IC 0)y for every x € B.

Proof. We first consider the case when & € intye (o) for some maximal cell ¢ € P, The toric stratum
0X, associated to o is equipped with the natural divisorial log structure induced from its boundary

divisor. Then the sheaf QZ‘XT Jet of log derivations for °XT is isomorphic to N Ay @7 Oo x,- By

28, Lem. 3.12], we have “w, = ¢(ig)y-1(y) in v () )z = ”ICW where p, € A" Ay c is nowhere

OXT Jct
vanishing and ¢ is a non-zero constant c¢. Thus °X|, is non-zero in the cohomology as the same

is true for p, € V*(QSLXT /(CT) . Next we consider a general point x € inte(7). If the statement

is not true, we will have %w, = %9(a) for some o € HIC” 1. Then there is an open neighborhood
U D € !(z) such that thls relatlon continues to hold. As U N intye(o) # 0, for those maximal
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cells o which contain the point x, we can take a nearby point y € U Nint, (o) and conclude that
cpie = 20(a) in v, (7 )y- This contradicts the previous case. O

oxf/ct
Lemma 4.6. Suppose that x € W, \ S8¢. For an element of the form

el (Fwy) € ﬁ/CZ’I
with f € kgg@ & Oy, , satisfying f = 0(mod m), there exist h(q) € *R = Clq|/(¢"") and
v e ’“g;,; with h,v = 0(mod m) such that
(4.4) e (Fwa) = el (Fwy)
in ﬁ/Cg’x, where we recall that L, == (—1)"ld o (v1) — (v1) 0 0.

Proof. To simplify notations in this proof, we will drop the subscript a. We prove the first statement
by induction on k. The initial case is trivial. Assuming that this has been done for the (k—1)*-order,
then, by taking an arbitrary lifting ¢ of v to the k*-order, we have

e—h+f+qke(k:w) = Lo (k)
for some € € Ooy, . By Lemmas and we have € ’w = ¢%w+ d(~) for some v and some suitable
constant c. Letting 6 4 (“w) = v and © = ¥ + ¢*6, we have
Ly (kw) _ e[lu (kw) _ qk: 8(0 . (Ow)) _ e—h-i-f—i—ch (kw)_

By defining h(q) := h(q) — c¢® in Clq]/(¢**1), we obtain the desired expression. O

e

4.3. A global pre-dgBV algebra from gluing. One approach for smoothing "X is to look for
gluing morphisms "1, : kVL|Va 5 kVTﬁ\Va 5 between the local smoothing models which satisfy the
cocycle condition, from which one obtain a k*-order thickening ¥X over ¥ST. This was done by
Kontsevich-Soibelman [36] (in 2d) and Gross—Siebert [29] (in general dimensions) using consistent
scattering diagrams. If such gluing morphisms kwaﬁ’s are available, one can certainly glue the global

k% order sheaves kg*, kx* and the volume form *w.

In [8], we instead took suitable dg-resolutions *PV 5™ := Q*(*G%)’s of the sheaves *G%’s (more
precisely, we used the Thom—Whitney resolution in [8, §3]) to construct gluings

*9ap: A ("GDIvey = 2 (*GH)Ivis

of sheaves which only preserve the Gerstenhaber algebra structure but not the differential. The
key discovery in [8] was that, as the sheaves Q*(¥G*)’s are soft, such a gluing problem could be
solved without any information from the complicated scattering diagrams. What we obtained is a
pre-dgBV algebra?|* PV**(X), in which the differential squares to zero only modulo m = (g). Using
well-known algebraic techniques [48] B3], we can solve the Maurer—Cartan equation and construct
the thickening *X. In this subsection, we will summarize the whole procedure, incorporating the
nice reformulation by Felten [16] in terms of deformations of Gerstenhaber algebras.

To begin with, we assume the following condition holds:

Condition 4.7. There is a sheaf (2*,d) of unital differential graded algebras (abbrev. as dga) (over
R or C) over B, with degrees 0 < x < L for some L, such that

e the natural inclusion R — Q* (or C — Q) of the locally constant sheaf (concentrated at
degree 0) gives a resolution, and

5This was originally called an almost dgBV algebra in [8], but we later found the name pre-dgBV algebra from [16]
more appropriate.
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e for any open cover U = {U, }icz, there is a partition of unity subordinate to U, i.e. we have
{pi}ier with p; € T'(U;,Q°) and supp(p;) C U; such that {supp(p;)}i is locally finite and

It is easy to construct such an Q* and there are many natural choices. For instance, if B is a
smooth manifold, then we can simply take the usual de Rham complex on B. In the sheaf of
monodromy invariant differential forms we constructed using the (singular) integral affine structure
on B is another possible choice for * (with degrees 0 < % < n). Yet another variant, namely
the sheaf of monodromy invariant tropical differential forms, will be constructed in this links
tropical geometry on B with the smoothing of the maximally degenerate Calabi-Yau variety °X.

Let us recall how to obtain a gluing of the dg resolutions of the sheaves *G* and *IC¥ using any
possible choice of such an *. We fix a good cover W := {W, }, of B and the corresponding Stein
open cover V := {V,}, of °X, where V, = v~ 1(W,,) for each a.

Definition 4.8. We define *PVE? = Q1(*GL) := Qf|w, @r "Gh and "PVL" = @, "PVEY, which
gives a sheaf of dgBV algebras over W,. The dgBV structure (A, On, As) is defined componentwise
by

(p@v) AW @w) = (-1 (pAY) & (vAw),
dalp @v) = (dp) @ v, Aalp®0v) = (1)o@ (Av),
for o, € Q(U) and v,w € *G%(U) for each open subset U C W,,.
Definition 4.9. We define * A%? = Qq(leﬂ) = Q|w, Ar kP and FAL* = Gap,q kAPA which gives

a sheaf of dgas over W, equipped with the natural filtration kAL inherited from ]flCZ The structures
(A, O, Oa) are defined componentwise by

(@) A ew) = (-D"I¥(eAp) @ (v Aw),
Oalp @) = (dp) ® v, Dalp®v) = (~1)¥lp @ (),
for o, € Q*(U) and v,w € *IC5(U) for each open subset U C W,.

There is an action of *PV 5™ on ¥ A%* by contraction J defined by the formula

(p®v) 2@ ow) =) (ery)©@aw),
for ¢, € Q*(U), v € ¥G*(U) and w € ¥ (U) for each open subset U C W,. Note that the
local holomorphic volume form *w, € ﬁAZ’O(Wa) satisfies 0y (Fwa) = 0, and we have the identity
F0a(d 2Fwe) = ¥An(¢) 2 Fwe of operators.

The next step is to consider gluing of the local sheaves *PV,’s for higher orders k. Similar
constructions have been done in [8 [I6] using the combinatorial Thom—Whitney resolution for the
sheaves *G,’s. We make suitable modifications of those arguments to fit into our current setting.

First, since kVMVQB and kVT5|V&ﬁ are divisorial deformations (in the sense of [28, Def. 2.7]) of
the intersection V(;rﬂ = Vi N V,BT’ we can use [28, Thm. 2.11] and the fact that V3 is Stein to
obtain an isomorphism k@bag: kVL\Vaﬁ — kV}}Waﬁ of divisorial deformations which induces the
gluing morphism *¢),5: ng|WaB — kg§|WaB that in turn gives F1,5: kPVa|Wa6 — kPV5|WaB.
Definition 4.10. A k*-order Gerstenhaber deformation of PV is a collection of gluing morphisms
kga[g: kPVa\WaB — kPVg]Waﬂ of the form

kgozﬁ = elenrlo k%ﬁ
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for some 0,5 € kPVgl’O(Wa/g) with 0,3 = 0 (mod m), such that the cocycle condition
k k k :
Gya © gpy © Gap = id
s satisfied.

An isomorphism between two k*-order Gerstenhaber deformations {¥gn5}as and {*¢, slap 18 a
collection of automorphisms ¥he: *PV 4 — ¥PV,, of the form

kha = elberl
for some by € PV 10 (W,) with by = 0(mod m), such that

kg;lﬁ o kha = khﬁ o kgaﬁ.
A slight modification of [16, Lem. 6.6], with essentially the same proof, gives the following:

Proposition 4.11. Given a k™-order Gerstenhaber deformation {kgag}ag, the obstruction to the

existence of a lifting to a (k + 1)*t-order deformation {¥*1g,5}ap lies in the Cech cohomology (with
respect to the cover W = {Ws}a)

T2, °PV—19) @c (m*+! /m*+2).
The isomorphism classes of (k + 1)%t-order liftings are in
H (W, PV—10) @c (mF+! /mF+2).
Fizing a (k + 1)*t-order lifting {**1ga5}as, the automorphisms fizing {¥gas}as are in
HOOW,°PV—19) @¢ (m*+! /m*+2).
Since ' satisfies Condition we have H >0(W,OPV*1’O) = 0. In particular, we always have
a set of compatible Gerstenhaber deformations g = (*g)ren where g = {kgag}ag and any two of

them are equivalent. Fixing such a set g, we obtain a set {kPV}keN of Gerstenhaber algebras which
is compatible, in the sense that there are natural identifications *t1PV ®@x11 R kR =*kpv.

We can also glue the local sheaves *A5*’s of dgas using ¢ = (*9)ren. First, we can define
kwa/g: /’CICZh/V%,:i — k’CyWaﬁ using k¢a/3: kVL\Vaﬁ — kVHVaB‘ For each fixed k, we can write
kgaﬁ = eldasl o kl/)aﬁ as before. Then

E E *,
(4.5) kg.=e"as o kz/)aﬁz kAL lWas — kAﬁ*|Waﬁ,

where we recall that £, := (—1)I"ld o (v1) — (vJ) 0 8, preserves the dga structure (A, d,) and the
filtration on ¥ A%*’s. As a result, we obtain a set of compatible sheaves {(*A** A, d)}ren of dgas.

The contraction action . is also compatible with the gluing construction, so we have a natural action
5 of FPV** on F AR,

Next, we glue the operators 0,’s and Ag’s.

Definition 4.12. A k*™-order pre-differential & on *PV** is a degree (0,1) operator obtained from
gluing the operators O + [Na, -] specified by a collection of elements 1, € kPt (W) such that
No = 0 (mod m) and

kgﬂa © (8,3 + [775’ ]) o kgaﬁ = (aoz + [77047 ])
Two pre-differentials O and &' are equivalent if there is a Gerstenhaber automorphism (for the
deformation Fg) h: kpv** — kPV** such that h -1 odoh = 0.
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Notice that we only have 9> = 0 (mod m), which is why we call it a pre-differential. Using the
argument in [8, Thm. 3.34] or [16, Lem. 8.1], we can always lift any k*"-order pre-differential )
to a (k + 1)%*-order pre-differential. Furthermore, any two such liftings differ by a global element
0 € 'PV L @ mFt /mFt2. We fix a set 0 := {ké}keN of such compatible pre-differentials. For
each k, the action of "8 on kA** is given by gluing of the action of 0y + Ly, on kA%*. On the other
hand, the elements

~ 1
(4.6) lo 1= Da(11a) + 51 0] € *PV M2 (Wa)

glue to give a global element [ € kPV*LQ(B), and for different k’s, these elements are compatible.
Computation shows that 9% = [I,-] on *PV** and 9% = L; on FA**.

To glue the operators A,’s, we need to glue the local volume elements *w,’s to a global *w. We
consider an element of the form efe- - kw,,, where f, € FPVOO(W,,) satisfies fo = 0 (mod m). Given

ol | k+1

a k™-order global volume element efe~ - %, we take a lifting e wq such that

k+lga6(€fo¢4 ) k+1wa) _ o(is—0ap) . EHg,

for some element 0,5 € "PVO9(W;5) @ m*+!/m*+2. By construction, {0,5}as gives a Cech 1-cycle
in °PV99 which is exact. So there exist u,’s such that uglw,; — Ualw,s = 0as, and we can modify
fa as fa + Uy, which gives the desired (k + 1)%%-order volume element. Inductively, we can construct
compatible volume elements *w € ﬁ.A”’O(B), k € N. Any two such volume elements *w and *w’

differ by Fw = el - /| where f € KPV09(B) is some global element. Notice that ké(kw) # 0 unless
mod m.

Using the volume element w (we omit the dependence on k if there is no confusion), we may now
define the global BV operator A by

(4.7) (Ap) sw = 9(p 2w),
which can locally be written as *A, + [fa,-]. We have A% = 0. The local elements
(4.8) o = kAa(na) + 9o (Fa) + [, fol

glue to give a global element n € k¥ PV 91(B) which satisfies A + Ad = [n,-]. Also, the elements [
and n satisfy the relation d(n) + A(I) = 0 by a local calculation.

In summary, we obtain pre-dgBV algebras (*PV, 0, A, A) and pre-dgas (*A, 9, 9, A) with a natural
contraction action  of "8 on kA** and also volume elements w. We set

PV :=1lm"PV, A:=lim"A,
k k

and define a total de Rham operator d: A** — A** by
(4.9) d:=0+0+1,
which preserves the filtration ,,A**. Using the contraction wi: PV** — HA*‘F”’* to pull back the

operator, we obtain the operator d = 9 + A + ([ 4+ n)A acting on PV**. Direct computation shows
that d?2 = 0, and indeed it plays the role of the de Rham differential on a smooth manifold. Readers
may consult [8, §4.2] for the computations and more details.

Definition 4.13. We call PV** (resp. ®PV**) the sheaf of (resp. k'-order) smooth relative
polyvector fields over ST, and A** (resp. ¥ A**) the sheaf of (resp. k'"-order) smooth forms over
St. We denote the corresponding total complexes by PV* = ®p+q:* PVPA (resp. *PV*) and

A" =D, o AP (resp. FA*).
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4.4. Smoothing by solving the Maurer—Cartan equation. With the sheaf PV* of pre-dgBV
algebras defined, we can now consider the extended Maurer—Cartan equation

_ 1
(4.10) (3+tA)g0+§[cp,cp]+[+tn:0

for ¢ = (F¢)x, where F¢ € *PVO(B)[[t]] := *PV(B) ®c C[[t]]. Setting t = 0 gives the (classical)
Maurer—Cartan equation

= 1
(4.11) 8cp+§[go,g0]+[:0

for ¢ € PV?(B). To inductively solve these equations, we need two conditions, namely the holo-
morphic Poincaré Lemma and the Hodge-to-de Rham degeneracy.

We begin with the holomorphic Poincaré Lemma, which is a local condition on the sheaves

Jx(22 ’s. We consider the complex (7, (€2 Ja), where

:VL/(C) [u] ’

l
O (Z Vsus) = Z(@aus)us + sdlog(q) A vsu®™L.
5=0

s

:VIX/(C)

There is a natural exact sequence
(412) 0 ﬁz Jx (QzVL/C) [U’] j*(Q;VL/OST) 07
where ;’b/b(zl veu®) := "% (1) as elements in j, (€ )

s=o Vst 0 oy jost):
Condition 4.14. We say that the holomorphic Poincaré Lemma holds if at every point x € °XT,
the complex (kﬁ* 0qa) is acyclic, where kﬁzw denotes the stalk of kﬁz at x.

,T)

The holomorphic Poincaré Lemma for our setting was proved in [28, proof of Thm. 4.1], but a
gap was subsequently pointed out by Felten—Filip-Ruddat in [I7], who used a different strategy to
close the gap and give a correct proof in [I7, Thm. 1.10]. From this condition, we can see that the
cohomology sheaf H*(’ﬁ/c;,’“aa) is free over ¥R = C[q]/(¢**1) (cf. [34, Lem. 4.1]). We will need

freeness of the cohomology H* (ﬁA* (B),d) over *R, which can be seen by the following lemma (see
[34] and [8, §4.3.2] for similar arguments).

Lemma 4.15. Under Condition (the holomorphic Poincaré Lemma), the natural map
“%: H*(§A*(B),d) — H*(}A"(B),d)

is surjective for each k > 0.

Proof. First of all, applying the functor v, to the exact sequence

k= k.0,
gives the following exact sequence of sheaves on B:

k,0p
k g% kg-* b 01 *

0—="R —="K} [u] —="K} —0.
This is true because every sheaf in the first exact sequence is a direct limit of coherent analytic
sheaves, Rvy commutes with direct limits of sheaves, and Ruy = Ry, as the fiber v~!(2) is a compact
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Hausdorff topological space; see e.g. [32]. By taking a Cartan—Eilenberg resolution, we have the
implication:

dq) is acyclic = RFU((kﬁZ, $94)) = 0

for any open subset U, where RI'y is the derived global section functor in the derived category of
sheaves. In our case, U = v~ (W) and we have RU',-1w) = RI'w o Rv,. Furthermore, we see that

(°%;

a,T)

kax o *
Ru. ("R, 00) = (P82, 04).
This can be seen by taking a double complex C** resolving (k’fiz, (79;) such that v,(C**) computes
Ry, (kfiz, 0a). The spectral sequence associated to the double complex has the Ej-page given by
Riv, (’“?{5), which is 0 if ¢ > 0 because &P is a direct limit of coherent analytic sheaves. Therefore,

V*(kﬁz,g;) — v (C**) = RV*(kR’;,é\;) is a quasi-isomorphism. Combining these, we obtain that
RIY, (F&%, 0n) = 0 for each i.

Next, by Condition (Q*|w,, ®rFR%) is a resolution with a partition of unity, so the cohomology
of the complex

("BaW), 00+ 8a) = (1w, ©x " K2) (W), Do+ D)
computes Ry (F&%). Through an isomorphism e~: *B% — FB* we can identify the operator:

d, = éa + Eﬂa + 0o + Léa(na)—‘r%[??mna}

with Ja + O, and hence deduce that (*B:(W),d,) is acyclic for any open subset W.

Now, we consider the global sheaf (*B*,d) of complexes on B obtained by gluing the local sheaves
(*B:,d,). We also have (kf.;*,d) obtained by gluing (Q*|w, ® *K%[u],ds), and (?‘.A*,d) obtained
by gluing (*|w, ® ﬁICZ, d,). Then there is an exact sequence of complexes of sheaves

0——F B ——F A A" ——0.
To see that the complex (*B*(B),d) is acyclic, we consider the total Cech complex associated to the
cover {W,}o. The associated spectral sequence has zero Ey page, thus (*8*(B), d) is indeed acyclic.
As a result, the map H'(* A% (B),ds) — H i(ﬁAZ(B), d,) is an isomorphism. Finally, surjectivity of
the map *° follows from the fact that the isomorphism H(* A% (B),d) — Hi(ﬁAZ(B), d,) factors
through *%. O

The Hodge-to-de Rham degeneracy is a global Hodge-theoretic condition on °Xf. We consider
the Hodge filtration FZ’"j*(Qng/osf) = @er Ju (Q%;XT/OST); the spectral sequence associated to it

computes the hypercohomology of the complex of sheaves ( Jx(S% 5 ’ 0gt)> 09)

Condition 4.16. We say that the Hodge-to-de Rham degeneracy holds for ° X1 if the spectral
sequence associated to the above Hodge filtration degenerates at E1.

Under the assumption that (B,P) is strongly simple (Definition [2.10)), the Hodge-to-de Rham
degeneracy for the maximally degenerate Calabi-Yau scheme °XT was proved in [28, Thm. 3.26].
This was later generalized to the case when (B, P) is only simple (instead of strongly simple)ﬁ and
further to log toroidal spaces in Felten-Filip-Ruddat [I7] using different methods.

6The subtle difference between the log Hodge group and the affine Hodge group when (B, P) is just simple, instead
of strongly simple, was studied in details by Ruddat in his thesis [42].
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We consider the dgBV algebra ° PV*(B)[[t]] equipped with the operator d + ¢ A.

Lemma 4.17. Under Condz’tion (the Hodge-to-de Rham degeneracy), H*(°PV*(B)[[t], 0+t A)
is a free Cl[[t]]-module.

Proof. Recall that we are working with a good cover W = {W,},, so that the inverse image
Vo = v (W,) is Stein for each . We have RT,-1(yy;) = Rl'w o Rv, and

R, (o ( 1 g1 )+ 0) = (7, 9).
If v~ 1(W) is Stein, then RT, -1y (j*(QgXT/OST)) =T,1w) (j*(QSXT/OST)) and hence
RTw (jK") = Tw(jK").

The hypercohomology of (j. (€2 /0 ST)’ ) is computed using the Cech double complex

C*(Vyj*(ngf/Osf))

with respect to the Stein open cover V = {v~}(W,)}s. Similarly, the hypercohomology of the
complex (ﬁlC*, 0) is computed using the Cech double complex C*(W, ﬁIC*) with respect to the cover

W = {Wy,}a; here, the Hodge filtration is induced from the filtration F'=" ﬁIC* =®D,>, ﬁICZP.

These two Cech complexes, as well as their corresponding Hodge filtrations, are identified as
ﬁIC*(W) = j*(ngT/osT)(l/_l(W)) for each W = Wy, N--- N W,,. Hence, under Condition |4.16]

we have E; degeneracy also for C*(W, ﬂIC*), or equivalently, that (C*(W, ﬁlC*)[[t]], d+10)is a free
C[[t]]-module. In view of the isomorphisms (°G*, A) = (ﬁIC, 0) and

H*(OPV*(B)[[t]], 0+t A) = H*(C*(W, [K")[[t]], 6 +  9),
we conclude that H*(°PV*(B)[[t]],0 +t A) is a free C[[t]]-module as well. O

For the purpose of this paper, we restrict ourselves to the case that
"o =" +t("f),

where ¥¢ € *PV=11(B) and ¥ f € *PV29(B). The extended Maurer-Cartan equation (.10 can be
decomposed, according to orders in t, into the (classical) Maurer—Cartan equation (4.11)) for k¢ and
the equation

(4.13) L)+ 1", 1+ A(F¢) +n=0.

Theorem 4.18. Suppose that both Conditions and hold. Then for any k'-order solution
ko =%+ t(*f) to the extended Maurer-Cartan equation (£.10), there exists a (k + 1)**-order
solution *+t1p = F1¢ 4 t(**1f) to (@.10) lifting *o. The same statement holds for the Maurer—
Cartan equation if we restrict to ¢ € *PV-11(B).

Proof. The first statement follows from [8, Thm. 5.6] and [8, Lem. 5.12]: Starting with a k'P-
order solution ¥ = *¢ + t(*f) for ([4.10)), one can always use [8, Thm. 5.6] to lift it to a general
k+ly € 1Py O(B)[[t]]. The argument in [8, Lem. 5.12] shows that we can choose ¥+1¢ such that
the component of ¥t1|;—g in ¥ PV09(B) is zero. As a result, the component of ¥1¢ + t(**1f) in
k1py-L1(B) @ t(**1PVO9(B)) is again a solution to (@.10).

For the second statement, we argue that, given *¢, there always exists * f € kPVovo(B) such that
ko +t(*f) is a solution to (£.10). We need to solve the equation (4.13) by induction on the order k.
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The initial case is trivial by taking °f = 0. Suppose the equation can be solved for /~! f. Then we
take an arbitrary lifting 7 f to the j*"-order. We can define an element o € OPVO’O(B) by
Po=0(])+ 1. fl+A0¢) +n,
which satisfies d(0) = 0. Therefore, the class [o] lies in the cohomology
H' PV 0)= H'(°X,0) = H'(B,0),
where the last equivalence is from [27, Prop. 2.37]. By our assumption in §2} we have H YB,C) =0,

and hence we can find an element f such that 5(f) —o. Letting/f="f+¢ - f (mod ¢/T1) proves
the induction step from the (j — 1)%%-order to the j*-order. Now, applying the first statement, we
can lift the solution ¢ :=*¢ 4+ t(* f) to #1p = #1¢ + ¢(*1 f) which satisfies equation ([@10]), and

hence **1¢ solves ([@.11)). O

From Theorem we obtain a solution ¢ € PV~LY(B) to the Maurer—Cartan equation (4.11)),
from which we obtain the sheaves ker(0 + [¢,-]) C *PV** and ker(0 + L4) C ﬁA*’* over B. These

sheaves are locally isomorphic to ¥G* and ﬁIC*

r, 80 we may treat them as obtained from gluing of

the local sheaves kgj;’s and ﬁle;’s. From these, we can extract consistent and compatible gluings
k@aﬁz kVLh/a 5 = kVE]Va , satisfying the cocycle condition, and hence obtain a k-th order thichening

kX of °X over ¥S1: see [8, §5.3]. Also, e/ Lw, as a section of ker(0+ L) over B, defines a holomorphic
volume form on the k-th order thickening *X.

4.4.1. Normalized volume form. For later purposes, we need to further normalize the holomorphic
volume

2:=el Jweker(d+Ly)(B) C fA™(B)
by adding a suitable power series h(q) € (q) C C[[g]] to f, so that the condition that [.e/ Jw =1,
where T is a nearby n-torus in the smoothing, is satisfied.
The k*"-order Hodge bundle over Spec,,(C[q]/q"*!) is defined as the cohomology
"H = H"(fA", d),

equipped with a Gauss-Manin connection *V, where ¥V 5 is the connecting homomorphism of

dlogq

the long exact sequence associated to
(4.14) 0— FA* @c Cldlogq) — F A — A" = 0;

here C(dloggq) is the 1-dimensional graded vector space spanned by the degree 1 element dloggq.
We denote H := gnk k7{. Restricting to the 0*-order, we have N = °V 5 |, which is a nilpotent

dlogq
operator acting on "H = H”(ﬂA*) >~ H"(X, j*Q}T/CT), where X = %X. If we consider the top

cohomoloy H 2”(ﬁA*), which is 1-dimensional, we see that N =°V o = 0. So *V_» is a flat

dlogq dlogq
connection without log poles at ¢ = 0. Hence, we can find a basis (order by order in ¢) to identify

H 2”(ﬁA*) ~H 2”(|(|)A*) ® Clq]/q"**, which also trivializes the flat connection V as %gq.

Since H"(B,C) = C, we can fix a non-zero generator and choose a representative o € Q"(B).
Then the element p® 1 € ﬁ.A" (B) (which may simply be written as p) represents a section [g] in H.
A direct computation shows that V[p] = 0, i.e. it is a flat section to all orders. The pairing with
the 0'"-order volume form %w gives a non-zero element [*w A g] in H 2”(ﬁ.,4*).

Definition 4.19. The volume form 2 = e/ 1w is said to be normalized if [2 A o] is flat under V.
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In other words, we can write [§2 A o] = ["w A o] under the identification
HQ’VL(IIiI‘A*) o HZn(ﬁA*) ®(C[q]/qk+1.

By modifying f to f+ h(q), this can always be achieved. Further, after the modification, ¢ = ¢+t f
still solves (4.10]).

5. FROM SMOOTHING OF CALABI-YAU VARIETIES TO TROPICAL GEOMETRY

5.1. Tropical differential forms. To tropicalize the pre-dgBV algebra PV ** we need to replace
the Thom—-Whitney resolution used in [§] by a geometric resolution. To do so, we first need to recall
some background materials from our previous works [7, §4.2.3] and [9, §3.2]. Of crucial importance
is the notion of differential forms with asymptotic support (which will be called tropical differential
forms in this paper) that originated from multi-valued Morse theory and Witten deformations. Such
differential forms can be regarded as distribution-valued forms supported on tropical polyhedral
subsets. This key notion allows us to develop tropical intersection theory via differential forms, and
in particular, define the intersection pairing between possibly non-transversal tropical polyhedral
subsets simply using the wedge product.

Let U be an open subset of M. We consider the space QF(U) := I'(U x Rso, A¥ TVU), where
we take C> sections of A\¥TVU and £ is a coordinate on R~q. Let W¥ __(U) C QF(U) be the subset
of k-forms « such that, for each ¢ € U, there exist a neighborhood ¢ € V' C U, constants D, y, cv
and a sufficiently small real number fig > 0 such that [|[V7a|pee(yy < Djye=v/" for all j > 0 and
for 0 < A < ho; here, the L>-norm is defined by [|a| pe(v) = sup,ey [|a(z)]| for any section « of the
tensor bundle TU®* @ TVU®!, where we fix a constant metric on Mg and use the induced metric on

TU®* @ TVU®!; VI denotes an operator of the form V o \Y S where V is a torsion-free, flat
xll ] .
connection defining an affine structure on U and « = (21, ..., ,) is an affine coordinate system (note

that V is not the Gauss-Manin connection in the previous section). Similarly, let WX (U') € QF(U)
be the set of k-forms « such that, for each ¢ € U, there exist a neighborhood ¢ € V' C U, a constant
Djv, Njyv € Zso and a sufficiently small real number fg > 0 such that ||vja||Loo(V) < D;yhNiv
for all 7 > 0 and for 0 < A < hg.

The assignment U +— WE__(U) (resp. U +— WE (U)) defines a sheaf W¥ __ (resp. WX ) on Mg
([7, Defs. 4.15 & 4.16]). Note that W*__ and W are closed under the wedge product, Vag and

the de Rham differential d. Since W* __ is a dg ideal of W | the quotient WY /W* _ is a sheaf of
dgas when equipped with the de Rham differential.

Now suppose U is a convex open set. By a tropical polyhedral subset of U, we mean a connected
convex subset of U which is defined by finitely many affine equations or inequalities over QQ of the
form a1z + - 4+ apxy <.

Definition 5.1 ([7], Def. 4.19). A k-form o € WX (U) is said to have asymptotic support on a
closed codimension k tropical polyhedral subset P C U with weight s € Z, denoted as o € Wps(U),
if the following conditions are satisfied:

(1) For any p € U\ P, there is a neighborhood p € V.C U \ P such that a|y € WE__(V).

(2) There exists a neighborhood Wp C U of P such that « = h(z,h)vp +n on Wp, where
vp € /\k Nr is a non-zero affine k-form (defined up to non-zero constant) which is normal
to P, h(x,h) € C®(Wp x Rsq) and n € WF__(Wp).

(8) For any p € P, there exists a convex neighborhood p € V. C U equipped with an affine coordi-
nate system x = (x1,...,%,) such that ' := (x1,...,x) parametrizes codimension k affine
linear subspaces of V' parallel to P, with ' = 0 corresponding to the subspace containing
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P. With the foliation {(wa/)}xlENv, where Py, = {(1,...,xp) €V | (x1,...,23) = 2}
and Ny is the normal bundle of V', we require that, for all j € Z>o and multi-indices
B=(Br,---,0k) € Zgo, the estimate

. i+s—|8|—k
@ (S“P |VJ<LV;a>I> e
ZE/

PV, 2

holds for some constant Djy,g and s € Z, where |8| =%, and v}, = 8%1 AERRWA %ﬂ
Observe that VaiWP,s(U) C Wps1(U) and (2/)Wps(U) C Wps_5/(U). 1t follows that
]

(z)PV o -V _o Wps(U) CWpsyji(U).

ox oz .
I 1

The weight s defines a filtration of W (we drop the U dependence from the notation whenever it
is clear from the context)ﬁ

WE S C - CWp_1 CWpo CWpy C---CWE CQFU).

This filtration, which keeps track of the polynomial order of A for k-forms with asymptotic support
on P, provides a convenient tool to express and prove results in asymptotic analysis.

Definition 5.2 ([9], Def. 3.10). A differential k-form o is in WF(U) if there exist polyhedral subsets
Pi,...,P C U of codimension k such that o € Z;‘:l We, s(U). If, moreover, da € ij_rll(U), then
we write o € WE(U). For every s € Z, let Wi(U) = @, WE, . (U).

Example 5.3. Let U = R and x be an affine coordinate on U. Then we consider the h-dependent

1-form
1
1\2 _a2
= (ﬁﬂ’) e fdx.

Direct calculations in [T, Lem 4.12] showed that § € Wi (U) has asymptotic support on the hyperplane
P defined by x = 0.

The hyperplane P separates U into two chambers Hy and H_. If we fixr a base point in H_
and apply the integral operator I in [7, Lem. 4.23], we obtain I1(5) € W (U) which has asymptotic
support on Hy U P, playing the role of a step function.

Taking finite products of elements of the above form, we obtain o € W,’j(U) with asymptotic
support on arbitrary tropical polyhedral subsets of U. Any forms obtained from a finite number of

steps of applying the differential d, applying the integral operator I and taking wedge product are in
Wi (U).

We say that two closed tropical polyhedral subsets Py, P, C U of codimension ki, ko intersect
transversally if the affine subspaces of codimension k1 and ke which contain P, and P», respectively,
intersect transversally. This definition applies also when Py N Py = () or 9P; # ().

Lemma 5.4 ([7, Lem. 4.22]). (1) Let Py, Py, P C U be closed tropical polyhedral subsets of codi-
mension ki, ko and ki + ko, respectively, such that P contains P; N Py and is normal to
vp, Avp,. Then Wp, s(U) AWp, »(U) C Wp,4s(U) if Py and Py intersect transversally with
PiNPy# 0, and Wp, s(U) ANWp, .(U) € WFTR(U) otherwise.

"For k = 0, we use the convention that vp =1 € A° Nk = R and also set v = 1.
8Note that k is equal to the codimension of P C U.
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(2) We have W (U)A\WE2(U) C Wkllig(U). In particular, W5 (U) C Wi (U) is a dg subalgebra
and W*(U) Cc Wi(U) is a dg ideal.

Definition 5.5. Let WY be the sheafification of the presheaf defined by U — WI(U). We call the
quotient sheaf T* := Wy /W*, the sheaf of tropical differential forms, which is a sheaf of dgas on
Mg with structures (A, d).

From [9, Lem. 3.6], we learn that R — T is a resolution. Furthermore, given any point z € U
and a sufficiently small neighborhood x € W C U, we can show that there exists f € WJ(W)
with compact support in W and satisfying f = 1 near z (using an argument similar to the proof of
Lemma [3.10). Therefore, 7% has a partition of unity subordinate to a given open cover. Replacing
the sheaf of de Rham differential forms on A7 p & Qrr by the sheaf T* of tropical differential forms,
we can construct a particular complex on the 1ntegral tropical manifold B satisfying Condition @
which dictates the tropical geometry of B.

Definition 5.6. Given a point x as in 2 (with a chart as in equation ), the stalk of T*
at x is defined as T% = (x~1T*),. This deﬁnes the complex (T*,d) (or smlply T*) of monodromy
invariant tropical differential forms on B. A section o € T*(W) is a collection of elements oy € T7,
x € W such that each oy can be represented by x~ '3, in a small neighborhood U, C p Y(U,) for
some tropical differential form B, on Uy, and satisfies the relation az = X~ 1(p*Bx) in Ti for every
T € Us.

Notice that the definition of T* requires the projection map p in equation to be affine,
while that of Q* in does not. But like Q*, T* satisfies Condition and can be used for the
purpose of gluing the sheaf PV* of dgBV algebras in In the rest of this section, we shall use
the notations PV* and A* to denote the complexes of sheaves constructed using T*.

5.2. The semi-flat dgBV algebra and its comparison with the pre-dgBV algebra PV™**.
In this section, we define a twisting of the semi-flat dgBV algebra by the slab functions (or initial
wall-crossing factors) in and compare it with the dgBV algebra we constructed in using
gluing of local smoothing models. The key result is Lemma which is an important step in the
proof of our main result.

We start by recalling some notations from §2.4] Recall that for each vertex v, we fix a represen-
tative ¢, : U, — R of the strictly convex multi-valued piecewise linear function ¢ € H°(B, MPLy)
to define the cone C, and the monoid P,. The natural projection T, & Z — T, induces a surjective
ring homomorphism C[p~!'P,] — C[p~!'%,]; we denote by m € p~'%, the image of m € p~!P,
under the natural projection. We consider V(7), := Spec,,(C[r~1P,]) for some 7 containing v,
and write 2™ for the function corresponding to m € 7! P,. The element o together with the cor-
responding function 2¢ determine a family Spec,,(C[r~!P,]) — C, whose central fiber is given by
Spec,, (C[t71%,]). The variety V(7), = Spec,,(C[r~!P,]) is equipped with the divisorial log struc-
ture induced by Spec,, (C[r~1%,]), which is log smooth. We write V(7 )1 if we need to emphasize
the log structure.

Since B is orientable, we can choose a nowhere vanishing integral element p € T'(B\ 8¢, A" T z).
We fix a local representative u, € \" T, for every vertex v and p, € \" A, for every maximal cell
o. Writing g, = mq A --- A'my, we have the corresponding relative volume form

fy = dlog 2™ A -+ Adlog 2™
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in 97\‘,( /et Now the relative log polyvector fields can be written as
7)o
A @ et = B O A A
mer—1P,

The volume form pu, defines a BV operator via contraction (A«) 1y := 9(av J p1y), which is given
explicitly by

~

l
A(Z™0n, A - - Z )7 Y, )20, A~ O, - A Oy,
=1

J

A Schouten—Nijenhuis—type bracket is given by extending the following formulae skew-symmetrically:
[ZM1 a’m ; Zm? 8712] = gmtme 8(

(2", 0p] = (m,n)z™

m1,n2)n1—(ma,n1)ns

This gives A" @V(T)T/CT the structure of a BV algebra.

5.2.1. Construction of the semi-flat sheaves. For each k € N, we shall define a sheaf kG’S"f (resp.

kK:f) of k*P-order semi-flat log vector fields (resp. semi-flat log de Rham forms) over the open dense
subset Wy C B defined by

Wo:= |J intee(0)U | inte(p)U | (intre(p) \ (8 Nintye(p))),

O'E?[n] pe?gnfl] peip[lnfl]

where 9’[”_1] consists of p’s such that int,(p) N8, = @) and iP[n_l] of p’s that intersect with 8.. These

sheaves use the natural divisorial log structure on V(p ) and will not depend on the slab functions
fup’s. This construction is possible because we are using the much more flexible Euclidean topology
on Wy, instead of the Zariski topology on “X.

For o € P, recall that we have V(o) = Spec,,(Clo—'%,]) for some v € ol%. We also have
Spec,, (C[e~1%,]) = A7 /A7, which is isomorphic to (C*)", because o713, = Apr = Tyr. The
local k*"-order thickening

“V(0)" := Spec,, (Clo ™' Py /¢"]) 2 (C*)" x Specay (Cla] /¢ )

is obtained by identifying 0 ~'P, as A, x N. Choosing a different vertex v/, we can use the parallel
transport T, = T,y from v to v/ within int,e(c) and the difference ¢,|, — @/, between two affine
functions to identify the monoids ¢~ ' P, = ¢~ ' P,. We take

stf intye (o) *— V*(/\ @kV U)T/kST> = Uy OkV ®]R /\ A

Next, we need to glue the sheaves kG:f|intre(g)’s along neighborhoods of codimension one cells

o)

p’s. For each codimension one cell p, we fix a primitive normal dp to p and label the two adjacent
maximal cells o1 and o_ so that d, is pointing into 0. There are two situations to consider.

The simpler case is when 8, Ninty(p) = @), where the monodromy is trivial. In this case, we have
V(p) = Spec,,(C[p~1%,]), with the gluing V(0+) < V(p) as described below Definition using
the open gluing data s,,,. We take the k*-order thickening given by

"V(p) == Specy, (Clo™ P /g™ )T,
equipped with the divisorial log structure induced by V' (p). We extend the open gluing data

. *
Spoy i Ao — C
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to
Spoy i Noy ®Z — C*

so that s,,, (0,1) = 1, which acts as an automorphism of Spec,,(C[c™1%,]). In this way we can
extend the gluing V(o1) — V(p) to

Specan(Clox Po/q"]) = Specy,(Clp™ P /¢ 1))

by twisting with the ring homomorphism induced by 2™ — 5,5, (m)~'2™. On a sufficiently small

neighborhood W, of int,c(p), we take

*Glilw, = va ( /\7* GkV(p)T/kSJ ‘Wp'

Choosing a different vertex v/, we may use parallel transport to identify the fans p~1'%, = p~1%,/,
and further use the difference ¢,|w, — @u|w, to identify the monoids p 1P, = p~'P,. One can

check that the sheaf kG;“f\Wp is well-defined.

The more complicated case is when 8. N intye(p) # (), where the monodromy is non-trivial. We
write intre(p) \ 8 = U, intre(p)y, where intye(p), is the unique component which contains the vertex
v in its closure. We fix one v, the corresponding inte(p)., and a sufficiently small open subset W, ,,

of inte(p),. We assume that the neighborhood W, ,, of int.e(p), intersects neither W,s , nor W,
for any possible v' and p’. Then we consider the scheme-theoretic embedding

V(p) = Specan((c[p_lzvb - Specan((c[p_lpv])
given by

m, 2™ if m lies on the boundary of the cone p~'P,,
z
0  if m lies in the interior of the cone p~!P,.

We denote by *V(p)} the k™-order thickening of V(p)ly-1(w,..) In Spec,,(Clp~'Py]) and equip it
with the divisorial log structure which is log smooth over *S1 (note that it is different from the local

model ¥V (p)! introduced earlier in §4] because the latter depends on the slab functions fu,p, as we
can see explicitly in §5.2.2] while the former doesn’t). We take

ko L -

The gluing with nearby maximal cells o+ on the overlap int..(c4+) "W, , is given by parallel
transporting through the vertex v to relate the monoids o1 Lp, and p~1 P, constructed from P,, and
twisting the map Spec,, (Clo3'P,]) — Spec,,(C[p~'P,]) with the open gluing data

2™ s;;i (m)z",

using previous liftings of 5,5, to Ay, @® Z. We obtain a commutative diagram of holomorphic maps

V(oy)|p—="V(os)|p,

V(p)|p "V (p)t|p

where D = v~ 1(W,, Nintye(ox)) and the vertical arrow on the right hand side respects the log
structures. The induced isomorphism

Vi ( /\_* ka(p)l/kST) = ( /\_* GkV(%)l/kST)
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of sheaves on the overlap W, , Nint,e(0+) then gives the desired gluing for defining the sheaf k Gk
on Wy. Note that the cocycle condition is trivial here as there is no triple intersection of any three
open subsets from int..(c), W, and W, ,.

Similarly, we can define the sheaf kK’S"f of semi-flat log de Rham forms, together with a relative
volume form *wq € ﬁ K (Wo) obtained from gluing the local u,’s specified by the element p as

described in the beginning of

It would be useful to write down elements of the sheaf ¥ G more explicitly. For instance, fixing
a point z € int.(p),, we may write

k —%
(51) G:f,:t = V*(Okv(p)v)x ®R /\ T;,R’
and use 0, to stand for the semi-flat holomorphic vector field associated to an element n € T, W R

Note that analytic continuation around the singular locus 8. N intye(p) acts non-trivially on the
semi-flat sheaf kG:f due to the presence of non-trivial monodromy of the affine structure. Below is
a simple example.

Example 5.7. We consider the local affine charts which appeared in Example equipped with
a strictly convex piecewise linear affine function ¢ on X, whose change of slopes is 1. Let us
study the analytic continuation of a local section along the loop v which starts at a point by, as

shown in Figure @ First, we can identify both p_lPU+ and p~'P,_ with the monoid in the cone

U Un

____________________________

FIGURE 7. Analytic continuation along ~y

P = {(z,y,2) | 2 > @(x)} via parallel transport through o. Writing u = 210D ¢y = »(=1.0.0),
w = 20719 and g = 2000 we have C[P] = Clu, v, w*, q]/(uv—q) . Now the analytic continuation
of u € V*(Okv(p)v+)b+ along v (going from the chart Uy to the chart Uy and then back to Urr) is
given by as a sequence of elements:

U—5,0, ((1,0) tu——suw——=5,,_((1,0)) L qvlw——swu,

via the following sequence of maps between the stalks over by, cq € U and b—,c_ € Uy:
V*(Okv(p)v+ )b+ HV*(OkV(UJr)T )c+ H—V*(Okv(p)vi )b, HV*(OkV(Ui)’()c_ HV*(OkV(P)er )b+ .

So we see that the analytic continuation along v maps u to wu.
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kG is equipped with the BV algebra structure inherited from Spec,, (C[p~'P,])T (as described
in the beginning of , which agrees with the one induced from the volume form *wq. This allows
us to define the sheaf of semi-flat tropical vertex Lie algebras as

(5.2) = Ker(A)[ng-1[-1].

Remark 5.8. The sheaf can actually be extended over the non-essential singular locus 8\ S, because
the monodromy around that locus acts trivially, but this is not necessary for our later discussion.

5.2.2. Ezplicit gluing away from codimension 2. When we define the sheaves ng’s in §4.1| the open
subset W, is taken to be a sufficiently small neighborhood of = € int,e(7) for some 7 € P. In fact,
we can choose one of these open subsets to be the large open dense subset Wj. In this subsection,
we construct the sheaves kg;’; and kICE") on Wy using an explicit gluing of the underlying complex
analytic space.

Over int,e(c) for o € P or over W, for p € PI"~1 with 8. Nintye(p) = 0, we have *G} = ¥G,
which was just constructed in So it remains to consider p € P"~1 such that 8, Nint,e(p) # 0.
The log structure of V(p) is prescribed by the slab functions fu,p € T(Oy,(v))’s, which restrict to
functions Saé(fv,pys on the torus Spec,,(C[A,]) = (C*)"~!. Each of these can be pulled back via
the natural projection Spec,,(C[p~%,]) — Spec,,(C[A,]) to give a function on Spec,, (C[p~1%,]).
In this case, we may fix the log chart V(P)T|u—1(wp,v) — Spec,,(C[p~ ' P,])T given by the equation

2" f(d,,m) >0
R (o) ¢ (d m) < 0
< (Svp (fuﬂ)) 1 < pam> U,

Write ¥V(p)} for the corresponding k™-order thickening in Spec,,(C[p~'P,]), which gives a local
model for smoothing V(p)|,-1(w, ) (as in . We take

Golw,, = e (N Orq st

We have to specify the gluing on the overlap W, , Nint,e(0+) with the adjacent maximal cells 0.
This is given by first using parallel transport through v to relate the monoids a;lPU and p~!'P, as
in the semi-flat case, and then an embedding Spec,, (Clo'P,/¢*']) — Spec,,(Cl[p~'P,/¢**1]) via
the formula

. sp_glJr (m)z™ for oy
(5.3) z . N o)
3p57 (m)z (SvU, (fv,P)) oro— ,

where Sy0, , Spo, are treated as maps A,, © Z — C* as before. We observe that there is a commu-
tative diagram of log morphisms

V(o) |lp—=*V(o1) |p,

V(p)tlo——="V(p)f|p

where D = v=1(W, , Nintye(cx)). The induced isomorphism

Vi ( /\_* @’“V(p)l/ksf) = ( /\_* Q’CV(%)E/'“SJ

of sheaves on the overlap D then provides the gluing for defining the sheaf ’fgg on Wy. Hence,
we obtain a sheaf kg(*) of BV algebras, where the BV structure is inherited from the local models
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Spec,,(C[e~!P,]) and Spec,, (C[p~'P,]). Similarly, we can define the sheaf ¥} of log de Rham
forms over Wy, together with a relative volume form *wq € ﬁng(Wo) by gluing the local u,’s.

5.2.3. Relation between the semi-flat dgBV algebra and the log structure. The difference between
kgg; and kG:f is that analytic continuation along a path 7 in inty. (o4 ) Uint(p), where p = o4 No_,
induces a non-trivial action on *G*, (the semi-flat sheaf) but not on *G (the corrected sheaf). This
is because, near a singular point p € I' of the affine structure on B, there is another local model kg;
for p € W, constructed in[4.I] where restrictions of sections are invariant under analytic continuation
(cf. Example . This is in line with the philosophy that monodromy is being cancelled by the
slab functions f, ,’s (which we also call initial wall-crossing factors). In view of this, we should be
able to relate the sheaves kgg and kG;‘f by adding back the initial wall-crossing factors f ,’s.

Recall that the slab function f, , is a function on V,(v) C 0Xp, whose zero locus is Z} N V,(v)
for p such that 8. Nint.e(p) # 0. Also recall that, for p containing v, p, is the unique contractible
component in pN C~ (B \ 8) such that v € p,, as defined in Assumption Note that the inverse
image 41 1(py) C V,(v) under the generalized moment map 4 is also a contractible open subset.
It contains the 0-dimensional stratum x, in V,(v) that corresponds to v. Since f, ,(2,) = 1, we
can define log(fy,) in a small neighborhood of z,, and it can further be extended to the whole
of n=(py) C V,(v) because this subset is contractible. Restricting to the open dense torus orbit
Spec,, (C[A,]) N ™! (py), we obtain log(s,) (f,)), which can in addition be lifted to a section in

*Gh(Wp0) = T(Wpp, Ory ) for a sufficiently small W,
Now we resolve the sheaves ’“g;; and * G% by the complex T introduced in & We let
PV =T lw, ®r "G

and equip it with 0, = d ® 1, A and A, making it a sheaf of dgBV algebras. Over the open subset
W, v, using the explicit description of k Glt|lw,.,, we consider the element

(5.4) Bu.p = —0up ®10g(s,) (f0,))0y, € FPVL(W,0),

where 0, , is any 1-form with asymptotic support in int.(p), and whose integral over any curve
transversal to intye(p), going from o_ to o4 is asymptotically 1; such a 1-form can be constructed
using a family of bump functions in the normal direction of int.e(p), similar to Example (see
also [7, §4]). We can further extend the section ¢, , to the whole Wy by setting it to be 0 outside a
small neighborhood of intye(p), in W, ..

Definition 5.9. The sheaf of semi-flat polyvector fields is defined as
PPV = T, ©r PG,

which is equipped with a BV operator A, a wedge product A (and hence a Lie bracket |-,-]) and the
operator

ésf = 50 + [Qbina ] = 50 + Z[¢v,pa ']7
U?p
where 0, = d® 1 and ¢i = Zv,p ¢uv,p- We also define the sheaf of semi-flat log de Rham forms as
ALY =T, ©r PR,

equipped with 0, A,
5Sf = 50 + Z E¢U7p,
v,p

and a contraction action u by elements in kPV:f’*.
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It can be easily checked that 5§f = [Ost, A] = 0, so we have a sheaf of dgBV algebras.

On the other hand, we write
FPVE = T w, ©r FGE,
which is equipped with the operators dy = d ® 1, A and A. The following important lemma is a
comparison between the two sheaves of dgBV algebras.

Lemma 5.10. There exists a set of compatible isomorphisms
®: PV 5 PPV, ke N
of sheaves of dgBV algebras such that ® o Oy = Ost o P for each k € N.
There also exists a set of compatible isomorphisms
@ FAT S FAY keN

of sheaves of dgas preserving the contraction action o and such that @ o0y = O o P for each k € N.
Furthermore, the relative volume form *wq is identified via ®.

Proof. Outside those intye(p)’s such that 8. Ninte(p) # 0, the two sheaves are identical. So we will
take a component int,e(p), of intye(p) \ & and compare the sheaves on a neighborhood W, ,.

We fix a point x € intye(p), and describe the map ® at the stalks of the two sheaves. First,
the preimage K := v~ 1(z) & A} g /A, can be identified as a real (n — 1)-dimensional torus in
Spec,, (C[A,]) = (C*)"~1. We have an identification p~1%, 2 ¥, x A,, and we choose the unique
primitive element m, € 3, in the ray pointing into 0. As analytic spaces, we write

$pecyy (CIS,) = {uv = 0} € C2,
where u = 2" and v = z7 ™, and
Speca, (Clp™'8,]) = (€)™ x {uv = 0},

The germ Oy (,) i of analytic functions can be written as

o0 —0oQ
A A 1 ,
Ov(p),x = {ao + g a;u’ + E a;v”" ‘ a; € Ocxyn-1(U) for neigh. U O K, sup og|.]‘azl < oo} .
=1 =1 ’i;éo 1

Using the embedding V(p)[,-1(w,,) — kV(p)I, in : we can write

kgg,z = OkV(p) K~

vy
k

oo — 0o
, o 1 .
Z(QOJ + z:amuZ + Z aiij_z)qj) aij € O(c+yn-1(U) for neigh. U D K, supw
i=1 ‘

<00y,
s = iz0 il

with the relation uv = ¢'s;, pl( fuo.p) (here [ is the change of slopes for ¢, across p). For the elements

(M, ou(myp)) and (—my,, p,(—m,)) in p~ ' P, we have the identities (we omit the dependence on k
when we write elements in the stalks of sheaves):

Z(mm‘Pv (mp)) = u,
s omeee o) = (£, ) Mo,

describing the embedding *V(p)} < Spec,, (C[p~'P,])!. For polyvector fields, we can write

—x
kpx _ kA0 *
gO,x - gO,m ®R /\ TU,R'
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The BV operator is described by the relations A(d,) = 0, [On,, On,] = 0, and

[z, 0n] = A(2™0p) = (m,n)z™ for m with m € Ay, n € T} s
(5.5) [u, On] = A(udy) = (my, n)u for n € T g;

[v,0,) = A(vOy) = (—myp, n)v + Op(log s;pl(f%p))v forn € T .

Similarly, we can write down the stalk for kG:f : = G, Or A T; r- As a module over
Oc+yn—1,x @c Clgl/(q k41 we have kG’S"fx = ’fgm, the ring structure on kG(S)fm differs from that
on *GY and is determined by the relation uv = ¢'. The embedding *V(p ) < Spec,, (C[p~ ' P,))T is
given by

Z("”pa‘ﬂ’l}(mp)) = u,
5= (=mpu(=mp)) _
The formulae for the BV operator are the same as that for ’fgg,x, except that for the last equation
in (5.5)), we have [v,0,] = A(v0y) = (—m,, n)v instead.

We apply the argument in [7, §4], where we considered a scattering diagram consisting of only
one wall, to relate these two sheaves. We can find a set of compatible elements 6 = (*6)yen,
where ¥9 e kPVS_fl’O(Wp,v) for k € N, such that e/ x 9, = Jy and A(f) = 0. Explicitly, 6 is a
step-function-like section of the form

9 — IOg(sg;}(fv,p))adp on intre(04) N Wy,
0 on intre(o—) MW, 4.

For each k € N, we also define 0y := log (s, (fu,5))0 i,» as an element in "G (W,,). Now we define
the map &, : kPVS:Z kPV ,, at the stalks by writing

kPVS:; = ‘I; ®RrR kgg,:p ®Rr /\Tv R

(and similarly for kPV:f’*l,), and extending the formulae

Dy(a) = for o € T,
D.(f) = ellf =f for fe Ocryn—1.K5
D, (u) = elf—001y,
b, (v) = elfly,

D, (0p) = elf=00-19, for n € T;’R

through the tensor product ®g and skew-symmetrically in 0,’s.

To see that @ is the desired isomorphism, we check all the relations by computations:

e Since €10, 0107 = Os¢, we have
Oyt (u) = 18, (e~ Folu) = 0
similarly, we have Js(®,(v)) = 0 = Os¢(9,(0,)). Hence, we have &, 0 Jy = Oyt 0 D

e We have e~ %]y = s (fv p)u and

By (u) Py (v) = V(s )} (fup)u)el® o = 5.0 (fo,0)el? N (wv) = ¢'sy)} (fo,p) = Ba(uv),

i.e. the map @, preserves the product structure.
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e From the fact that A(f) =
A(B(0p)) = el A(8,)
e Again from A(f) =0 = A(6

APz (u) () =

0 = A(fp), we see that el’~%1 commutes with A, and hence
= 0. We also have [D,(9p, ), Pz (0n,)] = el0l=01[0,,,,,,] = 0.

), we have
Ale

07001 (udy)) = el (A(udy))
= (mp,n)el” %} (w) = (mp, n) Py (u) = S2(A(udy)).
e Finally, we have
A(By(0)24(9n)) = A~ ((el10)D,)) = =0T (A(sy,) (fu,0)000))
= el?=((~ m,vaﬂww+a<v<nm>)
= (=mp,n)(e”10) + 0, (log 55, (fu,)) (")
:< My, 1)@y (v) + (10g5vp (fvp)) 2(v)
Py (A(v0n)).

We conclude that &, : kPV;:; — *PV%* is an isomorphism of dgBV algebras. We need to check

sf,x
that the map &, agrees with the isomorphism kPVS’*|@ — kPV:f’*]e induced simply by the identity
kGile =2 FG% e, where € = W \ Us. Aintre (o) 20 Ntre(p). For this purpose, we consider two nearby
maximal cells o+ such that o, No_ = p. We have *V(o1) = Spec,,,(C[oz' P,]/¢" "), and the gluing
of ¥ Gy over W, , Moy is given by parallel transporting through v, and then by the formulae
i spa+(m)zm for m € A,
(5.6) U spo,+ (mp)z™,

v q 5v0+(fv,p)5p_al+(_mp)z_mp'

The only difference for gluing of kG;‘f is the last equation in (5.6)), which is now replaced by the

1 -m :
formula v — ¢ 3p0+( my)z~ . Since we have

By (v) = sgpl(fvjp)v on Uy Nintye(oy),
A v on U, Nintye(o_)

on a sufficiently small neighborhood Uy of z, we see that ®,(v) — ¢'s,5, (fo,p) )0, (—m,)z~" under
the gluing map of *G% on U, Nintye(c4 ). This shows the compatibility of &, with the gluing of *Gj
and * G over Uy Nintye(o4). A similar argument applies for U, Ninte(o—).

The proof for @: k.Ag’* — kA:f’* is similar and will be omitted. The volume form is preserved
under ¢ because we have A(f) = 0 = A(6p). This completes the proof of the lemma. O

5.2.4. A global sheaf of dgLas from gluing of the semi-flat sheaves. We shall apply the procedure
described in to the semi-flat sheaves to glue a global sheaf of dglLas. First of all, we choose
an open cover {W,},eg satisfying the Condition together with a decomposition J = J; U Js
such that Wi = {Wy }aey, is a cover of the semi-flat part Wy, and Wy = {W }aeg, is a cover of a

neighborhood of (|J, cpm-2 7) U (Upms#@ 8 Nintre(p)).

For each W,, we have a compatible set of local sheaves *G* of BV algebras, local sheaves *IC*
of dgas, and relative volume elements *w,, & € N (as in §4.1)). We can further demand that, over
the semi-flat part Wy, we have *G* = *Gi|w. , FK: = "Kflw, and *w, = Fwo|w,, and hence
PPV =kPV T w, and FALT =R AL |w., for a € ;.

o
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Using the construction in we obtain a Gerstenhaber deformation kga[g = ellas] o k¢a5
specified by 0,5 € kPVgl’O(Wag), which give rise to sets of compatible global sheaves ¥ PV** and
FA** k € N. Restricting to the semi-flat part, we get two Gerstenhaber deformations kPVS’*
and *PV**|y,, which must be equivalent as H>O(W;,°PV~=19.) = 0. So we have a set of
compatible isomorphisms locally given by h, = elParl: KPVE*|y,  — FPV**|y, = kPYL* for some
b, € kPVa 1’O(I/Vo[), for each k£ € N, and they fit into the following commutative diagram

*1

k *, % id g *
PVO Waﬂ PVO ’Waﬁ

ha hg

"PVE

k
9ap kPV*,*
Waﬁ ﬁ ’Waﬂ

Since the pre-differential on ¥ PV**|yy, obtained from the construction in is of the form 9y+[7a, °]
for some 7, € kPVO_ M(Wa), pulling back via h, gives a global element n € kPVO_ 1’1(VVO) such that

hEI 0 (0o + [Mas*]) © ha = 0o + [, ].
Theorem m gives a Maurer-Cartan solution ¢ € *PV~11(B) such that (9 + [¢,])? = 0, together

with a holomorphic volume form ef w, compatible for each k. We denote the pullback of ¢ under hy’s
to kaal’l(Wo) as ¢g, and that of volume form to ﬁAg’O(WO) as e9 wy. We see that the equation

(D0 + Ltg)e? wo =0

is satisfied, or equivalently, that 1 + ¢g + tg is a solution to the extended Maurer—Cartan equation

(410l

Lemma 5.11. If the holomorphic volume form el w is normalized in the sense of Deﬁnition
then we can find a set of compatible V € kPVgl’O(WO), k € N such that

e 5V wo = e9 wo.

As a consequence, the Maurer—Cartan solution n + ¢o + tg is gauge equivalent to a solution of the
form (o +1t -0 for some (y € kPVO_I’l(Wo), via the gauge transformation eV kPVS’* — kPVS’*.

Proof. We should construct V by induction on k as in the proof of Lemma Namely, suppose V
is constructed for the (k — 1)%*-order, then we shall lift it to the k'"-order. We prove the existence

of a lifting V), € kPV(I 916’0 at every stalk x € Wy and use partition of unity to glue a global lifting V.

First of all, we can always find a gauge transformation 8 € kPV& i’o such that

e 1o dyo el =8y + [+ ¢o, ).

So we have Og(e“?e9 wy) = 0, which implies that e wq € ﬁngz. We can write e£9¢e9 wy = el wy

in the stalk at = for some germ h € ’“ggw of holomorphic functions. Applying Lemma E, we can
further choose 6 so that h = h(q) € (q) C Clg]/¢**!. In a sufficiently small neighborhood Uy, we find
an element g, € T7"(U,) as in Definition [£.19} The fact that the volume form is normalized forces
e"@[wg A 0,] to be constant with respect to the Gauss-Manin connection V. Tracing through the
exact sequence on U,, we can lift wg to leg(Uz) which is closed under 0. As a consequence,
we have ¥V o [wo A 0,] = 0, and hence we conclude that h(q) = 0.

dlogq

Now we have to solve for a lifting V, such that e %ve wy = wy up to the k*-order. This is
equivalent to solving for a lifting u satisfying e“* wy = wy for the k*-order once the (k — 1)*-order
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is given. Take an arbitrary lifting @ to the k'*"-order, and making use of the formula in [8, Lem.
2.8], we have

. — 0 _
ecu wp = exp (Z (STU]_)' A(U)) wo,

s=0

where 6z = —[i,-]. From e“® wg = wp (mod m*), we use induction on the order j to prove that

A(t) = 0 up to order (k — 1). Therefore we can write
A1) = ¢® A(i) (mod mF)

for some @ € OPVS’ 19 by the fact that the cohomology sheaf under A is free over ¥R = C[q]/(¢**1)
(see the discussion right after Condition [4.14)). Setting u = @ — ¢* will then solve the equation. [

The element 1 obtained in Lemma can be used to conjugate the operator dy + [1 4 éo, -] to
get Jp + [C(), ~], ie.

e Mlo (50 + [Co,°]) o eVl = do + [n+ o, ]

The volume form wq will be holomorphic under the operator dy+[Co, -]. From the equation ([#.13)), we
observe that A({p) = 0. Furthermore, the image of ¢y under the isomorphism @: *PVy™ — "PV3*
in Lemma gives ¢g € ¥ PVS_fl’l(WO), and an operator of the form

(5-7) 80 + [¢in + ¢S7 ] = 60 + Z[@”p’ ] + [¢S7 ']7
v,p

where ¢i, =), o ®u,p, that acts on kPV:f’*.

Equipping with this operator, the semi-flat sheaf kPV:f’* can be glued to the sheaves * PV 5y*’s for
a € J9, preserving all the operators. More explicitly, on each overlap Wy, := Wy N W, we have

(58) k90a3 kPV:f* Woa — kPV*’ﬂWoa

defined by

"9a8 0 goalw,, = hg o e Mo & w.,

for B € J1, which sends the operator d, + [¢in + @s, | t0 On + [0 + @, -]

Definition 5.12. We call kTL;"f = Ker(A)[-1] C kPV;fl’*[—l], equipped with the structure of a
dgLa using O and |[-,-] inherited from kPVS_fI’*, the sheaf of semi-flat tropical vertex differential
graded Lie algebras (abbrev. as sf-TVdgLa).

Note that kTL;‘f = T, ®r kh.  Also, we have A(¢ps) = 0 since A(¢y) = 0, and a direct
computation shows that A(¢i,) = 0. Thus ¢in, ¢s € kTlef(Wo), and the operator 0 + [¢im + ¢s, -]
preserves the sub-dgla kTL;‘f.

From the description of the sheaf 7%, we can see that locally on U C Wy, ¢ is supported on

finitely many codimension one polyhedral subsets, called walls or slabs, which are constituents of a
scattering diagram. This is why we use the subscript ‘s’ in ¢g, which stands for ‘scattering’.

5.3. Consistent scattering diagrams and Maurer—Cartan solutions.
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5.3.1. Scattering diagrams. In this subsection, we recall the notion of scattering diagrams introduced
by Kontsevich-Soibelman [36] and Gross—Siebert [29], and make modifications to suit our needs.
We begin with the notion of walls from [29] §2]. Let

8§ = U T|lU U S Nintye(p)

TePn—2] pePln—1]
PNSF#D
be equipped with a polyhedral decomposition induced from P and 8. For the exposition below, we
will always fix k& > 0 and consider all these structures modulo m*+! = (gk*1).

Definition 5.13. A wall (w,aw,dw, Ow) consists of

o a mazimal cell oy, € P,
a closed (n — 1)-dimensional tropical polyhedral subset w of ow such that

intye(w) N U intye(p) | =0,

peip[nfl]
P8 #0D

a choice of a primitive normal dy, and
a section Oy of the tropical vertex group exp(q - kh) over a sufficiently small neighborhood
of w.

We call Oy, the wall-crossing factor associated to the wall w. We may write a wall as (w,Oy) for
simplicity.

A wall cannot be contained in p with p N8, # (). We define a notion of slabs for these subsets of
codimension one strata p intersecting 8.. The difference is that we have an extra term @, , coming
from the slab function f, ,.

Definition 5.14. A slab (b, py,d,, 5y,) consists of

an (n — 1)-cell py, € P such that p, N8, # 0,

a closed (n — 1)-dimensional tropical polyhedral subset b of pp \ (ppb N S),
a choice of a primitive normal Jp, and

a section Sy of exp(q - *h) over a sufficiently small neighborhood of b.

The wall-crossing factor associated to the slab b is given by
Op = O, 0 Ep,
where v is the unique vertex such that inty(p), contains b and
Oy, = exp([log(sy, (fu,0)0;, )
(cf. equation (5.4)). We may write a slab as (b, Oy,) for simplicity.

Remark 5.15. In the above definition, a slab is not allowed to intersect the singular locus 8. This is
different from the situation in [29, §2]. However, in our definition of consistent scattering diagrams,
we will require consistency around each stratum of S.
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Example 5.16. We consider the 3-dimensional example shown in Figure [§, from which we can
see possible supports of the walls and slabs. There are two adjacent mazximal cells intersecting at
p e P with 8. N p =8N p colored in red. The 2-dimensional polyhedral subsets colored in blue
can support walls and the polyhedral subset colored in green can support a slab because it is lying
inside p with 8¢ N p # (.

FIGURE 8. Supports of walls/slabs

Definition 5.17. A (k'"-order) scattering diagram is a countable collection

D = {(w;,0;) }ien U {(bj,0;)}jen

of walls or slabs such that the intersections of any two walls/slabs is at most an (n — 2)-dimensional
tropical polyhedral subset, and {w; N Wo}ien U {b; N Wo}jen is locally finite in Wy.

Our notion of scattering diagrams is more flexible than the one defined in [36] 29] in two ways:
First, there is no relation between the affine direction orthogonal to a wall w or a slab b and its
wall crossing factor. As a result, we cannot allow overlapping of walls/slabs in their relative interior
because in that case their associated wall crossing factors are not necessarily commuting. Second,
we only require that the intersection of D with Wy is a locally finite collection of Wy, which implies
that we allow a possibly infinite number of walls/slabs approaching strata of $. In the construction
of the scattering diagram D(¢p) associated to a Maurer—Cartan solution ¢ below, all the walls/slabs
will be compact subsets of Wy. These walls will not intersect S, as illustrated in Figure However,
there could be a union of infinitely many walls limiting to some strata of $. See also Remark

Example 5.18. For the 2-dimensional example shown in Figure[d, we see a vertex v and its adjacent
cells, and the singular locus 8¢ consists of the red crosses. In our version of scattering diagrams, we
allow infinitely many intervals limiting to {v} or 8.

Given a scattering diagram D, we can define its support as |D| := |, Wi U UjeN b;. There is an
induced polyhedral decomposition on |D| such that its (n — 1)-cells are closed subsets of some walls
or slabs, and all intersections of walls or slabs are lying in the union of the (n — 2)-cells. We write
|D|[i] for the collection of all the i-cells in this polyhedral decomposition. We may assume, after
further subdividing the walls or slabs in D if necessary, that every wall or slab is an (n — 1)-cell in
|D|. We call an (n — 2)-cell j € |D|"~2 a joint, and a connected component of Wy \ |D| a chamber.
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\ //
Y AD—

FIGURE 9. Walls/slabs around 8

Given a wall or slab, we shall make sense of wall crossing in terms of jumping of holomorphic
functions across it. Instead of formulating the definition in terms of path-ordered products of
elements in the tropical vertex group as in [29], we will express it in terms of the action by the
tropical vertex group on the local sections of * G[s)f' There is no harm in doing so since we have the
inclusion st_fl — Der(ngf, ngf), i.e. a relative vector field is determined by its action on functions.

In this regard, we would like to define the (k*-order) wall-crossing sheaf ¥Op on the open set

Wo(D):=Wo\ |J i
j€|D|m =2l

which captures the jumping of holomorphic functions described by the wall-crossing factor when
crossing a wall/slab. We first consider the sheaf * GY% of holomorphic functions over the subset
Wo \ |D|, and let

k kO
Ol o] = *Colwon o1

To extend it through the walls/slabs, we will specify the analyic continuation through int,.(w) for
cach w € |D|"~1. Given a wall/slab w with two adjacent chambers C;, C_ and dy, pointing into
C+, and a point x € inty(w) with the germ Oy, , of wall-crossing factors near x, we let

koD’x — kGO

sf,xs

but with a different gluing to nearby chambers C4: in a sufficiently small neighborhood U, of z, the
gluing of a local section f € * Op , is given by

(H)w,x(f)‘UxﬂCJr on Ux N C+a
f’UzﬂCi =

(5.9) flu.ne on U, NC_.

In this way, the sheaf kO@|WO\‘@| extends to Wy(D).

Now we can formulate consistency of a scattering diagram D in terms of the behaviour of the sheaf
¥Op over the joints j’s and (n — 2)-dimensional strata of S. More precisely, we consider the push-
forward i,(¥*Op) along the embedding i: Wy(D) — B, and its stalk at = € intye(j) and & € int,e(7) for
strata 7 C 8. Similar to above, we can define the (I*"-order) sheaf '99 by using ZGSf and considering
equation modulo (¢)!*1. There is a natural restriction map "' i,(*Op) = i,(‘Op). Taking
tensor product, we have ®': i,(*Op) ®kp 'R — i,('0p), where ¥R = Clq]/(¢*1).

The proof of the following lemma will be given in Appendix §A]
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Lemma 5.19 (Hartogs extension property). We have
1 ("Gl ) = 967,
where v: Wy — B is the inclusion. Moreover, for any scattering diagram D, we have
. (040 0.0
LG wym) =G,
where i: Wo(D) — B is the inclusion.

Lemma 5.20. The 0%-order sheaf i,(°Op) is isomorphic to the sheaf °GP.

Proof. In view of Lemma [5.19] we only have to show that the two sheaves are isomorphic on the
open subset Wy (D). Since we work modulo (g), only the wall-crossing factor 6, , associated to a
slab matters. So we take a point z € int,e(b) C int,.(p), for some vertex v, and compare OO@@ with

0G0 = 9GY% . From the proof of Lemma we have

sf,x*

00,0 _ 00 __
gz B GSf"T B Okv(p)’uyK

oo — 0o
=<qap; + E a;u’ + E a; v’
i=1

—1 i£0 g

l .
a; € O(cxyn-1(U) for some neigh. U D K, sup og i < oo} ,

with the relation uv = 0. The gluings with nearby maximal cells o+ of both °G® and OGSf are simply
given by the parallel transport through v and the formulae

-1 -1
2" 8,5, (m)z™ for m € Ay, 2™ s,y (m)2™ for m € A,
op: Uy s;o_l+(mp)zmﬁ, o_: {u0,
-1 —-m
v =0, v 8 (—myp)zT M

in the proof of Lemma [5.10

Now for the wall-crossing sheaf OO@J; ~ OGSM, the wall-crossing factor 6, , acts trivially except

on the two coordinate functions u, v because (m, dp> =0 for m € A,. The gluing of u to the nearby
maximal cells which obeys wall crossing is given by

| U|Uzmr+ onU;Noy,
U\U,n _
= @U,;,x(uHUzﬂo-, =0 onU,No_,

in a sufficiently small neighborhood U, of z. Here, the reason that we have 6, ;ﬂc(u)hjmmL =0 on

U, No_ is simply because we have v — 0 in the gluing of OGgf. For the same reason, we see that
the gluing of v agrees with that of °G% and OGgf. (|

Definition 5.21. A (k"-order) scattering diagram D is said to be consistent if there is an isomor-
phism i, (*O0p)|w., = *G0 as sheaves of Clq]/(q"t")-algebras on each open subset W,.

The above consistency condition would imply that % i,(*Op) — i,(‘Op) is surjective for any
| < k and hence i, (*Op) is a sheaf of free C[q]/(¢**!)-modules on B. We are going to see that i, (*Oqp)
agrees with the push-forward of the sheaf of holomorphic functions on a (k*"-order) thickening ¥ X
of the central fiber °X under the modified moment map v.

Let us elaborate a bit on the relation between this definition of consistency and that in [29].
Assuming we have a consistent scattering diagram in the sense of [29], then we obtain a k'"-order
thickening *X of °X which is locally modeled on the thickenings ¥V,’s by [28, Cor. 2.18]. Pushing
forward via the modified moment map v, we obtain a sheaf of algebras over C[q]/(¢*!) lifting °GY,
which is locally isomorphic to the kgg’s. This consequence is exactly what we use to formulate our
definition of consistency.
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Lemma 5.22. Suppose we have W C W,NW3 such that V = v=Y (W) is Stein, and an isomorphism
h: kg%|w — *G0w of sheaves of Clq]/(¢"1)-algebras which is the identity modulo (q). Then there

is a unique isomorphism : *Vq|y — ng\V of analytic spaces inducing h.

Proof. From the description in We can embed both families *V,,, ¥V over Spec,, (C[q]/ ("))
as closed analytic subschemes of CV*1 = CV x C, and CL*! = CL x C, respectively, where projec-
tion to the second factor defines the family over C[q]/(¢**1). Let J, and J3 be the corresponding
ideal sheaves, which can be generated by finitely many elements. We can take Stein open subsets
Us € CNT1 and Ug C CEHL such that their intersections with the subschemes give *V, |y and
ng]V respectively. By taking global sections of the sheaves over W, we obtain the isomorphism
h: Ony, (V) = Oxy_(V). Using the fact that U, is Stein, we can lift h(2;)’s, where 2;’s are restric-
tions of coordinate functions to kVB\V C Ug, to holomorphic functions on U,. In this way, h can be
lifted as a holomorphic map ¢ : U, — Ug. Restricting to kVa|V, we see that the image lies in ngh/,
and hence we obtain the isomorphism . The uniqueness follows from the fact the 1 is determined

by ¢*(zi) = h(z). u

Given a consistent scattering diagram D (in the sense of Definition [5.21)), the sheaf i,(*Op) can
be treated as a gluing of the local sheaves kgg’s. Then from Lemma we obtain a gluing of the
local models ¥V, ’s yielding a thickening *X of °X. This justifies Definition

5.3.2. Constructing consistent scattering diagrams from Maurer—Cartan solutions. We are finally
ready to demonstrate how to construct a consistent scattering diagram D(¢) in the sense of Definition
from a Maurer—Cartan solution ¢ = ¢ + tf obtained in Theorem As in we obtain
a k™-order Maurer—Cartan solution (o and define its scattered part as ¢s € kTL;f(WQ). From this,
we want to construct a k''-order scattering diagram D(yp).

We take an open cover {U;}; by pre-compact convex open subsets of Wy such that, locally on Uj,
oin + ¢s can be written as a finite sum

(bin + ds)lv, = D cuj @ vy,
J

where o;; € TY(U;) has asymptotic support on a codimension one polyhedral subset P C U;, and
vi; € Fh(U;). We take a partition of unity {;}; subordinate to the cover {U;}; such that supp(g;)
has asymptotic support on a compact subset C; of U;. As a result, we can write

(5.10) Gt b5 =D > (0i0vj) ® vij,
(2]

where each (p;;;) has asymptotic support on the compact codimension one subset C; N Py C U;.
The subset (J,;; C; N P;; will be the support |D| of our scattering diagram D = D(¢p).

We may equip |D| := Uij C; N P;j with a polyhedral decomposition such that all the boundaries
and mutual intersections of C; N P;;’s are contained in (n — 2)-dimensional strata of |D|. So, for
each (n — 1)-dimensional cell 7 of | D, if int,e(7) N (C; N Pi;) # 0 for some 4, j, then we must have
T C C; N Py;. Let I(7) :={(4,7) | 7 C C; N Pj;}, which is a finite set of indices. We will equip the
(n — 1)-cells 7’s of |D| with the structure of walls or slabs.

We first consider the case of a wall. Take 7 € |D|[*~ U such that int,.(7) N int.e(p) = @ for all p
with pN 8. # 0. We let w = T, choose a primitive normal dy of 7, and give the labels C+ to the
two adjacent chambers Cy so that dy, is pointing into C;. In a sufficiently small neighborhood U,
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of int,e(7), we have ¢in|py, = 0 and we may write
Oslu, = > (oicg) @i,
(i.5)€1(r)

where each (g;a;) has asymptotic support on int..(7). Since locally on U, any Maurer-Cartan
solution is gauge equivalent to 0, there exists an element 6, € T°(U,) ® q - *h(U,) such that

el 68, 07001 = 8, + [, ].

Such an element can be constructed inductively using the procedure in [37, §3.4.3], and can be
chosen to be of the form

U,NC4 ON U-n C—I—:
on U, NC_,

97’,0
(5.11) GT’UTﬂCi = {O

for some 0,9 € q - *h(U,). From this we obtain the wall-crossing factor associated to the wall w
(5.12) Oy = elfmor],

Remark 5.23. Here we need to apply the procedure in [37, §3.4.3], which is a generalization of that
in [7], because of the potential non-commutativity: [vij, vijr] # 0 for j # j'.

For the case where T C intye(p), for some p with p N8, # 0, we will define a slab. We take U,
and I(7) as above, and let the slab b = 7. The primitive normal dp is the one we chose earlier for
each p. Again we work in a small neighborhood U of int,(7) with two adjacent chambers C1. As
in the proof of Lemma we can find a step-function-like element 6, , of the form

B lOg('S;pl(fv,p))adp on U, NCy,
o7 0 onU,NC_

to solve the equation el®»l 0 9, 0 e=0vrl = §, + [pin, -] on U;. In other words,
v = e ol (T, 00) = FTL 0, 00)

is an isomorphism of sheaves of dgLas. Computations using the formula in [8, Lem. 2.5] then gives
the identity

1o + [W(ds),"]) oW = Do + [Pin + P, ).

Once again, we can find an element 6, such that
0l 08, 070 = 8, + [W (o), ],
and hence a corresponding element 6,9 € ¢ - ¥h(U,) of the form (5.11). From this we get
(5.13) 5y = elfro-]
and hence the wall-crossing factor ©y, := @, , o 5, associated to the slab b.

Next we would like to argue that consistency of the scattering diagram D follows from the fact
that ¢ is a Maurer—Cartan solution. First of all, on the global sheaf kpVv** over B, we have the
operator Jy := 0+ [¢, -] which satisfies [A, 04| = 0 and 835 = 0. This allows us to define the sheaf of

k' -order holomorphic functions as
k04 := Ker(dy) C *PVOY,

for each k& € N. Tt is a sequence of sheaves of commutative C[q]/(¢*!)-algebras over B, equipped

with a natural map Rl k(9¢ — l(9¢ for I < k that is induced from the maps for *PV** By
construction, we see that °0y =2 9G% =2 1, (O ).
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We claim that the maps klh's are surjective. To prove this, we fix a point z € B and take an open
chart W, containing z in the cover of B we chose at the beginning of §5.2.41 There is an isomorphism
Py FPV** |y, 2 FPVL identifying the differential 0 with d, + [a, ] by our construction. Write
o = Po(¢) and notice that 0y + [Na + @a, -] squares to zero, which means that 7, + @4 is a solution
to the Maurer—Cartan equation for kPVz’*(Wa). We apply the same trick as above to the local
open subset Wy, namely, any Maurer—Cartan solution lying in *PV 1’1(VVQ) is gauge equivalent to
the trivial one, so there exists 8, € kPV;LO(Wa) such that

o) 6 8, 0 ) = 5, + [ + g, .
As a result, the map e~ P Tod, . (FPV**|y. 0+ [¢,]) = (F*PVE", 0,) is an isomorphism of dgLas,
sending k(’)d, isomorphically onto kgg.

We shall now prove the consistency of the scattering diagram D = D(y) by identifying the
associated wall-crossing sheaf *Oq, with the sheaf k0¢]WO(D) of k*-order holomorphic functions.

Theorem 5.24. There is an isomorphism ®: k(’)¢|W0(@) — k0 of sheaves of C[q]/(¢"*)-algebras
on Wo(D). Furthermore, the scattering diagram D = D(p) associated to the Maurer—Cartan solution
¢ s consistent in the sense of Definition [5.21].

Proof. To prove the first statement, we first notice that there is a natural isomorphism

*Oglworip) = *Oplwo\ o),
so we only need to consider those points z € int,(7) where 7 is either a wall or a slab. Since
Wo(D) C Wy, we vxiﬂl work on the semi-flat locus W and use the model kPV;‘f’*, which is equipped
with the operator d, + [¢in + ¢s, -|. Via the isomorphism
®: (FPV*,05) — ("PVYF, 0o + [fin + bs,])
from Lemma we may write
FOulwy = Ker(3y) C *PVYY.
We fix a point € Wy(D)N|D| and consider the stalk at x for both sheaves. In the above construction
of walls and slabs from the Maurer—Cartan solution ¢, we first take a sufficiently small open subset
U, and then find a gauge transformation of the form ¥ = e’ in the case of a wall, and of the form
¥ = elfvrl o elf7] in the case of a slab. We have
'I/oéoow_l :50+[¢in+¢sa']
by construction, so this further induces an isomorphism
v: FGlu, — "Oylu,

of C[q]/(¢"*1)-algebras.

It remains to see how the stalk ¥: ngf . k(’)d,,m is glued to nearby chambers Cy. For this
purpose, we let

Vg = elfr0:]
as in equation (5.12)) in the case of a wall, and
Vo =6y, 0 elfro-]

as in (b.13)) in the case of a slab. Then, the restriction of an element f € kGSf , to a nearby chamber
is given by
\I’Q(f) on U;C N C+,

Lp(f):{f on U, NC_
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in a sufficiently small neighborhood U,. This agrees with the description of the wall-crossing sheaf
*Op . in equation (5.9). Hence we obtain an isomorphism kO¢|WO(D) = k0.

To prove the second statement, we first apply pushing forward via i: Wy(D) — B to the first
statement to get the isomorphism

L.("Oplwy(m)) = 1:(F00).

Now, by the discussion right before this proof, we may identify * Oy with GO locally. But the sheaf
GO which is isomorphic to the restriction of °G® ®¢ C[q]/(¢**!) to W, as sheaves of Clq]/(¢"")-
modules, satisfies the Hartogs extension property from Wy(D) N W, to W, by Lemma So we
have i, (k0¢]WO(D)) =~ *0,. Hence, we obtain

i (*On)|w, = (*Oy)lw, =G0,
from which follows the consistency of the diagram D = D(y). O

Remark 5.25. From the proof of Theorem [5.24), we actually have a correspondence between step-
function-like elements in the gauge group and elements in the tropical vertex group as follows. We
fix a generic point x in a joint j, and consider a neighborhood of x of the form U, x D,, where U,
is a neighborhood of x in inty.()) and Dy is a disk in the normal direction of j. We pick a compact
annulus Ay C D, surrounding x, intersecting finitely many walls/slabs. We let T1,...,7s be the
walls/slabs in anti-clockwise direction. For each T;, we take an open subset W; just containing the
wall 7; such that W; \ i = W; + UW; _. The following Figure below illustrates the situation.

As in the proof of Theorem[5.2]), there is a gauge transformation on each W; of the form
(2% (kPV:f’*|W¢> 50) - (kPV:f*‘Wiﬂ 50 + [¢in + @s, ])7
where W; = elfv.e) o el0 for a slab and ¥; = el for a wall. These are step-function-like elements
in the gauge group satisfying
g = [0 o Wi
id onW;_,
where O; is the wall crossing factor associated to ;.

On the overlap W; + = W; N Wi 1 (where we set i +1 = 1 if i = s), there is a commutative
diagram

0;

*PVY ..., o) PV, Os)
!I/,L' Wi-!—l

*,% A id *,% A
(kPVSf, |W¢,+>0o + [d)in + ¢S7 ]) (kPVSf’ |W¢,+, ao + [(lsin + ¢Sv ])

allowing us to interpret the wall crossing factor ©; as the gluing between the two sheaves * PV:f’*|Wi
and ]“PV:f’*]y\yiJrl over W; 4.

Notice that the Maurer—Cartan element ¢ is global. On a small neighborhood W, containing
U, X D,, we have the sheaf (kPVZ;*,ad,) on Wy, and there is an isomorphism

el (PV 8 % PV, B,
Composing with the isomorphism

FPVE |, 0) = (FPVE ey, Do + [Bin + b5, ),
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we have a commutative diagram of isomorphisms

Yo

(kPV:f* |Wi,+ ’ 50)

(*PV lw, ,, 0o).

/

k *,k a
("PVa w5 0a)

This is a Cech-type cocycle condition between the sheaves kPV;’*[Wi s and *PV5*, which can be
understood as the original consistency condition defined using path-ordered products in [36], 29]. In
particular, taking a local holomorphic function in kgg(Wa) and restricting it to U, X A, we obtain
elements in ngf(Wi) that jump across the walls according to the wall crossing factors ©;’s.

Tit+1

A,

FiGure 10. Wall crossing around a joint j

APPENDIX A. THE HARTOGS EXTENSION PROPERTY

The following lemma is an application of the Hartogs extension theorem [41].

Lemma A.1l. Consider the analytic space (C*)* x Spec,, (C[Z,]) for some T and an open subset
of the form U x V, where U C (C*)* and V is a neighborhood of the origin o € Spec,,(C[Z,]).
Let W =V \ (U, V), where dimg(w) + 2 < dimg(X;) (i.e. W is the complement of complex
codimension 2 orbits in V). Then the restriction O(U x V) — O(U x W) is a ring isomorphism.

Proof. We first consider the case where dimg(X;) > 2 and W = V \ {0}. We can further assume
that X, consists of just one cone o, because the holomorphic functions on V" are those on V No that
agree on the overlaps. So we can write

O(U}( W) = { Z amz" ‘ A, € O((C*)k(U)},

mEAo

i.e. as Laurent series converging in W. We may further assume that W is a sufficiently small
Stein open subset. Take f =) A, Gmz™ € O(U x W). We have the corresponding holomorphic
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function Zmer am (u)z™ on W for each point u € U, which can be extended to V' using the Hartogs
extension theorem [41] because {0} is a compact subset of V' such that W =V \ {0} is connected.
Therefore, we have a;,(u) = 0 for m ¢ o N A, for each u, and hence f = ) amnz™ is an element

in O(U x V).

For the general case, we use induction on the codimension of w to show that any holomorphic
function can be extended through V,,\|J, V> with dimg(7) < dimg(w). Taking a point z € V,,\U, V7,
a neighborhood of & can be written as (C*)! x Spec,, (C[X,]). By the induction hypothesis, we know
that holomorphic functions can already be extended through (C*)! x {0}. We conclude that any
holomorphic function can be extended through V,, \ . V. O

We will make use of the following version of the Hartogs extension theorem, which can be found
in e.g. [31l p. 58], to handle extension within codimension one cells p’s and maximal cells o’s.

Theorem A.2 (Hartogs extension theorem, see e.g. [31]). Let U C C™ be a domain with n > 2,
and A C U such that U \ A is still a domain. Suppose w(U) \ w(A) is a non-empty open subset,
and 7= (m(x)) N A is compact for every x € A, where w: C* — C"~! is projection along one of the
coordinate direction. Then the natural restriction O(U) — O(U \ A) is an isomorphism.

Proof of Lemma[5.19. To prove the first statement, we apply Lemma[A Tl So we only need to show
that, for p € P~ a holomorphic function f in U, \ 8 C V(p) can be extended uniquely to U,,
where U, is some neighborhood of z € intye(p) N 8. Writing V(p) = (C*)"~! x Spec,,(C[Z,]), we
may simply prove that this is the case with X, consisting of a single ray o as in the proof of Lemma
Thus we can assume that V(p) = (C*)"~! x C and the open subset U, = U x V for some
connected U. We observe that extensions of holomorphic functions from (U \ 8) x V to U x V can
be done by covering the former open subset with Hartogs’ figures.

To prove the second statement, we need to further consider extensions through int,e(j) for a joint

j. For those joints lying in some codimension one stratum p, the argument is similar to the above. So

we assume that o = o is a maximal cell. We take a point x € int,(j) and work in a sufficiently small

neighborhood U of z. In this case, we may find a codimension one rational hyperplane w containing

j, together with a lattice embedding A, < A, which induces the projection 7: (C*)" — @”_1
A.2

along one of the coordinate directions. Letting A = v~1(A N U) and applying Theorem we
obtain extensions of holomorphic functions in U. O
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