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Abstract. In 2002, Fukaya [19] proposed a remarkable explanation of mirror symmetry detailing
the SYZ conjecture [47] by introducing two correspondences: one between the theory of pseudo-
holomorphic curves on a Calabi-Yau manifold X̌ and the multi-valued Morse theory on the base
B̌ of an SYZ fibration p̌ : X̌ → B̌, and the other between deformation theory of the mirror X
and the same multi-valued Morse theory on B̌. In this paper, we prove a reformulation of the
main conjecture in Fukaya’s second correspondence, where multi-valued Morse theory on the base
B̌ is replaced by tropical geometry on the Legendre dual B. In the proof, we apply techniques of
asymptotic analysis developed in [7, 9] to tropicalize the pre-dgBV algebra which governs smoothing
of a maximally degenerate Calabi-Yau log variety 0X† introduced in [8]. Then a comparison between
this tropicalized algebra with the dgBV algebra associated to the deformation theory of the semi-flat
part Xsf ⊆ X allows us to extract consistent scattering diagrams from appropriate Maurer-Cartan
solutions.

1. Introduction

Two decades ago, in an attempt to understand mirror symmetry using the SYZ conjecture [47],
Fukaya [19] proposed two correspondences:

• Correspondence I: between the theory of pseudo-holomorphic curves (instanton corrections)
on a Calabi–Yau manifold X̌ and the multi-valued Morse theory on the base B̌ of an SYZ
fibration p̌ : X̌ → B̌, and
• Correspondence II: between deformation theory of the mirror X and the same multi-valued
Morse theory on the base B̌.

In this paper, we prove a reformulation of the main conjecture [19, Conj 5.3] in Fukaya’s Correspon-
dence II, where multi-valued Morse theory on the SYZ base B̌ is replaced by tropical geometry on
the Legendre dual B. Such a reformulation of Fukaya’s conjecture was proposed and proved in [7]
in a local setting; the main result of the current paper is a global version of the main result in loc.
cit. A crucial ingredient in the proof is a precise link between tropical geometry on an integral affine
manifold with singularities and smoothing of maximally degenerate Calabi–Yau varieties.

The main conjecture [19, Conj. 5.3] in Fukaya’s Correspondence II asserts that there exists a
Maurer–Cartan element of the Kodaira–Spencer dgLa associated to deformations of the semi-flat
part Xsf of X that is asymptotically close to a Fourier expansion ([19, Eq. (42)]), whose Fourier
modes are given by smoothings of distribution-valued 1-forms defined by moduli spaces of gradient
Morse flow trees which are expected to encode counting of non-trivial (Maslov index 0) holomorphic
disks bounded by Lagrangian torus fibers (see [19, Rem. 5.4]). Also, the complex structure defined
by this Maurer–Cartan element can be compactified to give a complex structure on X. At the same
time, Fukaya’s Correspondence I suggests that these gradient Morse flow trees arise as adiabatic
limits of loci of those Lagrangian torus fibers which bound non-trivial (Maslov index 0) holomorphic
disks. This can be reformulated as a holomorphic/tropical correspondence, and much evidence has
been found [18, 20, 39, 40, 11, 12, 38, 10, 4].
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The tropical counterpart of such gradient Morse flow trees are given by consistent scattering dia-
grams, which were invented by Kontsevich–Soibelman [36] and extensively used in the Gross–Siebert
program [29] to solve the reconstruction problem in mirror symmetry, namely, the construction of
the mirror X from smoothing of a maximally degenerate Calabi–Yau variety 0X. It is therefore
natural to replace the distribution-valued 1-form in each Fourier mode in the Fourier expansion
[19, Eq. (42)] by a distribution-valued 1-form associated to a wall-crossing factor of a consistent
scattering diagram. This was exactly how Fukaya’s conjecture [19, Conj. 5.3] was reformulated and
proved in the local case in [7].

In order to reformulate the global version of Fukaya’s conjecture, however, we must also relate
deformations of the semi-flat part Xsf with smoothings of the maximally degenerate Calabi–Yau
variety 0X. This is because consistent scattering diagrams were used by Gross–Siebert [28] to study
the deformation theory of the compact log variety 0X† (whose log structure is specified by slab
functions), instead of Xsf . For this purpose, we consider the open dense part

0Xsf := µ−1(W0) ⊂ 0X,

where µ : 0X → B is the generalized moment map in [43] and W0 ⊆ B is an open dense subset such
that B \W0 contains the tropical singular locus and all codimension 2 cells of B.

Equipping 0Xsf with the trivial log structure, there is a semi-flat dgBV algebra PV∗,∗ governing
its smoothings, and the general fiber of a smoothing is given by the semi-flat Calabi–Yau Xsf that
appeared in Fukaya’s original conjecture [19, Conj. 5.3]. However, the Maurer–Cartan elements
of PV∗,∗ cannot be compactified to give complex structures on X. On the other hand, in our
previous work [8] we constructed a Kodaira–Spencer–type pre-dgBV algebra PV ∗,∗ which controls
the smoothing of 0X. A key observation is that a twisting of PV∗,∗ by slab functions is isomorphic
to the restriction of PV ∗,∗ to 0Xsf (Lemma 5.10).

Our reformulation of the global Fukaya conjecture now claims the existence of a Maurer–Cartan
element ϕ of this twisted semi-flat dgBV algebra that is asymptotically close to a Fourier expansion
whose Fourier modes give rise to the wall-crossing factors of a consistent scattering diagram. This
conjecture follows from (the proof of) our main result, stated as Theorem 1.1 below, which is a
combination of Theorem 4.18, the construction in §5.3.2 and Theorem 5.24:

Theorem 1.1. There exists a solution ϕ to the classical Maurer–Cartan equation (4.11) giving rise
to a smoothing of the maximally degenerate Calabi–Yau log variety 0X† over C[[q]], from which a
consistent scattering diagram D(ϕ) can be extracted by taking asymptotic expansions.

A brief outline of the proof of Theorem 1.1 is now in order. First, recall that the pre-dgBV
algebra PV ∗,∗ which governs smoothing of the maximally degenerate Calabi–Yau variety 0X was
constructed in [8, Thm. 1.1 & §3.5], and we also proved a Bogomolov–Tian–Todorov–type theorem
[8, Thm. 1.2 & §5] showing unobstructedness of the extended Maurer–Cartan equation (4.10), under
the Hodge-to-de Rham degeneracy Condition 4.16 and a holomorphic Poincaré Lemma Condition
4.14 (both proven in [28, 17]). In Theorem 4.18, we will further show how one can extract from the
extended Maurer–Cartan equation (4.10) a smoothing of 0X, described as a solution ϕ ∈ PV −1,1(B)
to the classical Maurer–Cartan equation (4.11)

∂̄ϕ+
1

2
[ϕ, ϕ] + l = 0,

together with a holomorphic volume form ef ω which satisfies the normalization condition

(1.1)

∫
T
ef ω = 1,

where T is a nearby vanishing torus in the smoothing.
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Next, we need to tropicalize the pre-dgBV algebra PV ∗,∗. However, the original construction
of PV ∗,∗ in [8] using the Thom–Whitney resolution [49, 14] is too algebraic in nature. Here, we
construct a geometric resolution exploiting the affine manifold structure on B. Using the generalized
moment map µ : 0X → B [43] and applying the techniques of asymptotic analysis (in particular
the notion of asymptotic support) in [7], we define the sheaf T∗ of monodromy invariant tropical
differential forms on B in §5.1. According to Definition 5.5, a tropical differential form can be
regarded as a distribution-valued form supported on polyhedral subsets of B. Using the sheaf T∗,
we can take asymptotic expansions of elements in PV ∗,∗, and hence connect differential geometric
operations in dgBV/dgLa with tropical geometry. In this manner, we can extract local scattering
diagrams from Maurer–Cartan solutions as we did in [7], but we need to glue them together to get
a global object.

To achieve this, we need the aforementioned comparison between PV ∗,∗ and the semi-flat dgBV
algebra PV∗,∗

sf which governs smoothing of the semi-flat part 0Xsf := µ−1(W0) ⊂ 0X equipped with
the trivial log structure. The key Lemma 5.10 says that the restriction of PV ∗,∗ to the semi-flat part
is isomorphic to PV∗,∗

sf precisely after we twist the semi-flat operator ∂̄◦ by elements corresponding
to the slab functions associated to the initial walls of the form:

ϕin = −
∑
v∈ρ

δv,ρ ⊗ log(fv,ρ)∂ďρ ;

here the sum is over vertices in codimension one cells ρ’s which intersect with the essential singular
locus Se (defined in §3.3), δv,ρ is a distribution-valued 1-form supported on a component of ρ \ Se
containing v, ∂ďρ is a holomorphic vector field and fv,ρ’s are the slab functions associated to the

initial walls. We remark that slab functions were used to specify the log structure on 0X as well as
the local models for smoothing 0X in the Gross–Siebert program; see §2 for a review.

Now, the Maurer–Cartan solution ϕ ∈ PV −1,1(B) obtained in Theorem 4.18 defines a new oper-
ator ∂̄ϕ on PV ∗,∗ which squares to zero. Applying the above comparison of dgBV algebras (Lemma
5.10) and the gauge transformation from Lemma 5.11, we show that, after restricting to W0, there
is an isomorphism (

PV −1,1(W0), ∂̄ϕ
) ∼= (PV−1,1

sf (W0), ∂̄◦ + [ϕin + ϕs, ·]
)

for some element ϕs, where ‘s’ stands for scattering terms. From the description of T∗, the element
ϕs, to any fixed order k, is written locally as a finite sum of terms supported on codimension one
walls/slabs (Definitions 5.13 and 5.14. For the purpose of a brief discussion in this introduction, we
will restrict ourselves to a wall w below, though the same argument applies to a slab; see §5.3.2 for
the details. In a neighborhood Uw of each wall w, the operator ∂̄◦ + [ϕin + ϕs, ·] is gauge equivalent

to ∂̄◦ via some vector field θw ∈ PV−1,0
sf (W0), i.e.

e[θw,·] ◦ ∂̄◦ ◦ e−[θw,·] = ∂̄◦ + [ϕin + ϕs, ·].

Employing the techniques for analyzing the gauge which we developed in [7, 9, 37], we see that the
gauge will jump across the wall, resulting in a wall-crossing factor Θw satisfying

e[θw,·]|C± =

{
Θw|C+ on Uw ∩ C+,
id on Uw ∩ C−,

where C± are the two chambers separated by w. Then from the fact that the volume form ef ω
is normalized as in (1.1), it follows that ϕs is closed under the semi-flat BV operator ∆, and
hence we deduce that the wall-crossing factor Θw lies in the tropical vertex group. This defines a
scattering diagram D(ϕ) on the semi-flat part W0 associated to ϕ. Finally, we prove consistency of
the scattering diagram D(ϕ) in Theorem 5.24. We emphasize that the consistency is over the whole
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B even though the diagram is only defined onW0, because the Maurer–Cartan solution ϕ is globally
defined on B.

Remark 1.2. Our notion of scattering diagrams (Definition 5.17) is a little bit more relaxed than
the usual notion defined in [36, 29] in two aspects: One is that we do not require the generator
of the exponents of the wall-crossing factor to be orthogonal to the wall.1 The other is that we
allow possibly infinite number of walls/slabs approaching strata of the tropical singular locus. See
the paragraph after Definition 5.17 for more details. In practice, this simply means that we are
considering a larger gauge equivalence class (or equivalently, a weaker gauge equivalence), which is
natural from the point of view of both the Bogomolov–Tian–Todorov Theorem and mirror symmetry
(in the A-side, this amounts to flexibility in the choice of the almost complex structure). We also
have a different, but more or less equivalent, formulation of the consistency of a scattering diagram;
see Definition 5.21 and §5.3.1.

Along the way of proving Fukaya’s conjecture, besides figuring out the precise relation between
the semi-flat part Xsf and the maximally degenerate Calabi–Yau log variety 0X†, we also find the
correct description of the Maurer–Cartan solutions near the singular locus, namely, they should be
extendable to the local models prescribed by the log structure (or slab functions), as was hinted by
the Gross–Siebert program. This is related to a remark by Fukaya [19, Pt. (2) after Conj. 5.3].

Another important point is that we have established in the global setting an interplay between
the differential-geometric properties of the tropical dgBV algebra and the scattering (and other
combinatorial) properties of tropical disks, which was speculated by Fukaya as well ([19, Pt. (1)
after Conj. 5.3]) although he considered holomorphic disks instead of tropical ones.

Furthermore, by providing a direct linkage between Fukaya’s conjecture with the Gross–Siebert
program [27, 28, 29] and Katzarkov–Kontsevich–Pantev’s Hodge theoretic viewpoint [33] through
PV ∗,∗ (recall from [8] that a semi-infinite variation of Hodge structures can be constructed from
PV ∗,∗, using the techniques of Barannikov–Kontsevich [3, 2] and Katzarkov–Kontsevich–Pantev
[33]), we obtain a more transparent understanding of mirror symmetry through the SYZ framework.

Remark 1.3. A future direction is to apply the framework in this paper and the works [7, 8] to
develop a local-to-global approach to understand genus 0 mirror symmetry. In view of the ideas of
Seidel [46] and Kontsevich [35], and also recent breakthroughs by Ganatra–Pardon–Shende [24, 26, 25]
and Gammage–Shende [22, 23], we expect that there is a sheaf of L∞ algebras on the A-side mirror
to (the L∞ enhancement of) PV ∗,∗ that can be constructed by gluing local models. More precisely, a
large volume limit of a Calabi–Yau manifold X̌ can be specified by removing from it a normal crossing
divisor Ď which represents the Kähler class of X̌. This gives rise to a Weinstein manifold X̌\Ď, and
produces a mirror pair X̌\Ď ↔ 0X at the large volume/complex structure limits. In [23], Gammage–
Shende constructed a Lagrangian skeleton Λ(Φ) ⊂ X̌ \ Ď from a combinatorial structure Φ called
fanifold, which can be extracted from the integral tropical manifold B equipped with a polyhedral
decomposition P (here we assume that the gluing data s is trivial). They also proved an HMS
statement at the large limits. We expect that an A-side analogue of PV ∗,∗ can be constructed from
the Lagrangian skeleton Λ(Φ) in X̌ \ Ď, possibly together with a nice and compatible SYZ fibration
on X̌ \ Ď, via gluing of local models. A local-to-global comparsion on the A-side and isomorphisms
between the local models on the two sides should then yield an isomorphism of Frobenius manifolds.

1It seems reasonable to relax this orthogonality condition because one cannot require such a condition in more
general settings [5, 37].
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List of notations

M , MA §2.1 lattice, MA :=M ⊗Z A for any Z-module A
N , NA §2.1 dual lattice of M , NA := N ⊗Z A for any Z-module A
(B,P) Def. 2.2 integral tropical manifold equipped with a polyhedral

decomposition
Λσ §2.1 lattice generated by integral tangent vectors along σ
intre(τ) §2.1 relative interior of a polyhedron τ
Uτ §2.1 open neighborhood of intre(τ)
Qτ §2.1 lattice generated by normal vectors to τ
Sτ : Uτ → Qτ,R §2.1 fan structure along τ
Στ §2.1 complete fan in Qτ,R constructed from Sτ
Kτσ §2.1 Kτσ = R≥0Sτ (σ ∩ Uτ ) is a cone in Στ corresponding to σ
Tx §2.2 lattice of integral tangent vectors of B at x
∆i(τ), ∆̌i(τ) Def. 2.9 monodromy polytope of τ , dual monodromy polytope of τ
Aff Def. 2.5 sheaf of affine functions on B
PLP Def. 2.5 sheaf of piecewise affine functions on B with respect to P

MPLP Def. 2.6 sheaf of multi-valued piecewise affine functions on B
with respect to P

φ Def. 2.7 strictly convex multi-valued piecewise linear function
τ−1Σv §2.3 localization of the fan Σv at τ
V (τ) §2.3 local affine scheme associated to τ used for open gluing
PM(τ) §2.3 group of piecewise multiplicative maps on τ−1Σv
D(µ, ρ, v) Def. 2.15 number encoding the change of µ ∈ PM(τ) across ρ through v
0Xτ §2.3 closed stratum of 0X associated to τ
Cτ §2.4 cone defined by the strictly convex function φ̄τ : Στ → R

representing φ
P̄τ §2.4 monoid of integral points in Cτ
q = zϱ §2.4 parameter for a toric degeneration
Nρ §2.4 line bundle on 0Xρ having slab functions fρ as sections
fvρ §2.4 local slab function associate to ρ in the chart V (v)
κτ,i : 0Xτ → Prτ,i §2.4 toric morphism induced from the monodromy polytope ∆i(τ)
Pτ,x §2.4 toric monoid describing the local model of toric degeneration

near x ∈ 0Xτ

Qτ,x §2.4 toric monoid isomorphic to Pτ,x/(ϱ+ Pτ,x)
Nτ §2.4 normal fan of a polytope τ
µ : 0X → B §3.1 generalized moment map
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Υτ §3.2 coordinate chart on W (τ) ⊂ B
S (resp. Se) §3.3 (resp. essential) tropical singular locus in B
ν : 0X → B Def. 3.6 surjective map with ν(Z) ⊂ Se
W = {Wα}α §4 good cover (Condition 4.1) of B with Vα := ν−1(Wα) being Stein
kV†

α §4 kth-order local smoothing model of Vα
kG∗α Def. 4.2 sheaf of kth-order holomorphic relative log polyvector fields on kV†

α
kK∗

α Def. 4.2 sheaf of kth-order holomorphic log de Rham differentials on kV†
α

k
∥K∗

α §4.1 sheaf of kth-order holomorphic relative log de Rham differentials on kV†
α

kωα Def. 4.2 kth-order relative log volume form on kV†
α

k∆α §4.1 BV operator on kGα
kPV ∗,∗

α Def. 4.8 local sheaf of kth-order polyvector fields
kA∗,∗

α Def. 4.9 local sheaf of kth-order de Rham forms
kPV ∗,∗ Def. 4.13 global sheaf of kth-order polyvector fields from gluing of kPV ∗,∗

α ’s
kA∗,∗ Def. 4.13 global sheaf of kth-order de Rham forms from gluing of kA∗,∗

α ’s
T∗ Def. 5.6 global sheaf of tropical differential forms on B
W0 §5.2.1 semi-flat locus
kG∗

sf §5.2.1 sheaf of kth-order semi-flat holomorphic relative vector fields
kK∗

sf §5.2.1 sheaf of kth-order semi-flat holomorphic log de Rham forms
kh eqt. (5.2) sheaf of kth-order semi-flat holomorphic tropical vertex Lie algebras
kPV∗,∗

sf Def. 5.9 sheaf of kth-order semi-flat polyvector fields
kA∗,∗

sf Def. 5.9 sheaf of kth-order semi-flat log de Rham forms
kTL∗sf Def. 5.12 sheaf of kth-order semi-flat tropical vertex Lie algebras
(w,Θw) Def. 5.13 wall equipped with a wall-crossing factor
(b,Θb) Def. 5.14 slab equipped with a wall-crossing factor
D Def. 5.17 scattering diagram
W0(D) §5.3.1 complement of joints in the semi-flat locus
i §5.3.1 the embedding i : W0(D)→ B
kOD §5.3.1 kth-order wall-crossing sheaf associated to D

Notation 1.4. We usually fix a rank s lattice K together with a strictly convex s-dimensional
rational polyhedral cone QR ⊂ KR = K ⊗Z R. We call Q := QR ∩K the universal monoid. We
consider the ring R := C[Q], a monomial element of which is written as qm ∈ R for m ∈ Q, and
the maximal ideal m := C[Q \ {0}]. Then kR := R/mk+1 is an Artinian ring, and we denote

by R̂ := lim←−k
kR the completion of R. We further equip R, kR and R̂ with the natural monoid

homomorphism Q → R, m 7→ qm, which gives them the structure of a log ring (see [29, Definition

2.11]); the corresponding log analytic spaces are denoted as S†, kS† and Ŝ† respectively.

Furthermore, we let Ω∗
S† := R ⊗C

∧∗KC,
kΩ∗

S† := kR ⊗C
∧∗KC and Ω̂∗

S† := R̂ ⊗C
∧∗KC (here

KC = K⊗Z C) be the spaces of log de Rham differentials on S†, kS† and Ŝ† respectively, where we
write 1 ⊗ m = d log qm for m ∈ K; these are equipped with the de Rham differential ∂ satisfying
∂(qm) = qmd log qm. We also denote by ΘS† := R ⊗C K∨

C, ΘS† and Θ̂S†, respectively, the spaces
of log derivations, which are equipped with a natural Lie bracket [·, ·]. We write ∂n for the element
1⊗ n with action ∂n(q

m) = (m,n)qm, where (m,n) is the natural pairing between KC and K∨
C.
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2. Gross–Siebert’s cone construction of maximally degenerate Calabi–Yau
varieties

This section is a brief review of Gross–Siebert’s construction of the maximally degenerate Calabi–
Yau variety 0X from the affine manifold B and its log structures from slab functions [27, 28, 29].

2.1. Integral tropical manifolds. We first recall the notion of integral tropical manifolds from
[29, §1.1]. Given a lattice M of rank n, a rational convex polyhedron σ is a convex subset in MR
given by a finite intersection of rational (i.e. defined over MQ) affine half-spaces. We usually drop
the attributes “rational” and “convex” for polyhedra. A polyhedron σ is said to be integral if all
its vertices lie in M ; a polytope is a compact polyhedron. The group Aff(M) := M ⋊ GL(M) of
integral affine transformations acts on the set of polyhedra in MR. Given a polyhedron σ ⊂ MR,
let Λσ,R ⊂ MR be the smallest affine subspace containing σ, and denote by Λσ := Λσ,R ∩M the
corresponding lattice. The relative interior intre(σ) refers to taking the interior of σ in Λσ,R. There
is an identification Tσ,x ∼= Λσ,R for the tangent space at x ∈ intre(σ). Write ∂σ = σ \ intre(σ). Then
a face of σ is the intersection of ∂σ with a supporting hyperplane. Codimension one faces are called
facets.

Let LPoly be the category whose objects are integral polyhedra and morphisms consist of the
identity and integral affine isomorphisms onto faces (i.e. an integral affine morphism τ → σ which
is an isomorphism onto its image and identifies τ with a face of σ). An integral polyhedral complex
is a functor F : P→ LPoly from a finite category P to LPoly such that every face of F(σ) still lies in
the image of F, and there is at most one arrow τ → σ for every pair τ, σ ∈ P. By abuse of notation,
we usually drop the notation F and write σ ∈ P to represent an integral polyhedron in the image of
the functor. From an integral polyhedral complex, we obtain a topological space B := lim−→σ∈P σ via

gluing of the polyhedra along faces. We further assume that:

(1) the natural map σ → B is injective for each σ ∈ P, so that σ can be identified with a closed
subset of B called a cell, and a morphism τ → σ can be identified with an inclusion of
subsets;

(2) a finite intersection of cells is a cell; and
(3) B is an orientable connected topological manifold of dimension n without boundary which

in addition satisfies the condition that H1(B,Q) = 0.

Remark 2.1. The condition H1(B,Q) = 0 will be used only in Theorem 4.18 to ensure that
H1(0X,O) = H1(B,C) = 0, where 0X is the degenerate Calabi–Yau variety that we are going
to construct.2 This corresponds to the condition that b1 = 0 for smooth Calabi–Yau manifolds.

The set of k-dimensional cells is denoted by P[k], and the k-skeleton by P[≤k]. For every τ ∈ P,
we define its open star by

Uτ :=
⋃
σ⊃τ

intre(σ),

which is an open subset of B containing intre(τ). A fan structure along τ ∈ P[n−k] is a continuous
map Sτ : Uτ → Rk such that

• S−1
τ (0) = intre(τ),

• for every σ ⊃ τ , the restriction Sτ |intre(σ) is an integral affine submersion onto its image

(meaning that it is induced by some epimorphism Λσ → W ∩ Zk for some vector subspace
W ⊂ Rk), and

2In his recent work [15], Felten was able to prove Theorem 4.18 without assuming that H1(B,Q) = 0.
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• the collection of cones {Kτσ := R≥0Sτ (σ ∩ Uτ )}σ⊃τ forms a complete finite fan Στ .

Two fan structures along τ are equivalent if they differ by composition with an integral affine
transformation of Rk. If Sτ is a fan structure along τ and σ ⊃ τ , then Uσ ⊂ Uτ and there is a fan
structure along σ induced from Sτ via the composition:

Uσ ↪→ Uτ → Rk ↠ Rl,

where Rk → Rk/RSτ (σ ∩ Uτ ) ∼= Rl is the quotient map.

Definition 2.2 ([29], Def. 1.2). An integral tropical manifold is an integral polyhedral complex
(B,P) together with a fan structure Sτ along each τ ∈ P such that whenever τ ⊂ σ, the fan structure
induced from Sτ is equivalent to Sσ.

Taking sufficiently small and mutually disjoint open subsets Wv ⊂ Uv for v ∈ P[0] and intre(σ) for

σ ∈ P[n], there is an integral affine structure on
⋃
v∈P[0] Wv ∪

⋃
σ∈P[n] intre(σ). We will further choose

the open subsets Wv’s and intre(σ)’s so that the affine structure is defined outside a closed subset
Γ of codimension two in B, as in [27, §1.3]. This affine structure allows us to use parallel transport
to identify the tangent spaces TxB for different points x outside the closed subset. For every τ we
choose a maximal cell σ ⊃ τ and consider the lattice of normal vectors Qτ = Λσ/Λτ (we suppress
the dependence on σ because we will see that Λτ is monodromy invariant under the monodromy
transformation given by any two vertices of τ and any two maximal cells containing τ). We can
identify Qτ with Zk via Sτ , and write the fan structure as Sτ : Uτ → Qτ,R.

Example 2.3. We take a 2-dimensional example from [1, Ex. 6.74] to illustrate the above defini-
tions. Let Ξ be the convex hull of the points

p0 =

−1−1
−1

 , p1 =
 3
−1
−1

 , p2 =
−13
−1

 , p3 =
−1−1

3

 ,
so Ξ is a 3-simplex. Take B (as a topological space) to be the boundary of Ξ. The polyhedral
decomposition P is defined so that the integral points are vertices as shown in Figure 1.

Figure 1. The polyhedral decomposition

Then we define affine coordinate charts on
⋃
σ∈P[n] intre(σ) ∪

⋃
v∈P[0] Wv as follows. On intre(σ),

we take ψσ : intre(σ)→ Λσ,R which maps homeomorphically onto its image. At a vertex v treated as
a vector in R3, we let ψv : Wv ⊂ R3 → R3/Rv, where R3 → R3/Rv is the natural projection onto
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the quotient. By [1, Prop. 6.81], this gives an integral affine manifold with singularities. The affine
structure can be extended to the complement of a subset Γ consisting of 24 points lying on the six
edges of Ξ, with each edge containing 4 points (colored in red in Figure 1). The fan structure Sτ
can be defined similarly.

Locally near each singular point p ∈ Γ contained in an edge ρ, the affine structure is described
as a gluing of two affine charts UI ⊂ R2 \ {0} × R≥0 and UII ⊂ R2 \ 0 × R≤0 as in [30, §3.2]. The
change of coordinates from UI to UII is given by the restriction of the map Υ from (R \ {0})×R to
itself defined by

(x, y) 7→

{
(x, y), x < 0

(x, x+ y), x > 0.

The fan structure Sρ : Uρ → R is given as Sρ(x, y) = x and the fan Σρ is the toric fan for P1. Figure
2 below illustrates the situation.

Figure 2. Affine coordinate charts

With the structure of an integral tropical manifold, the corners and edges in Figure 1 are flattened
via the affine coordinate charts, and we can view (B,P) as the 2-sphere equipped with a polyhe-
dral decomposition and with 24 affine singularities. Such an affine structure with singularities also
appears in the base B of an SYZ fibration of a K3 surface.

Example 2.4. A 3-dimensional example can be constructed as in [1, Ex. 6.74]. Take Ξ to be the
convex hull of the points

p0 =


−1
−1
−1
−1

 , p1 =


4
−1
−1
−1

 , p2 =

−1
4
−1
−1

 , p3 =

−1
−1
4
−1

 , p4 =

−1
−1
−1
4

 ,
which gives a 4-simplex. Take B (as a topological space) to be the boundary of Ξ. There are five 3-
dimensional maximal cells intersecting along ten 2-dimensional facets. The polyhedral decomposition
P on each facet is as in Figure 3.

The affine structure can be extended to the complement of codimension 2 closed subset Γ whose
intersection with a triangle in Figure 3 is a Y -shaped locus. Locally near each of these triangles, it
looks like Figure 4a. Ξ has ten 1-dimensional faces, each of which is an edge with affine length 5.
The polyhedral decomposition P divides each edge into 5 intervals as we can see in Figure 3. Locally
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Figure 3. The polyhedral decomposition on a facet

(a) Y -vertex of type I (b) Y -vertex of type II

Figure 4. Two types of Y-vertex

near each of these length 1 intervals, there are three 2-cells of P intersecting along it. The locus Γ
on each 2-cell intersects on the interval as shown in Figure 4b.

Definition 2.5 ([27], Def. 1.43). An integral affine function on an open subset U ⊂ B is a

continuous function φ on U which is integral affine on U ∩ intre(σ) for σ ∈ P[n] and on U ∩Wv for

v ∈ P[0]. We denote by Aff B (or simply Aff ) the sheaf of integral affine functions on B.

A piecewise integral affine function (abbrev. as PA-function) on U is a continuous function φ on
U which can be written as φ = ψ + S∗

τ (φ̄) on U ∩ Uτ for every τ ∈ P, where ψ ∈ Aff (U ∩ Uτ ) and
φ̄ is a piecewise linear function on Qτ,R with respect to the fan Στ . The sheaf of PA-functions on B
is denoted by PLP.

There is a natural inclusion Aff ↪→ PLP, and we letMPLP be the quotient:

0→ Aff → PLP →MPLP → 0.

Locally, an element φ ∈ Γ(B,MPLP) is a collection of piecewise affine functions {φU} such that on
each overlap U ∩ V , the difference φU |V − φV |U is an integral affine function on U ∩ V .
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Definition 2.6 ([27], Def. 1.45 and 1.47). The sheafMPLP is called the sheaf of multi-valued piece-
wise affine functions (abbrev. as MPA-funtions) of the pair (B,P). A section φ ∈ H0(B,MPLP) is
said to be convex (resp. strictly convex) if for any vertex {v} ∈ P, there is a convex (resp. strictly
convex) representative φv on Uv. (Here, convexity (resp. strict convexity) means if we take any
maximal cone σ ⊂ Uv with the affine function lσ : Uv → R defined by requiring φv|σ = lσ, we always
have φv(y) ≥ lσ(y) (resp. φv(y) > lσ(y)) for y ∈ Uv \ σ).

The set of all convex multi-valued piecewise affine functions gives a sub-monoid of H0(B,MPLP)
under addition, denoted as H0(B,MPLP,N); we let Q be the dual monoid.

Definition 2.7 ([27], Def. 1.48). The polyhedral decomposition P is said to be regular if there exists
a strictly convex multi-valued piecewise linear function φ ∈ H0(B,MPLP).

We always assume that P is regular with a fixed strictly convex φ ∈ H0(B,MPLP).

2.2. Monodromy, positivity and simplicity. To describe monodromy, we consider two maximal
cells σ± and two of their common vertices v±. Taking a path γ going from v+ to v− through σ+,
and then from v− back to v+ through σ−, we obtain a monodromy transformation Tγ . As in [27,
§1.5], we are interested in two cases. The first case is when v+ is connected to v− via a bounded

edge ω ∈ P[1]. Let dω ∈ Λω be the unique primitive vector pointing to v− along ω. For an integral
tangent vector m ∈ Tv+ := Tv+,ZB, the monodromy transformation Tγ is given by

(2.1) Tγ(m) = m+ ⟨m,nσ+σ−ω ⟩dω
for some n

σ+σ−
ω ∈ Q∗

σ+∩σ− ⊂ T ∗
v+ , where ⟨·, ·⟩ is the natural pairing between Tv+ and T ∗

v+ . The

second case is when σ+ and σ− are separated by a codimension one cell ρ ∈ P[n−1]. Let ďρ ∈ Q∗
ρ be

the unique primitive covector which is positive on σ+. The monodromy transformation is given by

(2.2) Tγ(m) = m+ ⟨m, ďρ⟩mρ
v+v−

for some mρ
v+v− ∈ Λτ , where τ ⊂ ρ is the smallest face of ρ containing v±. In particular, if we fix

both v± ∈ ω ⊂ ρ ⊂ σ±, one obtains the formula

(2.3) Tγ(m) = m+ κωρ⟨m, ďρ⟩dω
for some integer κωρ.

Definition 2.8 ([27], Def. 1.54). We say that (B,P) is positive if κωρ ≥ 0 for all ω ∈ P[1] and

ρ ∈ P[n−1] with ω ⊂ ρ.

Following [27, Definition 1.58], we package the monodromy data into polytopes associated to

τ ∈ P[k] for 1 ≤ k ≤ n − 1. The simplest case is when ρ ∈ P[n−1], whose monodromy polytope is
defined by fixing a vertex v0 ∈ ρ and setting

(2.4) ∆(ρ) := Conv{mρ
v0v | v ∈ ρ, v ∈ P[0]} ⊂ Λρ,R,

where Conv refers to taking the convex hull. It is well-defined up to translation and independent of
the choice of v0. The normal fan of ρ in Λ∗

ρ,R is a refinement of the normal fan of ∆(ρ). Similarly,

when ω ∈ P[1], one defines the dual monodromy polytope by fixing σ0 ⊃ ω and setting

(2.5) ∆̌(ω) := Conv{nσ0σω | σ ⊃ ω, σ ∈ P[n−1]} ⊂ Q∗
ω,R.

Again, this is well-defined up to translation and independent of the choice of σ0. The fan Σω in
Qω,R is a refinement of the normal fan of ∆̌(ω). For 1 < dimR(τ) < n − 1, a combination of
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monodromy and dual monodromy polytopes is needed. We let P1(τ) = {ω | ω ∈ P[1], ω ⊂ τ} and
Pn−1(τ) = {ρ | ρ ∈ P[n−1], ρ ⊃ τ}. For each ρ ∈ Pn−1(τ), we choose a vertex v0 ∈ ρ and let

∆ρ(τ) := Conv{mρ
v0v | v ∈ τ, v ∈ P[0]} ⊂ Λτ,R.

Similarly, for each ω ∈ P1(τ), we choose σ0 ⊃ τ and let

∆̌ω(τ) := Conv{nσ0σω | σ ⊃ τ, σ ∈ P[n−1]} ⊂ Q∗
τ,R.

These are well-defined up to translation and independent of the choices of v0 and σ0 respectively.

Definition 2.9 ([27], Def. 1.60). We say (B,P) is simple if, for every τ ∈ P, there are disjoint
non-empty subsets

Ω1, . . . ,Ωp ⊂ P1(τ), R1, . . . , Rp ⊂ Pn−1(τ)

(where p depends on τ) such that

(1) for ω ∈ P1(τ) and ρ ∈ Pn−1(τ), κωρ ̸= 0 if and only if ω ∈ Ωi and ρ ∈ Ri for some 1 ≤ i ≤ p;
(2) ∆ρ(τ) is independent (up to translation) of ρ ∈ Ri and will be denoted by ∆i(τ); similarly,

∆̌ω(τ) is independent (up to translation) of ω ∈ Ωi and will be denoted by ∆̌i(τ);
(3) if {e1, . . . , ep} is the standard basis in Zp, then

∆(τ) := Conv

{
p⋃
i=1

∆i(τ)× {ei}

}
, ∆̌(τ) := Conv

{
p⋃
i=1

∆̌i(τ)× {ei}

}
are elementary simplices (i.e. a simplex whose only integral points are its vertices) in
(Λτ ⊕ Zp)R and (Q∗

τ ⊕ Zp)R respectively.

We need the following stronger condition in order to apply [28, Thm. 3.21] in a later stage:

Definition 2.10. We say (B,P) is strongly simple if it is simple, and for every τ ∈ P, both ∆(τ)
and ∆̌(τ) are standard simplices.

Example 2.11. Consider the 2-dimensional example in Example 2.3. Following [1, Ex. 6.82(1)], we

may choose the two adjacent vertices in Figure 1 to be v1 =
[
−1 −1 −1

]T
and v2 =

[
0 −1 −1

]T
which bound a 1-cell ρ. The two adjacent maximal cells are given by σ+ ⊂ {b | ⟨w+, b⟩ = 1} where
w+ =

[
0 0 −1

]T
and σ− ⊂ {b | ⟨w−, b⟩ = 1} where w− =

[
0 −1 0

]T
. The tangent lattice Tv1

can be identified with Z3/Z · v1 equipped with the basis e1 =
[
1 0 0

]T
, e2 =

[
0 1 0

]T
. If we let

γ be a loop going from v1 to v2 through σ+ and going back to v1 through σ−, we have

Tγ(m) = m+ ⟨
[
0 1 −1

]T
,m⟩e1

for m ∈ Tv1. Therefore, we have p = 1, ∆1(ρ) = Conv{0, e1} and ∆̌1(ρ) = Conv{0, w+−w−}. This
is an example of a positive and strongly simple (B,P) (Definitions 2.8 and 2.10).

Example 2.12. Next we consider the two types of Y -vertex in Example 2.4.

We begin with Y -vertex of type I in Figure 4a. Following [1, Ex. 6.82(2)], the three vertices
v1, v2, v3 can be chosen to be

v1 =
[
−1 −1 −1 −1

]T
, v2 =

[
0 −1 −1 −1

]T
, v3 =

[
−1 0 −1 −1

]T
,

and σ+ ⊂ {b ∈ R4 | ⟨w+, b⟩ = 1}, σ− ⊂ {b ∈ R4 | ⟨w−, b⟩ = 1} are 3-cells of B lying in the affine

hyperplanes with dual vector w+ =
[
0 0 −1 0

]T
and w− =

[
0 0 0 −1

]T
respectively. If we

identify Tv with Λσ+ via parallel transport and choose the basis of Λσ+ as

e1 =
[
1 0 0 0

]T
, e2 =

[
0 −1 0 0

]T
, e3 =

[
0 0 0 1

]T
,
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then the monodromy transformations are given by

Tγ1 =

1 0 1
0 1 0
0 0 1

 , Tγ2 =

1 0 −1
0 1 −1
0 0 1

 , Tγ3 =

1 0 0
0 1 1
0 0 1

 ,
where γi is the loop going from vi to vi+1 through σ+ and going back to vi through σ−, with indices
of vi’s taken modulo 3. In this case, we have p = 1, ∆1(ρ) = Conv{0, e1,−e2} is a 2-simplex and
∆̌1(ρ) = Conv{0, w+ − w−} is a 1-simplex.

For the Y -vertex of type II in Figure 4b, we can choose

v1 =
[
−1 −1 −1 −1

]T
, v2 =

[
0 −1 −1 −1

]T
,

which are the end-points of a 1-cell τ . We choose the three maximal cells σ1, σ2 and σ3 intersecting
at τ to be the 3-cells lying in affine hyperplanes defined by {b | ⟨wi, b⟩ = 1}, where

w1 =
[
0 0 −1 0

]T
, w2 =

[
0 0 0 −1

]T
, w3 =

[
0 −1 0 0

]T
.

Let γ̃i be the loop going from v1 to v2 through wi and then going back to v1 through wi+1, with indices
taken to be modulo 3. Then the corresponding monodromy transformations are given by

Tγ1 =

1 0 1
0 1 0
0 0 1

 , Tγ2 =

1 1 0
0 1 0
0 0 1

 , Tγ3 =

1 −1 −1
0 1 0
0 0 1

 ,
with respect to the basis

e1 =
[
1 0 0 0

]T
, e2 =

[
0 1 0 0

]T
, e3 =

[
0 0 −1 0

]T
.

In this case, p = 1, ∆1(τ) = Conv{0, v2−v1} is a 1-simplex and ∆̌1(τ) = Conv{0, w1−w2, w1−w3}
is a 2-simplex.

Both examples are positive and strongly simple.

Throughout this paper, we always assume that (B,P) is positive and strongly simple. In partic-
ular, both ∆i(τ) and ∆̌i(τ) are standard simplices of positive dimensions, and Λ∆1(τ)⊕ · · · ⊕Λ∆p(τ)

(resp. Λ∆̌1(τ)
⊕ · · · ⊕ Λ∆̌p(τ)

) is an internal direct summand of Λτ (resp. Q∗
τ ).

2.3. Cone construction by gluing open affine charts. In this subsection, we recall the cone
construction of the maximally degenerate Calabi–Yau 0X = 0X(B,P, s), following [27] and [29, §1.2].
For this purpose, we take K = Z and Q to be the positive real axis in Notation 1.4. Throughout
this paper, we will work in the category of analytic schemes.

We will construct 0X as a gluing of affine analytic schemes V (v) parametrized by the vertices of
P. For each vertex v, we consider the fan Σv and take the analytic affine toric variety

V (v) := Specan(C[Σv]),

where Specan means analytification of the algebraic affine scheme given by Spec. Here, the monoid
structure for a general fan Σ ⊂MR is given by

p+ q =

{
p+ q if p, q ∈M are in a common cone of Σ,

∞ otherwise,

and we set z∞ = 0 in taking Spec(C[Σ]) (by abuse of notation, we use Σ to stand for both the fan
and the monoid associated to a fan if there is no confusion); in other words, the ring C[Σ] is defined
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explicitly as

C[Σ] :=
⊕

p∈|Σ|∩M

C · zp, zp · zq =

{
zp+q if p, q ∈M are in a common cone of Σ,

0 otherwise,

where |Σ| denotes the support of the fan Σ.

To glue these affine analytic schemes together, we need affine subschemes {V (τ)} associated to
τ ∈ P with v ∈ τ and natural open embeddings V (τ) ↪→ V (ω) for v ∈ ω ⊂ τ . First, for τ ∈ P such
that v ∈ τ , we consider the localization of Σv at τ defined by

τ−1Σv := {Kvσ + Λτ,R |Kvσ is a cone in Σv such that σ ⊃ τ};

here recall that Kvσ = R≥0Sv(σ ∩Uv) is the cone in Σv (see the definition of a fan structure before
Definition 2.2). This defines a new complete fan in Tv,R consisting of convex, but not necessarily
strictly convex, cones. If τ contains another vertex v′, we can identify the fans τ−1Σv and τ−1Σv′
as follows: for each maximal σ ⊃ τ , we identify the maximal cones Kvσ + Λτ,R and Kv′σ + Λτ,R
by identifying the tangent spaces Tv ∼= Tv′ using parallel transport through σ ⊃ τ . Patching these
identifications for all σ ⊃ τ together, we get a piecewise linear transformation from Tv to Tv′ ,
identifying the fans τ−1Σv and τ

−1Σv′ and hence the corresponding monoids. This defines the affine
analytic scheme

V (τ) := Specan(C[τ−1Σv]),

up to a unique isomorphism. Notice that τ−1Σv can be identified (non-canonically) with the fan
Στ × Λτ,R in Qτ,R × Λτ,R, so actually

V (τ) ∼= Specan(C[Λτ ])× Specan(C[Στ ]),

where Specan(C[Λτ ]) ∼= Λ∗
τ ⊗Z C∗ ∼= (C∗)l is a complex torus.

For any v ∈ ω ⊂ τ , there is a map of monoids ω−1Σv → τ−1Σv given by

p 7→

{
p if p ∈ Kvσ + Λω,R for some σ ⊃ τ,
∞ otherwise

(though there is no fan map from ω−1Σv to τ−1Σv in general), and hence a ring map

ι∗ωτ : C[ω−1Σv]→ C[τ−1Σv].

This gives an open inclusion of affine schemes

ιωτ : V (τ) ↪→ V (ω),

and hence a functor F : P→ Schan defined by

F (τ) := V (τ), F (e) := ιωτ : V (τ)→ V (ω)

for ω ⊂ τ .
We can further introduce twistings of the gluing of the affine analytic schemes {V (τ)}τ∈P. Toric

automorphisms µ of V (τ) are in bijection with the set of C∗-valued piecewise multiplicative maps on

Tv ∩ |τ−1Σv| with respect to the fan τ−1Σv. Explicitly, for each maximal cone σ ∈ P[n] with τ ⊂ σ,
there is a monoid homomorphism µσ : Λσ → C∗ such that if σ′ ∈ P[n] also contains τ , then µσ|Λσ∩σ′ =
µσ′ |Λσ∩σ′ . Denote by PM(τ) the multiplicative group of C∗-valued piecewise multiplicative maps on

Tv ∩ |τ−1Σv|. The group PM(τ) a priori depends on the choice of v ∈ τ ; however, for different
choices, say v and v′, the groups can be identified via the identification τ−1Σv ∼= τ−1Σv′ . For ω ⊂ τ ,
there is a natural restriction map |τ : PM(ω) → PM(τ) given by restricting to those maximal cells
σ ⊃ ω with σ ⊃ τ .
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Definition 2.13 ([29], Def. 1.18). A choice of open gluing data (for the cone construction) for
(B,P) is a set s = (sωτ )ω⊂τ of elements sωτ ∈ PM(τ) such that

(1) sττ = 1 for all τ ∈ P, and
(2) if ω ⊂ τ ⊂ ρ, then

sωρ = sτρ · sωτ |ρ.

Two choices of open gluing data s, s′ are said to be cohomologous if there exists a system {tτ}τ∈P,
with tτ ∈ PM(τ) for each τ ∈ P, such that sωτ = tτ (tω|τ )−1s′ωτ whenever ω ⊂ τ .

The set of cohomology classes of choices of open gluing data is a group under multiplication,
denoted as H1(P,QP ⊗ C×). For s ∈ PM(τ), we will denote also by s the corresponding toric
automorphism on V (τ) which is explicitly given by s∗(zm) = sσ(m)zm for m ∈ σ ⊃ τ . If s is
a choice of open gluing data, then we can define an s-twisted functor Fs : P → Schan by setting
Fs(τ) := F (τ) = V (τ) on objects and Fs(ω ⊂ τ) := F (ω ⊂ τ) ◦ s−1

ωτ : V (τ) → V (ω) on morphisms.
This defines the analytic scheme

0X = 0X(B,P, s) := lim
−→

Fs.

Gross–Siebert [27] showed that 0X(B,P, s) ∼= 0X(B,P, s′) as schemes when s, s′ are cohomologous.

Remark 2.14. Given τ ∈ P[k], one can define a closed stratum ιτ :
0Xτ → 0X of dimension k

by gluing together the k-dimensional toric strata Vτ (ω) ⊂ V (ω) = Specan(C[ω−1Σv]) corresponding
to the cones Kvτ + Λω,R in ω−1Σv, for all ω ⊂ τ . Abstractly, it is isomorphic to the toric variety
associated to the polyhedron τ ⊂ Λτ,R. Also, for every pair ω ⊂ τ , there is a natural inclusion

ιωτ :
0Xω → 0Xτ . One can alternatively construct 0X by gluing along the closed strata 0Xτ ’s

according to the polyhedral decomposition; see [27, §2.2].

We recall the following definition from [27], which serves as an alternative set of combinatorial
data for encoding µ ∈ PM(τ).

Definition 2.15 ([27], Def. 3.25 and [29], Def. 1.20). Let µ ∈ PM(τ) and ρ ∈ P[n−1] with τ ⊂ ρ.
For a vertex v ∈ τ , we define

D(µ, ρ, v) :=
µσ(m)

µσ′(m′)
∈ C×,

where σ, σ′ are the two unique maximal cells such that σ ∩ σ′ = ρ, m ∈ Λσ is an element projecting
to the generator in Qρ ∼= Λσ/Λρ ∼= Z pointing to σ′, and m′ is the parallel transport of m ∈ Λσ to
Λσ′ through v. D(µ, ρ, v) is independent of the choice of m.

Let ρ ∈ P[d−1] and σ+, σ− be the two unique maximal cells such that σ+∩σ− = ρ. Let ďρ ∈ Q∗
ρ be

the unique primitive generator pointing to σ+. For any two vertices v, v′ ∈ τ , we have the formula

(2.6) D(µ, ρ, v) = µ(mρ
vv′)

−1 ·D(µ, ρ, v′)

relating monodromy data to the open gluing data, where mρ
vv′ ∈ Λρ is as discussed in (2.2). The

formula (2.6) describes the interaction between monodromy and a fixed µ ∈ PM(τ). We shall
further impose the following lifting condition from [27, Prop. 4.25] relating svτ , sv′τ ∈ PM(τ) and
monodromy data:

Condition 2.16. We say a choice of open gluing data s satisfies the lifting condition if for any two
vertices v, v′ ∈ τ ⊂ ρ with ρ ∈ P[n−1], we have D(svτ , ρ, v) = D(sv′τ , ρ, v

′) whenever mρ
vv′ = 0.
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2.4. Log structures. We need to equip the analytic scheme 0X = 0X(B,P, s) with log structures.
The main reference is [27, §3 - 5].

Definition 2.17. Let X be an analytic space, a log structure on X is a sheaf of monoids MX

together with a homomorphism αX : MX → OX of sheaves of (multiplicative) monoids such that
αX : α−1(O∗

X) → O∗
X is an isomorphism. The ghost sheaf MX of a log structure is defined as the

quotient sheafMX/α
−1(O∗

X), whose monoid structure is written additively.

Example 2.18. Let X be an analytic space and D ⊂ X be a closed analytic subspace of pure
codimension one. We denote by j : X \D ↪→ X the inclusion. Then the sheaf of monoids

MX := j∗(O∗
X\D) ∩ OX ,

together with the natural inclusion αX :MX → OX defines a log structure on X.

We write X† if we want to emphasize the log structure on X. A general way to define a log
structure is to take an arbitary homomorphism of sheaves of monoids

α̃ : P → OX ,
and then define the associated log structure by

MX := (P ⊕O∗
X)/{(p, α̃(p)−1) | p ∈ α̃−1(O∗

X)}.
In particular, this allows us to define log structures on an analytic space Y by pulling back those
on another analytic space X via a morphism f : Y → X. More precisely, given a log structure on
X, the pullback log structure on Y is defined to be the log structure associated to the composition
α̃Y : f−1(MX) → f−1(OX) → OY . For more details of the theory of log structures, readers are
referred to, e.g., [27, §3].

Example 2.19. Taking a toric monoid P (i.e. P = C ∩M for a cone C ⊂ MR), we can define
α̃ : P → OSpec(C[P ]) by sending m 7→ zm, where P is the constant sheaf with stalk P . From this we
obtain a log structure on the analytic toric variety Specan(C[P ]). Note that this is a special case of
Example 2.18, where we take X = Specan(C[P ]) and D to be the toric boundary divisor.

Before we describe the log structures on 0X = 0X(B,P, s), let us first specify a ghost sheaf M
over 0X. Recall that the polyhedral decomposition P is assumed to be regular, namely, there exists
a strictly convex multi-valued piecewise linear function φ ∈ H0(B,MPLP). For any τ ∈ P, we take
a strictly convex representative φ̄τ of φ on Qτ,R, and define

Γ(V (τ),M) := P̄τ = Cτ ∩ (Qτ ⊕ Z),
where Cτ := {(m,h) ∈ Qτ,R ⊕ R |h ≥ φ̄τ (m)}. For any ω ⊂ τ , we take an integral affine function
ψωτ on Uω such that ψωτ + S∗

ω(φ̄ω) vanishes on Kωτ , and agrees with S∗
τ (φ̄τ ) on all of σ ∩ Uτ for

any σ ⊃ τ . This induces a map Cω → Cωτ := {(m,h) ∈ Qω,R⊕R |h ≥ ψωτ (m)+ φ̄ω(m)} by sending
(m,h) 7→ (m,h + ψωτ (m)), whose composition with the quotient map Qω,R ⊕ R → Qτ,R ⊕ R gives
a map Cω → Cτ of cones that corresponds to the monoid homomorphism P̄ω → P̄τ . The P̄τ ’s glue
together to give the ghost sheafM over 0X. There is a well-defined section ϱ̄ ∈ Γ(0X,M) given by
gluing (0, 1) ∈ Cτ for each τ .

One may then hope to find a log structure on 0X which is log smooth and with ghost sheaf given
by M. However, due to the presence of non-trivial monodromies of the affine structure, this can
only be done away from a complex codimension 2 subset Z ⊂ 0X not containing any toric strata.
Such log structures can be described by sections of a coherent sheaf LS+pre supported on the scheme-

theoretic singular locus 0Xsing ⊂ 0X. We now describe the sheaf LS+pre and some of its sections
called slab functions; readers are referred to [27, §3 and 4] for more details.
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For every ρ ∈ P[n−1], we consider ιρ :
0Xρ → 0X, where 0Xρ is the toric variety associated to the

polytope ρ ⊂ Λρ,R. From the fact that the normal fan Nρ ⊂ Λ∗
ρ,R of ρ is a refinement of the normal

fan N∆(ρ) ⊂ Λ∗
ρ,R of the rρ-dimensional simplex ∆(ρ) (as in §2.2), we have a toric morphism

(2.7) κρ : 0Xρ → Prρ .

Now, ∆(ρ) corresponds to O(1) on Prρ . We let Nρ := κ∗
ρ(O(1)) on 0Xρ, and define

(2.8) LS+pre :=
⊕

ρ∈P[n−1]

ιρ,∗(Nρ).

Sections of LS+pre can be described explicitly. For each v ∈ P[0], we consider the open subscheme

V (v) of 0X and the local trivialization

LS+pre|V (v) =
⊕
ρ:v∈ρ

OVρ(v),

whose sections over V (v) are given by (fvρ)v∈ρ. Given v, v′ ∈ τ where τ corresponding to V (τ),
these local sections obey the change of coordinates given by

(2.9) D(sv′τ , ρ, v
′)−1s−1

v′τ (fv′ρ) = z−m
ρ

vv′D(svτ , ρ, v)
−1s−1

vτ (fvρ),

where ρ ⊃ τ and svτ , sv′τ are part of the open gluing data s. The section f := (fvρ)v∈ρ is said to be
normalized if fvρ takes the value 1 at the 0-dimensional toric stratum corresponding to a vertex v,
for all ρ. We will restrict ourselves to normalized sections f of LS+pre. The complex codimension 2

subset Z ⊂ 0X is taken to be the zero locus of f on 0Xsing.

Only a subset of normalized sections of LS+pre corresponds to log structures. For every vertex

v ∈ P[0] and τ ∈ P[n−2] containing v, we choose a cyclic ordering ρ1, . . . , ρl of codimension one cells
containing τ according to an orientation of Qτ,R. Let ďρi ∈ Q∗

v be the positively oriented normal to
ρi. Then the condition for f = (fvρ)v∈ρ ∈ LS+pre|V (v) to define a log structure is given by

(2.10)
l∏

i=1

ďρi ⊗ fvρi |Vτ (v) = 0⊗ 1, in Q∗
v ⊗ Γ(Vτ (v) \ Z,O∗

Vτ (v)
),

where the group structure on Q∗
v is additive and that on Γ(Vτ (v) \ Z,O∗

Vτ (v)
) is multiplicative. If

f = (fvρ)v∈ρ is a normalized section satisfying this condition, we call the fvρ’s slab functions.

Theorem 2.20 ([27], Thm. 5.2). Suppose that B is compact and the pair (B,P) is simple and
positive. Let s be a choice of open gluing data satisfying the lifting condition (Condition 2.16).
Then there exists a unique normalized section f ∈ Γ(0X,LS+pre) which defines a log structure on 0X
(i.e. satisfying the condition (2.10)).

From now on, we always assume that B is compact. To describe the log structure in Theorem
2.20, we first construct some local smoothing models: For each vertex v ∈ P[0], we represent the
strictly convex piecewise linear function φ in a small neighborhood U of v by a strictly convex
piecewise linear φv : Qv,R → R (so that φ = S∗

v(φv)) and set

Cv := {(m,h) ∈ Qv,R ⊕ R |h ≥ φv(m)}, Pv := Cv ∩ (Qv ⊕ Z).

The element ϱ = (0, 1) ∈ Qv ⊕ Z gives rise to a regular function q := zϱ on Specan(C[Pv]). We have
a natural identification

V (v) := Specan(C[Σv]) ∼= Specan(C[Pv]/q),
through which we view V (v) as the toric boundary divisor in Specan(C[Pv]) that corresponds to the
holomorphic function q, and πv : Specan(C[Pv])→ Specan(C[q]) as a local model for smoothing V (v).
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Using these local models, we can now describe the log structure around a point x ∈ 0X \Z. On a
neighborhood V ⊂ V (v)\Z of x, the local smoothing model is given by composing the two inclusions
♭ : V ↪→ V (v) and V (v) ↪→ Specan(C[Pv]). The natural monoid homomorphism Pv → C[Pv] defined
by sending m 7→ zm determines a log structure on Specan(C[Pv]) which restricts to one on the toric
boundary divisor V (v) = Specan(C[Σv]). We further twist the inclusion ♭ : V ↪→ V (v) as

(2.11) zm 7→ hm · zm for m ∈ Σv;

here, for each m ∈ Σv, hm is chosen as an invertible holomorphic function on V ∩Zero(zm; v), where
we denote Zero(zm; v) := {x ∈ V (v) | zm ∈ O∗

x}, and such that they satisfy the relations

(2.12) hm · hm′ = hm+m′ , on V ∩ Zero(zm+m′
; v).

Then pulling back the log structure on V (v) via ♭ : V ↪→ V (v) produces a log structure on V which
is log smooth.

These local choices of hm’s are also required to be determined by the slab functions fvρ’s, up to
equivalences. Here, we shall just give the formula relating them; see [27, Thm. 3.22] for details. For

any ρ ∈ P[n−1] containing v and two maximal cells σ± such that σ+∩σ− = ρ, we takem+ ∈ Qv∩Kvσ+
generating Qρ with some m0 ∈ Qv∩Kvρ such that m0−m+ ∈ Qv∩Kvσ−. Then the required relation
is given by

(2.13) fvρ =
h2m0

hm0−m+ · hm0+m+

∣∣∣
Vρ(v)∩V

∈ O∗
Vρ(v)

(Vρ(v) ∩ V ),

which is independent of the choices of m0 and m+.

By abuse of notation, we also let ♭ : V → kV be the k-th order thickening of V over C[q]/qk+1 in
the model Specan(C[Pv]) under the above embedding. Then there is a natural divisorial log structure
on kV† over kS† coming from restriction of the log structure on Specan(C[Pv])† over S† (i.e. Example
2.18, which is the same as the one given by Example 2.19 in this case). Restricting to V reproduces
the log structure we constructed above, which is the log structure of 0X† over the log point 0S†

locally around x. We have a Cartesian diagram of log spaces

(2.14) V † � � //

��

kV†

��
0S† � � //kS†

Next we describe the log structure around a singular point x ∈ Z ∩
(
0Xτ \

⋃
ω⊂τ

0Xω

)
for some

τ . Viewing f =
∑

ρ∈P[n−1] fρ where fρ is a section of Nρ, we let Zρ = Z(fρ) ⊂ 0Xρ ⊂ 0X and write

Z =
⋃
ρ Zρ. For every τ ∈ P, we have the data Ωi’s, Ri’s, ∆i(τ) and ∆̌i(τ) described in Definition

2.9 because (B,P) is simple. Since the normal fan Nτ ⊂ Λ∗
τ,R of τ is a refinement of N∆i(τ) ⊂ Λ∗

τ,R,
we have a natural toric morphism

(2.15) κτ,i : 0Xτ → Prτ,i ,
and the identification ι∗τρ(Nρ) ∼= κ∗

τ,i(O(1)). By the proof of [27, Thm. 5.2], ι∗τρ(fρ) is completely

determined by the gluing data s and the associated monodromy polytope ∆i(τ) where ρ ∈ Ri. In
particular, we have ι∗τρ(fρ) = ι∗τρ′(fρ′) and Zρ ∩

0Xτ = Zρ′ ∩ 0Xτ =: Zτi for ρ, ρ′ ∈ Ri. Locally, if we
write V (τ) = Specan(C[τ−1Σv]) by choosing some v ∈ τ , then, for each 1 ≤ i ≤ p, there exists an
analytic function fv,i on V (τ) such that fv,i|Vρ(τ) = s−1

vτ (fvρ) for ρ ∈ Ri.

According to [28, §2.1], for each 1 ≤ i ≤ p, we have ∆̌i(τ) ⊂ Q∗
τ,R, which gives

(2.16) ψi(m) = − inf{⟨m,n⟩ | n ∈ ∆̌i(τ)}.
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By convention, we write ψ0 := φ̄τ . By rearranging the indices i’s, we can assume that x ∈ Zτ1∩· · ·∩Zτr
and x /∈ Zτr+1 ∪ · · · ∪ Zτp . We introduce the convention that ψx,i = ψi for 0 ≤ i ≤ r and ψx,i ≡ 0 for
r < i ≤ dimR(τ). Then the local smoothing model near x is constructed as Specan(C[Pτ,x]), where

(2.17) Pτ,x := {(m, a0, . . . , al) ∈ Qτ × Zl+1 | ai ≥ ψx,i(m)},

l = dimR(τ), and the distinguished element ϱ = (0, 1, 0, . . . , 0) defines a family

Specan(C[Pτ,x])→ Specan(C[q])

by sending q 7→ zϱ. The central fiber is given by Specan(C[Qτ,x]), where

(2.18) Qτ,x = {(m, a0, . . . , al) | a0 = ψx,0(m)} ∼= Pτ,x/(ϱ+ Pτ,x)

is equipped with the monoid structure

m+m′ =

{
m+m′ if m+m′ ∈ Qτ,x,
∞ otherwise.

We have the ring isomorphism C[Qτ,x] ∼= C[Στ ⊕ Nl] induced by the monoid isomorphism defined
by sending (m, a0, a1, . . . , al) 7→ (m, a1 − ψ1(m), . . . , al − ψl(m)).

We also fix some isomorphism C[τ−1Σv] ∼= C[Στ⊕Zl] coming from the identification of τ−1Σv with
the fan Στ ⊕Rl = {ω⊕Rl | ω is a cone of τ} in Qτ,R⊕Rl. Taking a sufficiently small neighborhood
V of x such that Zρ ∩ V = ∅ if x /∈ Zρ, we define a map V → Specan(C[Qτ,x]) by composing

V ↪→ Specan(C[τ−1Σv]) ∼= Specan(C[Στ⊕Zl]) with the map Specan(C[Στ⊕Zl])→ Specan(C[Στ⊕Nl])
described on generators by

(2.19)


zm 7→ hm · zm if m ∈ Στ ;

ui 7→ fv,i if 1 ≤ i ≤ r;
ui 7→ zi − zi(x) if r < i ≤ l;

here ui is the i-th coordinate function of C[Nl], zi is the i-th coordinate function of C[Zl] chosen so

that
(
∂fv,i
∂zj

)
1≤i≤r,1≤j≤r

is non-degenerate on V ; also, each hm is an invertible holomorphic functions

on V ∩ Zero(zm; v), and they satisfy the equations (2.12) and (2.13) where we replace fvρ by

f̃vρ =

{
s−1
vτ (fvρ) if x /∈ Zρ,
1 if x ∈ Zρ.

Letting ♭ : V → kV be the k-th order thickening of V over C[q]/qk+1 in the model Specan(C[Pτ,x])
under the above embedding, we have a natural divisorial log structure on kV† over kS† induced from
the inclusion Specan(C[Qτ,x]) ↪→ Specan(C[Pτ,x]) (i.e. Example 2.18). Restricting it to V gives the

log structure of 0X† over the log point 0S† locally around x.

3. A generalized moment map and the tropical singular locus on B

In this section, we recall the construction of a generalized moment map µ : 0X → B from [43,
Prop. 2.1]. Then we construct some convenient charts on the base tropical manifold B and study
its singular locus.
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3.1. A generalized moment map. From this point onward, we will assume the vanishing of an
obstruction class associated to the open gluing data s, namely, o(s) = 1, where the obstruction class
o(s) is written multiplicatively (see [27, Thm. 2.34]). Under this assumption, one can construct an
ample line bundle L on 0X as follows: For each polytope τ ⊂ Λτ,R, by identifying 0Xτ (a closed

stratum of 0X described in Remark 2.14) with the projective toric variety associated to τ , we obtain
an ample line bundle Lτ on 0Xτ . When the assumption holds, then there exists an isomorphism
hωτ : ι

∗
ωτ (Lτ ) ∼= Lω, for every pair ω ⊂ τ , such that the isomorphisms hωτ ’s satisfy the cocycle

condition, i.e. hωτ ◦ ι∗ωτ (hτσ) = hωσ for every triple ω ⊂ τ ⊂ σ.3 In particular, the degenerate
Calabi–Yau 0X = 0X(B,P, s) is projective.

Sections of L correspond to the lattice points BZ ⊂ B. More precisely, given m ∈ BZ, there is a
unique τ ∈ P such that m ∈ intre(τ), and this determines a section ϑm,τ of Lτ by toric geometry.
This section extends uniquely as ϑm to σ ⊃ τ such that hτσ(ϑm) = ϑm,τ . Further extending ϑm by

0 to other cells gives a section of L corresponding to m, called a (0th-order) theta function. Now

for a vertex v ∈ P[0], we can trivialize L over V (v) using ϑv as the holomorphic frame. Then, for m
lying in a cell σ that contains v, ϑm is of the form gϑv, where g is a constant multiple of zm.

Under the above projectivity assumption, one can define a generalized moment map

(3.1) µ : 0X → B

following [43, Prop. 2.1]: First of all, the theta functions {ϑm}m∈BZ defines an embedding of
Φ: 0X ↪→ PN . Restricting to each closed toric stratum 0Xτ ⊂ 0X, the only non-zero theta functions
are those corresponding to m ∈ BZ∩ τ . Also, there is an embedding jτ : Tτ := Λ∗

τ,R/Λ
∗
τ,Z ↪→ U(1)N of

real tori such that the composition Φτ :
0Xτ → PN of Φ with the inclusion 0Xτ ↪→ 0X is equivariant.

The map µ is then defined by setting

(3.2) µ|0Xτ
(z) :=

1∑
m∈BZ∩τ |ϑm(z)|

2

∑
m∈BZ∩τ

|ϑm(z)|2 ·m,

which can be understood as a composition of maps

0Xτ
Φτ // PN

µP // (RN )∗
dj∗τ // Λτ,R,

where µP is the standard moment map for PN and djτ : Λ
∗
τ,R → RN is the Lie algebra homomorphism

induced by jτ : Tτ → U(1)N .

Fixing a vertex v ∈ P[0], we can naturally embed Λτ,R ↪→ Tv,R for all τ containing v. Furthermore,

we can patch the dj∗τ ’s into a linear map dj∗ : (RN )∗ → Tv,R so that µτ = dj∗ ◦ µP ◦ Φτ for each τ
which contains v. In particular, on the local chart V (τ) = Specan(C[τ−1Σv]) associated with v ∈ τ ,
we have the local description µ|V (τ) = dj∗ ◦ µP ◦ Φ|V (τ) of the generalized moment map µ.

We consider the amoeba A := µ(Z). As 0Xτ ∩Z =
⋃p
i=1 Z

τ
i , where Z

τ
i is the zero set of a section

of κ∗
τ,i(O(1)) (see the discussion right after equation (2.15)), we can see that A ∩ τ =

⋃p
i=1 µτ (Z

τ
i )

is a union of amoebas Aτi := µτ (Z
τ
i ). It was shown in [43] that the affine structure defined right

after Definition 2.2 extends to B \ A.

3.2. Construction of charts on B. For any τ ∈ P, we have

µ(V (τ)) =
⋃
τ⊂ω

intre(ω) =:W (τ).

3In fact, the vanishing of the obstruction class corresponds exactly to the validity of the cocycle condition.
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For later purposes, we would like to relate sufficiently small open convex subsets W ⊂ W (τ) with
Stein (or strongly 1-completed, as defined in [13]) open subsets U ⊂ V (τ). To do so, we need to
introduce a specific collection of (non-affine) charts on B.

Recall that there are natural maps Λτ ↪→ τ−1Σv and τ
−1Σv ↠ Στ . By choosing a piecewise linear

splitting splitτ : Στ → τ−1Σv, we have an identification of monoids τ−1Σv ∼= Στ ×Λτ , which induces
the biholomorphism

V (τ) = Specan(C[τ−1Σv]) ∼= Specan(C[Λτ ])× Specan(C[Στ ]),

where Λ∗
τ,C∗ := Specan(C[Λτ ]) ∼= Λ∗

τ ⊗Z C∗ ∼= (C∗)l is a complex torus. Fixing a set of generators

{mi}i∈Bτ of the monoid Στ , which is not necessarily a minimal set, we can define an embedding

Specan(C[Στ ]) ↪→ C|Bτ | as an analytic subset using the functions zmi ’s. We consider the real torus

Tτ,⊥ := Q∗
τ,R/Q

∗
τ
∼= U(1)n−l and its action on Specan(C[Στ ]) defined by t · zm = e2πi(t,m)zm, together

with an embedding Tτ,⊥ ↪→ U(1)|Bτ | of real tori via t 7→ (e2πi(t,mi))i∈Bτ , so that Specan(C[Στ ]) ↪→ C|Bτ |

is Tτ,⊥-equivariant.

We consider the moment map µ̂τ : Specan(C[Στ ])→ Qτ,R defined by

(3.3) µ̂τ :=
∑
i∈Bτ

1

2
|zmi |2 ·mi,

which is obtained by composing the standard moment map C|Bτ | → R|Bτ |
≥0 , (zi)i∈Bτ 7→ (12 |zi|

2)i∈Bτ
with the projection R|Bτ | → Qτ,R, ei 7→ mi. By [21, §4.2], µ̂τ induces a homeomorphism between the
quotient Specan(C[Στ ])/Tτ,⊥ and Qτ,R. Taking product with the log map log : Λ∗

τ,C∗ → Λ∗
τ,R (which

is induced from the standard log map log : C∗ → R defined by log(e2π(x+iθ)) = x), we obtain a map
µτ := (log, µ̂τ ) : V (τ)→ Λ∗

τ,R × Qτ,R,
4 and the following diagram

(3.4) V (τ)

µ

��

µτ

xx
Λ∗
τ,R × Qτ,R

Υτ //W (τ),

where Υτ is a homeomorphism which serves as a chart.

The homeomorphism Υτ exists because if we fix a vertex v ∈ τ , then we can equip V (τ) with
an action by the real torus Tn := T ∗

v,R/T
∗
v such that both µ and µτ induce homeomorphisms from

the quotient V (τ)/Tn onto the images. The restriction of Υτ to Λ∗
τ,R × {o}, where {o} is the zero

cone, is a homeomorphism onto intre(τ) ⊂W (τ), which is nothing but (a generalized version of) the
Legendre transform (see [21, §4.2] for the explicit formula); also, this homeomorphism is independent
of the choices of the splitting splitτ and the generators {mi}i∈Bτ .

The dependences of the chart Υτ on the choices of the splitting splitτ : Στ → τ−1Σv and the
generators {mi}i can be described as follows. First, if we choose another piecewise linear splitting

s̃plitτ : Στ → τ−1Σv, then there is a piecewise linear map b : Στ → Λτ,R recording the difference

between splitτ and s̃plitτ . The two corresponding coordinate charts Υτ and Υ̃τ are then related by
a homeomorphism ג such that

ג

(
x,
∑
i

yimi

)
=

(
x,
∑
i

yie
4π⟨b(mi),x⟩mi

)
,

4It depends on the choices of the splitting splitτ : Στ → τ−1Σv and the generators {mi}i, but we omit these
dependencies from our notations.



22 CHAN, LEUNG, AND MA

where yi = 1
2 |z

mi |2 for some point z ∈ Specan(C[Στ ]) and i runs through mi ∈ σ, via the for-

mula Υ̃τ = Υτ ◦ .ג Second, if we choose another set of generators m̃j ’s, then the corresponding

maps µ̂τ , µ̃τ : Specan(C[Στ ]) → Qτ,R are related by a continuous map ג̂ : Qτ,R → Qτ,R which maps
each cone σ ∈ Στ back to itself. This is because both µ̂τ , µ̃τ induce a homeomorphism between
Specan(C[Στ ])/Tτ,⊥ and Qτ,R.

Now suppose that ω ⊂ τ . We want to see how the charts Υω, Υτ can be glued together in a
compatible manner. We first make a compatible choice of splittings. So we fix a vertex v ∈ ω
and a piecewise linear splitting splitω : Σω → ω−1Σv. We then choose a piecewise linear splitting
splitωτ : Στ → Σω such that Kτσ is mapped into Kωσ for any σ ⊃ τ . Together with the natural
maps Λτ/Λω ↪→ τ−1Σω and τ−1Σω ↠ Στ , we obtain an isomorphism τ−1Σω ∼= (Λτ/Λω) × Στ . By
composing together splitωτ : Στ → Σω, splitω : Σω → ω−1Σv and the natural monoid homomorphism
ω−1Σv → τ−1Σv, we get a splitting splitτ : Στ → τ−1Σv.

Using these choices of splittings, we have a biholomorphism

Specan(C[τ−1Σω]) ∼= (Λτ/Λω)
∗ ⊗Z C∗ × Specan(C[Στ ])

which fits into the following diagram
(3.5)

Λ∗
ω,C∗ × Specan(C[Σω])

∼= //Specan(C[ω−1Σv])

Λ∗
ω,C∗ × Specan(C[τ−1Σω])

?�

OO

∼=
��

Specan(C[τ−1Σv])∼=
oo

∼=
��

?�

OO

Specan(C[τ−1Σv])
s−1
ωτ

oo

∼=
��

7 W

Fs(ω⊂τ)
jj

(Λω ⊕ Λτ/Λω)
∗ ⊗Z C∗ × Specan(C[Στ ]) Λ∗

τ,C∗ × Specan(C[Στ ])oo Λ∗
τ,C∗ × Specan(C[Στ ]).

s−1
ωτ

oo

Here, the bottom left horizontal map is induced from a splitting (Λτ/Λω) → Λτ obtained by com-
posing Λτ/Λω → τ−1Σω with the splitting τ−1Σω → τ−1(ω−1Σv), and then identifying with the
image lattice Λτ . The appearance of sωτ in the diagram is due to the twisting of V (τ) by the open
gluing data (sωτ )ω⊂τ when it is glued to V (ω).

We also have to make a compatible choice of the generators {mi}i∈Bω and {mi}i∈Bτ . First note
that the restriction of µ̂ω to the open subset Specan(C[τ−1Σω]) ⊂ Specan(C[Σω]) depends only on
the subcollection {mi}i∈Bω⊂τ of {mi}i∈Bω which contains those mi’s that belong to some cone σ ⊃ τ .
We choose the set of generators {m̃i}i∈Bτ for Στ , with Bτ = Bω⊂τ , to be the projection of {mi}i∈Bω⊂τ

through the natural map τ−1Σω → Στ . Each mi can be expressed as mi = splitωτ (m̃i)+ bi for some
bi ∈ Λτ/Λω, through the splitting splitωτ : Στ → Σω. Notice that if mi ∈ Kωτ , then we have m̃i = o
and hence bi ∈ Kωτ . By tracing through the biholomorphism in (3.5) and taking either the modulus
or the log map, we have a map

ג : Λ∗
ω,R × (Λτ,R/Λω,R)

∗ × Qτ,R → Λ∗
ω,R × Qω,R

satisfying

(3.6) ג

(
x1 − cωτ,1, x2 − cωτ,2,

∑
i

yi|sωτ (splitωτ (m̃i))|−2m̃i

)
=

(
x1,
∑
i

yie
4π⟨bi,x2⟩mi

)
,

where yi =
1
2 |z

m̃i |2. Here, sωτ ∈ PM(τ) is the part of the open gluing data associated to ω ⊂ τ ,
and cωτ = cωτ,1+ cωτ,2 ∈ Λ∗

τ,R is the unique element representing the linear map log |sωτ | : Λτ,R → R
defined by log |sωτ |(b) = log |sωτ (b)|. For instance, the holomorphic function zmi ∈ C[τ−1Σω] is

identified with zbi ·zm̃i in (Λτ/Λω)
∗⊗ZC∗×Specan(C[Στ ]), resulting in the expression

∑
i yie

4π⟨bi,x2⟩mi
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on the right hand side. We have Υτ = Υω ◦ ,ג where we use the splitting (Λτ/Λω) → Λτ to obtain
an isomorphism Λ∗

ω,R × (Λτ,R/Λω,R)
∗ ∼= Λ∗

τ,R and an identification of the domains of the two maps
Υτ and Υω ◦ .ג

Lemma 3.1. There is a base B of open subsets of B such that the preimage µ−1(W ) is Stein for
any W ∈ B.

Proof. First of all, it is well-known that analytic spaces associated to affine varieties are Stein. So
V (τ) is Stein for any τ . Now we fix a point x ∈ intre(τ) ⊂ B. It suffices to show that there is a
local base Bx of x such that the preimage µ−1(W ) is Stein for each W ∈ Bx. We work locally on
µ|V (τ) : V (τ)→W (τ). Consider the diagram (3.4) and write Υ−1(x) = (x, o), where o ∈ Qτ,R is the

origin. By [13, Ch. 1, Ex. 7.4], the preimage log−1(W ) under the log map log : (C∗)l → Λ∗
τ,R is

Stein for any convex W ⊂ Λ∗
τ,R which contains x. Again by [13, Ch. 1, Ex. 7.4], any subset

N⋂
j=1

{z ∈ Specan(C[Στ ]) | |fj(z)| < ϵ},

where fj ’s are holomorphic functions, is Stein. By taking fj ’s to be the functions zmj ’s associated
to the set of all non-zero generators in {mj}j∈Bτ and ϵ sufficiently small, we have a subset

W =

y ∣∣∣ y =
∑
j

yjmj with |yj | <
ϵ2

2
, where yj =

1

2
|zmj |2 at some point z ∈ Specan(C[Στ ])


of Qτ,R such that the preimage µ̂−1

τ (W ) is Stein. Therefore, we can construct a local base Bo of o
such that the preimage µ̂−1

τ (W ) is Stein for any W ∈ Bo. Finally, since a product of Stein open
subsets is Stein, we obtain our desired local base Bx by taking the products of these subsets. □

3.3. The tropical singular locus S of B. We now specify a codimension 2 singular locus S ⊂ B
of the affine structure using the charts Υτ introduced in (3.4) for τ such that dimR(τ) < n. Given
the chart Υτ that maps Λ∗

τ,R to intre(τ), we define the tropical singular locus S by requiring that

(3.7) Υ−1
τ (S ∩ intre(τ)) =

⋃
ρ∈Nτ ;

dimR(ρ)<dimR(τ)

(
(intre(ρ) + cτ )× {o}

)
,

where Nτ ⊂ Λ∗
τ,R is the normal fan of the polytope τ , and {o} is the zero cone in Στ ⊂ Qτ,R;

here, cτ = log |svτ | is the element in Λ∗
τ,R representing the linear map log |svτ | : Λτ,R → R, which is

independent of the vertex v ∈ τ . A subset of the form Sτ,ρ := (intre(ρ) + cτ )× {o} in (3.7) is called
a stratum of S in intre(τ). The locus S is independent of the choices of the splittings splitτ ’s and
generators {mi}i∈Bτ used to construct the charts Υτ ’s.

Remark 3.2. Our definition of the singular locus is similar to those in [27, 29]; the only difference
is that our locus is a collection of polyhedra in Λ∗

τ,R, instead of intre(τ). Note that Λ∗
τ,R is homeo-

morphic to intre(τ) by the Legendre transform. This modification is needed for our construction of
the contraction map C below, where we need to consider the convex open subsets in Λ∗

τ,R, instead of

those in intre(τ).

Lemma 3.3. For ω ⊂ τ and a stratum Sτ,ρ in intre(τ), the intersection of the closure Sτ,ρ in B with
intre(ω) is a union of strata of S in intre(ω).

Proof. We consider the map ג described in equation (3.6) and take a neighborhood W =W1×Qω,R
of a point (x, o) in Λ∗

ω,R × Qω,R, where W1 is some sufficiently small neighborhood of x in Λ∗
ω,R. By
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shrinking W if necessary, we may assume that W)1−ג ) = W1 × (a − intre(Kωτ
∨)) × Qτ,R, where a

is some element in −intre(Kωτ
∨) ⊂ (Λτ,R/Λω,R)

∗. Writing cτ = cτ,1 + cτ,2, where cτ,1, cτ,2 are the
components of cτ according to the chosen decomposition Λ∗

τ,R
∼= Λ∗

ω,R × (Λτ,R/Λω,R)
∗, the equality

cτ,1 + cωτ,1 = cω follows from the compatibility of the open gluing data in Definition 2.13. If Sτ,ρ
intersects the open subset W)1−ג ), then ρ ⊂ Λ∗

τ,R must be the dual cone of some face ρ∨ ⊂ ω ⊂ τ
in Λ∗

τ,R. The intersection is of the form

(intre(ρ) + cτ,1)× (a− intre(Kωτ
∨))× {o}

for some ρ ∈ Nω (cτ,2 is absorbed by a), where ρ ⊂ Λ∗
ω,R is the dual cone of ρ∨ in Λ∗

ω,R, and hence

we have W ∩ Sτ,ρ = intre(ρ)))ג + cτ,1) × (a − intre(Kωτ
∨)) × {o}). Therefore, the intersection of

Sτ,ρ with Λ∗
ω,R in the open subset W ⊂ Λ∗

ω,R × Qω,R is given by (ρ+ cω)× {o}, which is a union of
strata. □

The tropical singular locus S is naturally equipped with a stratification, where a stratum is given
by Sτ,ρ for some cone ρ ⊂ Nτ of dimR(ρ) < dimR(τ) for some τ ∈ P[<n]. We use the notation S[k]

to denote the set of k-dimensional strata of S. The affine structure on
⋃
v∈P[0] Wv ∪

⋃
σ∈P[n] intre(σ)

introduced right after Definition 2.2 in §2.1 can be naturally extended to B \ S as in [29].

If we consider ω ⊂ τ ⊂ ρ for some ω ∈ P[1] and ρ ∈ P[n−1], the corresponding monodromy
transformation Tγ is non-trivial if and only if ω ∈ Ωp and ρ ∈ Rp, where p is as in Definition 2.9.
Therefore, the part of the singular locus S lying in Υ−1

τ (intre(τ)) = Λ∗
τ,R × {o} is determined by

the subsets Ωp’s. We may further define the essential singular locus Se to include only those strata

contained in S[n−2] with non-trivial monodromy around them. We observe that the affine structure
can be further extended to B \ Se.

More explicitly, we have a projection

iτ = iτ,1 ⊕ · · · ⊕ iτ,p : Λ
∗
τ → Λ∗

∆1(τ)
⊕ · · · ⊕ Λ∗

∆p(τ)
,

in which Λ∗
∆1(τ)

⊕ · · · ⊕ Λ∗
∆p(τ)

can be treated as a direct summand as in §2.2. So we can consider

the pullback of the fan N∆1(τ)× · · · ×N∆p(τ) via the map iτ , and realize Nτ ⊂ Λ∗
τ,R as a refinement

of this fan. Similarly, we have ǐτ = ǐτ,1 ⊕ · · · ⊕ ǐτ,p : Q
∗
τ → Λ∗

∆̌1(τ)
⊕ · · · ⊕ Λ∗

∆̌p(τ)
and the fan

N∆̌1(τ)
× · · · ×N∆̌p(τ)

in Q∗
τ,R under pullback via ǐτ . The intersection Se ∩ intre(τ) can be described

by replacing ρ ∈ Nτ with the condition ρ ∈ i−1
τ (N∆1(τ) × · · · ×N∆p(τ)), with a stratum denoted by

Se,τ,ρ. This gives a stratification on Se.

Lemma 3.4. For ω ⊂ τ and a stratum Se,τ,ρ in intre(τ), the intersection of the closure Se,τ,ρ in B
with intre(ω) is a union of strata of Se in intre(ω).

Proof. Given ω ⊂ τ , we take a change of coordinate map ג together with a neighborhoodW as in the
proof of Lemma 3.3. We need to show that W ∩ Sτ,ρ = intre(ρ)))ג + cτ,1)× (a− intre(Kωτ

∨))×{o})
for some cone ρ ∈ i−1

τ (
∏p
i=1N∆i(τ)). Let ∆1(τ), . . . ,∆r(τ), . . . ,∆p(τ) be the monodromy polytopes

of τ , and ∆1(ω), . . . ,∆r(ω), . . . ,∆p′(ω) be those of ω such that ∆j(ω) is the face of ∆j(τ) parallel
to Λω for j = 1, . . . , r. Then we have direct sum decompositions Λ∆1(τ) ⊕ · · · ⊕ Λ∆p(τ) ⊕ Aτ = Λτ
and Λ∆1(ω) ⊕ · · · ⊕ Λ∆p′ (ω)

⊕Aω = Λω. We can further choose an inclusion

aωτ : Λ∆r+1(ω) ⊕ · · · ⊕ Λ∆p′ (ω)
⊕Aω ↪→ Aτ ;

in other words, for every j = r+1, . . . , p′, any f ∈ Rj ⊂ Pn−1(ω) in Definition 2.9 is not containing

τ . For every j = r + 1, . . . , p and any f ∈ Rj ⊂ Pn−1(τ), the element mf
v1v2 is zero for any two
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vertices v1, v2 of ω. We have the identification

Λτ/Λω =
r⊕
j=1

(Λ∆j(τ)/Λ∆j(ω))⊕
p⊕

l=r+1

Λ∆l(τ) ⊕ coker(aωτ ).

As a result, any cone i−1
τ (
∏p
j=1 ρj) ∈ i−1

τ

(∏p
i=1N∆i(τ)

)
of codimension greater than 0 intersecting

W)1−ג ) will be a pullback of a cone under the projection to Λ∗
∆1(τ),R ⊕ · · · ⊕Λ∗

∆r(τ),R. Consider the

commutative diagram of projection maps

(3.8) Λ∗
ω,R

pω

��

Λ∗
τ,Rpω⊂τ

oo

pτ

��∏r
j=1 Λ

∗
∆j(ω),R

∏r
j=1 Λ

∗
∆j(τ),R,Πω⊂τ

oo

we see that, in the open subset W)1−ג ), every cone of codimension greater than 0 coming from
pullback via pτ is a further pullback via Πω⊂τ ◦ pτ . As a consequence, it must be of the form
intre(ρ)))ג + cτ,1)× (a− intre(Kωτ

∨))× {o}) in W . □

3.3.1. Contraction of A to S. We would like to relate the amoeba A = µ(Z) with the tropical
singular locus S introduced above.

Assumption 3.5. We assume the existence of a surjective contraction map C : B → B which is
isotopic to the identity and satisfies the following conditions:

(1) C−1(B \S) ⊂ (B \S) and the restriction C|C−1(B\S) : C
−1(B \S)→ B \S is a homeomorphism.

(2) C maps A into the essential singular locus Se.
(3) For each τ ∈ P, we have C−1(intre(τ)) ⊂ intre(τ).
(4) For each τ ∈ P with 0 < dimR(τ) < n, we have a decomposition

τ ∩ C−1(B \ S) =
⋃
v∈τ [0]

τv

of the intersection τ∩C−1(B\S) into connected components τv’s, where each τv is contractible
and is the unique component containing the vertex v ∈ τ .

(5) For each τ ∈ P and each point x ∈ intre(τ) ∩ S, C−1(x) ⊂ intre(τ) is a connected compact
subset.

(6) For each τ ∈ P and each point x ∈ intre(τ) ∩ S, there exists a local base Bx around x such
that (C ◦ µ)−1(W ) ⊂ V (τ) is Stein for every W ∈ Bx, and for any U ⊃ C−1(x), we have
C−1(W ) ⊂ U for sufficiently small W ∈ Bx.

Similar contraction maps appear in [43, Rem. 2.4] (see also [45, 44]).

When dimR(B) = 2, we can take C = id because from [27, Ex. 1.62], we see that Z is a finite
collection of points, with at most one point lying in each closed stratum 0Xτ , and the amoeba A is
exactly the image of Z under the generalized moment map µ.

When dimR(B) = 3, the amoeba A can possibly be of codimension one and we need to construct
a contraction map as shown in Figure 5.

For dimR(τ) = 1, again from [27, Ex. 1.62], we see that if A∩ intre(τ) ̸= ∅, then there is exactly one
Ω1 and R1, and ∆1(τ) is a line segment of affine length 1. In this case, Z ∩ 0Xτ consists of only one
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Figure 5. Contraction map C when dimR(B) = 3

point, given by the intersection of the zero locus s−1
vτ (fvρ) with C∗ ∼= Vτ (τ) ⊂ V (τ). Taking m to be

the primitive vector in Λτ starting at v that points into τ , we can write s−1
vτ (fvρ) = 1 + s−1

vτ (m)zm.

Applying the log map log : C∗ → R, we see that A ∩ intre(τ) = cτ . Therefore, for an edge τ ∈ P[1],
we can define C to be the identity on τ .

Figure 6. Contraction at ρ

On a codimension one cell ρ such that intre(ρ) ∩ A ≠ ∅ (see Figure 6), we consider the log map
log : Specan(C[Λρ]) ∼= (C∗)2 → Λ∗

ρ,R
∼= R2, and take a sufficiently large polytope P (colored purple in

Figure 6) so that A \ intre(P) is a disjoint union of legs. We first contract each leg to the tropical
singular locus (colored blue in Figure 6) along the normal direction to the tropical singular locus.
Next, we contract the polytope P to the 0-dimensional stratum of Se. Notice that the restriction of
C to the tropical singular locus S is not the identity but rather a contraction onto itself. Once the
contraction map is constructed for all codimension one cells ρ, we can then extend it continuously to
the whole of B so that it is a diffeomorphism on intre(σ) for every maximal cell σ. The map is chosen
such that the preimage C−1(x) for every point x ∈ intre(ρ) is a convex polytope in R2. Therefore,
given any open subset U ⊂ R2 which contains C−1(x), we can find some convex open neighborhood
W1 ⊂ U of C−1(x) giving the Stein open subset log−1(W1) ⊂ (C∗)2. By taking W =W1×W2 in the
chart Λ∗

ρ,R × Qρ,R as in the proof of Lemma 3.1, we have the open subset W that satisfies condition

(5) in Assumption 3.5.
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In general, we need to construct C|intre(τ) inductively for each τ ∈ P, so that the preimage

C−1(x) ⊂ intre(τ) is convex in the chart Λ∗
τ,R
∼= intre(τ) and the codimension one amoeba A is

contracted to the codimension 2 tropical singular locus Se. The reason for introducing such a
contraction map is that we can modify the generalized moment map µ to one which is more closely
related with tropical geometry:

Definition 3.6. We call the composition ν := C ◦ µ : 0X → B the modified moment map.

One immediate consequence of property (6) in Assumption 3.5 is that we have Rν∗(F) = ν∗(F)
for any coherent sheaf F on 0X, thanks to Lemma 3.1 and Cartan’s Theorem B:

Theorem 3.7 (Cartan’s Theorem B [6]; see e.g. Ch. IX, Cor. 4.11 in [13]). For any coherent sheaf
F over a Stein space U , we have H>0(U,F) = 0.

3.3.2. Monodromy invariant differential forms on B. Outside of the essential singular locus Se, we
have a nice integral affine manifold B \ Se, on which we can talk about the sheaf Ω∗ of (R-valued)
de Rham differential forms. But in fact, we can extend its definition to Se as well using monodromy
invariant differential forms.

We consider the inclusion ι : B0 := B \ Se → B and the natural exact sequence

(3.9) 0→ Z→ Aff → ι∗Λ
∗
B0
→ 0,

where Λ∗
B0

denotes the sheaf of integral cotangent vectors on B0. For any τ ∈ P, the stalk (ι∗Λ
∗
B0

)x
at a point x ∈ intre(τ) ∩ Se can be described using the chart Υτ in (3.4). Using the description in
§3.3, we have x ∈ Se,τ,ρ = intre(ρ) × {o} for some ρ ∈ i−1

τ (N∆1(τ) × · · · × N∆p(τ)). Taking a vertex
v ∈ τ , we can consider the monodromy transformations Tγ ’s around the strata Se,η,ρ’s that contain
x in their closures. We can identify the stalk ι∗(Λ

∗
B0

)x as the subset of invariant elements of T ∗
v

under all such monodromy transformations. Since ρ ⊂ Λ∗
τ,R is a cone, we have Λρ ⊂ Λ∗

τ . Using the

natural projection map πvτ : T
∗
v → Λ∗

τ , we have the identification ι∗(Λ
∗
B0

)x ∼= π−1
vτ (Λρ). There is a

direct sum decomposition ι∗(Λ
∗
B0

)x = Λρ ⊕ Q∗
τ , depending on a decomposition Tv = Λτ ⊕ Qτ . This

gives the map

(3.10) x : Ux → π−1
vτ (Λρ)

∗
R

in a sufficiently small neighborhood Ux, locally defined up to a translation in π−1
vτ (Λρ)

∗
R. We need

to describe the compatibility between the map associated to a point x ∈ Se,ω,ρ and that to a point

x̃ ∈ Se,τ,ρ̃ such that Se,ω,ρ ⊂ Se,τ,ρ̃.

The first case is when ω = τ . We let x̃ ∈ intre(ρ̃)×{o}∩Ux for some ρ ⊂ ρ̃. Then, after choosing
suitable translations in π−1

vτ (Λρ)
∗
R for the maps x and x̃, we have the following commutative diagram:

(3.11) Ux̃ ∩ Ux

��

x̃ //π−1
vτ (Λρ̃)

∗
R

p

��
Ux

x //π−1
vτ (Λρ)

∗
R.

The second case is when ω ⊊ τ . Making use of the change of charts ג in equation (3.6), and the
description in the proof of Lemma 3.4, we write

x̃ ∈ intre(ρ̃)× {o}
for some cone ρ̃ = i−1

τ (
∏p
j=1 ρ̃j) ∈ i−1

τ

(∏p
j=1 Λ

∗
∆j(τ)

)
of positive codimension. In W)1−ג ), we may

assume ρ̃ is the pullback of a cone ρ̆ via Πω⊂τ ◦ pτ as in equation (3.8). Since Se,ω,ρ ⊂ Se,τ,ρ̃,

we have ρ ⊂ p−1
ω (ρ̆) and hence p−1

ω⊂τ (Λρ) ⊂ Λρ̃. Therefore, from pω⊂τ ◦ πvτ = πvω, we obtain
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π−1
vω (Λρ) ⊂ π−1

vτ (Λρ̃), inducing the map p : π−1
vτ (Λρ̃)

∗
R → π−1

vω (Λρ)
∗
R. As a result, we still have the

commutative diagram (3.11) for a point x̃ sufficiently close to x.

Definition 3.8. Given x ∈ Se as above, the stalk of Ω∗ at x is defined as the stalk Ω∗
x := (x−1Ω∗)x

of the pullback of the sheaf of smooth de Rham forms on π−1
vτ (Λρ)

∗
R, which is equipped with the de

Rham differential d. This defines the complex (Ω∗, d) of monodromy invariant smooth differential
forms on B. A section α ∈ Ω∗(W ) is a collection of elements αx ∈ Ω∗

x, x ∈ W such that each αx
can be represented by x−1βx in a small neighborhood Ux ⊂ p−1(Ux) for some smooth form βx on Ux,
and satisfies the relation αx̃ = x̃−1(p∗βx) in Ω∗

x̃ for every x̃ ∈ Ux.

Example 3.9. In the 2-dimensional case in Example 2.11, we consider a singular point

{x} = Se ∩ intre(τ)

for some τ ∈ P[1]. In this case, we can take ρ to be the 0-dimenisonal stratum in Nτ = i−1
τ (N∆1(τ))

and we have ι∗(Λ
∗
B0

)x = Q∗
τ . Taking a generator of Q∗

τ , we get an invariant affine coordinate
x : Ux → R which is the normal affine coordinate of τ . The stalk Ω∗

x is then identified with the
pullback of the space of germs of smooth differential forms from (R, 0) via x. In particular, Ω2

x = 0.

For the Y -vertex of type II in Example 2.12, the situation is similar to the 2-dimensional case.
For {x} = Se ∩ intre(τ), we still have ι∗(Λ

∗
B0

)x = Q∗
τ , and in this case, x : Ux → R2 are the two

invariant affine coordinates. We can identify Ω∗
x as the pullback of the space of germs of smooth

differential forms from (R2, 0) via x.

For the Y -vertex of type I in Example 2.12, we use the identification Λ∗
τ,R
∼= intre(τ) via Υτ for

the 2-dimensional cell τ separating two maximal cells σ+ and σ−. In this case, Se is as shown (in
blue color) in Figure 6 and N = i−1

τ (N∆1(τ)) is the fan of P2. If x is the 0-dimensional stratum of
Se ∩ intre(τ), we have ι∗(Λ

∗
B0

)x = Q∗
τ and x : Ux → R as an invariant affine coordinate. If x is a

point on a leg of the Y -vertex, we have x = (x1, x2) : Ux → R2 with x1 coming from a generator of
Λρ and x2 coming from a generator of Q∗

τ .

It follows from the definition that R→ Ω∗ is a resolution. We shall also prove the existence of a
partition of unity.

Lemma 3.10. Given any x ∈ B and a sufficiently small neighborhood U , there exists ϱ ∈ Ω0(U)
with compact support in U such that 0 ≤ ϱ ≤ 1 and ϱ ≡ 1 near x. (Since Ω0 is a subsheaf of the
sheaf C0 of continuous functions on B, we can talk about the value f(x) for f ∈ Ω0(W ) and x ∈W .)

Proof. If x /∈ Se, the statement is a standard fact. So we assume that x ∈ intre(τ) ∩ Se for some
τ ∈ P. As above, we can write x ∈ intre(ρ) × {o}. Furthermore, since ρ is a cone in the fan
i−1
τ (N∆1(τ) × · · · ×N∆p(τ)), Λ

∗
τ has Λ∗

∆1(τ)
⊕ · · · ⊕ Λ∗

∆p(τ)
as a direct summand, and the description

of ι∗(Λ
∗
B0

)x is compatible with the direct sum decomposition of Λ∗
τ . We may further assume that

p = 1 and τ = ∆1(τ) is a simplex.

If ρ is not the smallest cone (i.e. the one consisting of just the origin in Nτ ), we have a decom-
position Λ∗

τ = Λρ ⊕ Qρ and the natural projection p : Λ∗
τ → Qρ. Then, locally near x0, we can write

the normal fan Nτ as p−1(Σρ) for some normal fan Σρ ⊂ Qρ of a lower dimensional simplex. For
any vector v tangent to ρ at x0 and the corresponding affine function lv locally near x0, we always
have ∂lv

∂v > 0. This allows us to construct a bump function ϱ =
∑

vi
(lvi(x) − lvi(x0))2 along the

Λρ,R-direction. So we are reduced to the case when ρ = {o} is the smallest cone in the fan Nτ .

Now we construct the function ϱ near the origin o ∈ Nτ by induction on the dimension of the
fan Nτ . When dimR(Nτ ) = 1, it is the fan of P1 consisting of three cones R−, {o} and R+. One
can construct the bump function which is equal to 1 near o and supported in a sufficiently small
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neighborhood of o. For the induction step, we consider an n-dimensional fan Nτ . For any point x
near but not equal to o, we have x ∈ intre(ρ) for some ρ ̸= {o}. Then we can decompose Nτ locally
as Λρ⊕Qρ. Applying the induction hypothesis to Qρ gives a bump function ϱx compactly supported
in any sufficiently small neighborhood of x (for the Λρ directions, we do not need the induction
hypothesis to get the bump function). This produces a partition of unity {ϱi} outside o. Finally,
letting ϱ := 1−

∑
i ϱi and extending it continuously to the origin o gives the desired function. □

Lemma 3.10 produces a partition of unity for the complex (Ω∗, d) of monodromy invariant dif-
ferential forms on B, which satisfies the requirement in Condition 4.7 below. In particular, the
cohomology of (Ω∗(B), d) computes RΓ(B,R). Given a point x ∈ B \ Se, we can take an element
ϱx ∈ Ωn(B), compactly supported in an arbitrarily small neighborhood Ux ⊂ B \ Se, to represent a
non-zero element in the cohomology Hn(Ω∗, d) = Hn(B,C) ∼= C.

4. Smoothing of maximally degenerate Calabi–Yau varieties via dgBV algebras

In this section, we review and refine the results in [8] concerning smoothing of the maximally

degenerate Calabi–Yau log variety 0X† over Ŝ† = Specan(R̂)
† = Specan(C[[q]])† using the local

smoothing models V † → kV†’s specified in §2.4. In order to relate with tropical geometry on B, we
will choose V so that it is the pre-image ν−1(W ) of an open subset W in B.

4.1. Good covers and local smoothing data. Given τ ∈ P and a point x ∈ intre(τ) ⊂ B, we
take a sufficiently small open subset W ∈ Bx. We need to construct a local smoothing model on the
Stein open subset V = ν−1(W ).

• If x /∈ Se, then we can simply take the local smoothing V† introduced in (2.14) in §2.4.
• If x ∈ Se ∩ intre(τ), we assume that C−1(W )∩Aτi ̸= ∅ for i = 1, . . . , r and C−1(W )∩Aτi = ∅
for other i’s. Note that C−1(W ) ∩ intre(τ) may not be a small open subset in intre(τ) as we
may contract a polytope P via C (Figure 6). If we write Λ∆1(τ) ⊕ · · · ⊕ Λ∆p(τ) ⊕Aτ = Λτ as
lattices, then for each direct summand Λ∆i(τ), we have a commutative diagram

Λ∗
τ,C∗

iτ,i,C∗ //

log

��

Λ∗
∆i(τ),C∗

log

��
Λ∗
τ,R

iτ,i,R //Λ∗
∆i(τ),R,

so that both Zτi and Aτi are coming from pullbacks of some subsets under the projection
maps iτ,i,C∗ and iτ,i,R respectively. From this, we see that C−1(W ) ∩Aτ1 ∩ · · · ∩ Aτr ̸= ∅ and
ν−1(W )∩Zτ1 ∩ · · · ∩Zτr ̸= ∅ while ν−1(W )∩Zτi = ∅ for other i’s. Now we take ψx,i = ψi for
1 ≤ i ≤ r and ψx,i = 0 otherwise accordingly. Then we can take Pτ,x introduced in (2.17)

and the map V = ν−1(W )→ Specan(C[Στ ⊕ Nl]) defined by

(4.1)


zm 7→ hm · zm if m ∈ Στ ;

ui 7→ fv,i if 1 ≤ i ≤ r;
ui 7→ zi if r < i ≤ l.

Note that the third line of this formula is different from that of equation (2.19) because we
do not specify a point x ∈ Zτ1 ∩ · · · ∩ Zτr . By shrinking W if necessary, one can show that
it is an embedding using an argument similar to [28, Thm. 2.6]. This is possible because
we can check that the Jacobian appearing in the proof of [28, Thm. 2.6] is invertible for
all point in ν−1(x) = µ−1(C−1(x)), which is a connected compact subset by property (5) in
Assumption 3.5.
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Condition 4.1. An open cover {Wα}α of B is said to be good if

(1) for each Wα, there exists a unique τα ∈ P such that Wα ∈ Bx for some x ∈ intre(τ);
(2) Wαβ = Wα ∩Wβ ̸= ∅ only when τα ⊂ τβ or τβ ⊂ τα, and if this is the case, we have either

intre(α) ∩Wαβ ̸= ∅ or intre(β) ∩Wαβ ̸= ∅.

Given a good cover {Wα}α of B, we have the corresponding Stein open cover V := {Vα}α of 0X

given by Vα := ν−1(Wα) for each α. For each V
†
α , the infinitesimal local smoothing model is given as a

log space V†
α over Ŝ† (see (2.14)). Let kVα be the kth-order thickening over kS† = Specan(R/m

k+1)†

and j : Vα \Z ↪→ Vα be the open inclusion. As in [8, §8], we obtain coherent sheaves of BV algebras
(and modules) over Vα from these local smoothing models. But for the purpose of this paper, we
would like to push forward these coherent sheaves to B and work with the open subsets Wα’s. This
leads to the following modification of [8, Def. 7.6] (see also [8, Def. 2.14 and 2.20]):

Definition 4.2. For each k ∈ Z≥0, we define

• the sheaf of kth-order polyvector fields to be kG∗α := ν∗j∗(
∧−∗ΘkV†

α/
kS†) (i.e. push-forward

of relative log polyvector fields on kV†
α);

• the kth-order log de Rham complex to be kK∗
α := ν∗j∗(Ω

∗
kV†

α/C
) (i.e. push-forward of log de

Rham differentials) equipped with the de Rham differential k∂α = ∂ which is naturally a dg
module over kΩ∗

S†;

• the local log volume form ωα as a nowhere vanishing element in ν∗j∗(Ω
n
V†
α/Ŝ†) and the kth-

order volume form to be kωα = ωα (mod mk+1).

Given k > l, there are natural maps k,l♭ : j∗(
∧−∗ΘkV†

α/
kS†)→ j∗(

∧−∗ΘlV†
α/

lS†) which induce the

maps k,l♭ : kG∗α → lG∗α. Before taking the push-forward µ∗, each j∗(
∧r ΘkV†

α/
kS†) is a sheaf of flat

kR-modules with the property that j∗(
∧r ΘkV†

α/
kS†) ∼= j∗(

∧r Θk+1V†
α/

k+1S†) ⊗k+1R
kR by [17, Cor.

7.4 and 7.9]. In other words, we have a short exact sequence of coherent sheaves

0 //j∗(
∧r Θ0V†

α/
0S†)

·qk+1

////j∗(
∧r Θk+1V†

α/
k+1S†) //j∗(

∧r ΘkV†
α/

kS†) //0.

Applying µ∗, which is exact, we get

0 //0G−rα
·qk+1

////k+1G−rα //kG−rα //0.

As a result, we see that kG−rα is a sheaf of flat kR-modules onWα, so we have
k+1G−rα ⊗k+1R

kR ∼= kG−rα
for each r; a similar statement holds for kKrα.

A natural filtration k
•K∗

α is given by k
sK∗

α := kΩ≥s
S† ∧ kK∗

α[s] and taking wedge product defines

the natural sheaf isomorphism k
rσ

−1 : kΩr
S† ⊗kR (k0K∗

α/
k
1K∗

α[−r])→ k
rK∗

α/
k

r+1K∗
α. We have the space

k
∥K∗

α := k
0K∗

α/
k
1K∗

α
∼= ν∗j∗(Ω

∗
kV†

α/
kS†) of relative log de Rham differentials.

There is a natural action v ⌟ φ for v ∈ kG∗α and φ ∈ kK∗ given by contracting a logarithmic
holomorphic vector field v with a logarithmic holomorphic form φ. To simplify notations, for
v ∈ kG0α, we often simply write vφ, suppressing the contraction ⌟. We define the Lie derivative via
the formula Lv := (−1)|v|∂ ◦ (v⌟) − (v⌟) ◦ ∂ (or equivalently, (−1)|v|Lv := [∂, v⌟]). By contracting
with kωα, we get a sheaf isomorphism ⌟ kωα : kG∗α → k

∥K∗
α, which defines the BV operator k∆α by

k∆α(φ) ⌟ kω := k∂α(φ ⌟ kω). We call it the BV operator because the BV identity:

(4.2) (−1)|v|[v, w] := ∆(v ∧ w)−∆(v) ∧ w − (−1)|v|v ∧∆(w)
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for v, w ∈ kG∗α, where we put ∆ = k∆α, defines a graded Lie bracket. This gives kG∗α the structure
of a sheaf of BV algebras.

4.2. An explicit description of the sheaf of log de Rham forms. Here we apply the calcula-
tions in [28, 17] to give an explicit description of the stalk kK∗

α,x.

Let us consider K = ν−1(x) and the local model near K described in §4.1, with Pτ,x and Qτ,x as in
(2.17), (2.18) and an embedding V → Specan(C[Qτ,x]). We may treat K ⊂ V as a compact subset of

Cl = Specan(C[Nl]) ↪→ Specan(C[Qτ,x]) via the identification Specan(C[Στ ⊕Nl]) ∼= Specan(C[Qτ,x]).
For each m ∈ Στ , we denote the corresponding element (m,ψx,0(m), . . . , ψx,l(m)) ∈ Pτ,x by m̂ and

the corresponding function by zm̂ ∈ C[Pτ,x]. Similar to [17, Lem. 7.14], the germs of holomorphic

functions OkV,K near K in the space kV = Specan(C[Pτ,x/qk+1]) can be written as

(4.3)

OkV,K =

{ ∑
m∈Στ , 0≤i≤k

αm,iq
izm̂

∣∣∣αm,i ∈ OCl(U) for some neigh. U ⊃ K, sup
m∈Στ\{0}

log |αm,i|
d(m)

<∞

}
,

where d : Στ → N is a monoid morphism such that d−1(0) = 0, and it is equipped with the product

zm̂1 ·zm̂2 := zm̂1+m̂2 (but note that ̂m1 +m2 ̸= m̂2+ m̂2 in general). Thus we have kK0
α,x
∼= kG0α,x ∼=

OkV,K .

To describe the differential forms, we consider the vector space E = Pτ,x,C, regarded as the space

of 1-forms on Specan(C[P
gp
τ,x]) ∼= (C∗)n+1. Write d log zp for p ∈ Pτ,x,C and set E1 := C⟨d log ui⟩li=1,

as a subset of E. For an element m ∈ Qτ,C, we have the corresponding 1-form d log zm̂ ∈ Pτ,x,C under

the association between m and zm̂. Let P be the power set of {1, . . . , l} and write uI =
∏
i∈I ui for

I ∈ P. A computation for sections of the sheaf j∗(Ω
r
kV†/C) from [28, Prop. 1.12] and [17, Lem. 7.14]

can then be rephrased as the following lemma.

Lemma 4.3 ([28, 17]). The space of germs of sections of j∗(Ω
∗
kV†/C)K near K is a subspace of

OkV,K ⊗
∧∗ E given by elements of the form

α =
∑
m∈Στ
0≤i≤k

∑
I

αm,i,Iq
izm̂uI ⊗ βm,I , βm,I ∈

∧∗
Em,I =

∧∗
(E1,m,I ⊕ E2,m,I ⊕ ⟨d log q⟩),

where E1,m,I = ⟨d log ui⟩i∈I ⊂ E1 and the subspace E2,m,I ⊂ E is given as follows: we consider

the pullback of the product of normal fans
∏
i/∈I N∆̌i(τ)

to Qτ,R and take E2,m,I = ⟨d log zm̂′⟩ for
m′ ∈ σm,I , where σm,I is the smallest cone in

∏
i/∈I N∆̌i(τ)

⊂ Qτ,R containing m.

Here we can treat
∏
i/∈I N∆̌i(τ)

⊂ Qτ,R since
⊕

i Λ∆̌i(τ)
is a direct summand of Q∗

τ . A similar

description for j∗(Ω
∗
kV†/C†)K is simply given by quotienting out the direct summand ⟨d log q⟩ in the

above formula for α. In particular, if we restrict ourselves to the case k = 0, a general element α
can be written as

α =
∑
m∈Στ

∑
I

αm,Iz
m̂uI ⊗ βm,I , βm,I ∈

∧∗
Em,I =

∧∗
(E1,m,I ⊕ E2,m,I).

One can choose a nowhere vanishing element

Ω = du1 · · · dul ⊗ η ∈ u1 · · ·ul ⊗ ∧lE1 ⊗ ∧n−dimR(τ)E2 ⊂ j∗(Ωn0V†/C†)K

for some nonzero element η ∈ ∧n−dimR(τ)E2, which is well defined up to rescaling. Any element in
j∗(Ω

n
0V†/C†)K can be written as fΩ for some f =

∑
m∈Στ

fmz
m̂ ∈ O0V,K .
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Recall that the subset K ⊂ Cl is intersecting the singular locus Zτ1 , . . . , Z
τ
r (as in §4.1), where ui

is the coordinate function of Cl with simple zeros along Zτi for i = 1, . . . , r. There is a change of
coordinates between a neighborhood of K in Cl and that of K in (C∗)l given by{

ui 7→ fv,i|(C∗)l if 1 ≤ i ≤ r;
ui 7→ zi if r < i ≤ l.

Under the map log : (C∗)l → Rl, we have K = log−1(C) for some connected compact subset C ⊂ Rl.
In the coordinates z1, . . . , zl, we find that d log z1 · · · d log zl ⊗ η can be written as fΩ near K for
some nowhere vanishing function f ∈ O0V,K .

Lemma 4.4. When K ∩ Z = ∅ (i.e. r = 0 in the above discussion), the top cohomology group
Hn(j∗(Ωn0V†/C†)K , ∂) := j∗(Ω

n
0V†/C†)K/Im(∂) is isomorphic to C, which is generated by the element

d log z1 · · · d log zl ⊗ η.

Proof. Given a general element fΩ as above, first observe that we can write f = f0 + f+, where
f+ =

∑
m∈Στ\{0} fmz

m̂ and f0 ∈ OCl,K . We take a basis e1, . . . , es of Q∗
τ,R, and also a partition

I1, . . . , Is of the lattice points in Στ \ {0} such that ⟨ej ,m⟩ ≠ 0 for m ∈ Ij . Letting

α = (−1)l
∑
j

∑
m∈Ij

fm
⟨ej ,m⟩

zm̂du1 · · · dul ⊗ ιejη,

we have ∂(α) = f+Ω. So we only need to consider elements of the form f0Ω. If f0Ω = ∂(α) for

some α, we may take α =
∑

j αjdu1 · · · d̂uj · · · dul ⊗ η for some αj ∈ OCl,K . Now this is equivalent

to f0du1 · · · dul = ∂
(∑

j αjdu1 · · · d̂uj · · · dul
)
as forms in ΩlCl,K

. This reduces the problem to Cl.

Working in (C∗)l with coordinates zi’s, we can write

O(C∗)l,K =

∑
m∈Zl

amz
m
∣∣∣ ∑
m∈Zl

|am|e⟨v,m⟩ <∞, for all v ∈W , for some open W ⊃ C

 ,

using the fact thatK is multi-circular. By writing Ω∗
(C∗)l,K

= O(C∗)l,K⊗
∧∗ F1 with F1 = ⟨d log zi⟩li=1,

we can see that any element can be represented as cd log z1 · · · d log zl in the quotient Ωl
(C∗)l,K

/Im(∂),

for some constant c. □

From this lemma, we conclude that the top cohomology sheaf Hn(0∥K∗, ∂) is isomorphic to the

locally constant sheaf C over B \ Se.

Lemma 4.5. The volume element 0ω is non-zero in Hn(0∥K∗, ∂)x for every x ∈ B.

Proof. We first consider the case when x ∈ intre(σ) for some maximal cell σ ∈ P[n]. The toric stratum
0Xσ associated to σ is equipped with the natural divisorial log structure induced from its boundary
divisor. Then the sheaf Ω∗

0X†
σ/C† of log derivations for 0X† is isomorphic to

∧n Λσ ⊗Z O0Xσ
. By

[28, Lem. 3.12], we have 0ωx = c(µσ)ν−1(x) in ν∗(Ω
n
0X†

σ/C†)x
∼= 0

∥Knx, where µσ ∈
∧n Λσ,C is nowhere

vanishing and c is a non-zero constant c. Thus 0X|x is non-zero in the cohomology as the same
is true for µσ ∈ ν∗(Ω

n
0X†

σ/C†)x. Next we consider a general point x ∈ intre(τ). If the statement

is not true, we will have 0ωx = 0∂(α) for some α ∈ 0
∥Kn−1

x . Then there is an open neighborhood

U ⊃ C−1(x) such that this relation continues to hold. As U ∩ intre(σ) ̸= ∅, for those maximal
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cells σ which contain the point x, we can take a nearby point y ∈ U ∩ intre(σ) and conclude that
cµσ = 0∂(α) in ν∗(Ω

n
0X†

σ/C†)y. This contradicts the previous case. □

Lemma 4.6. Suppose that x ∈Wα \ Se. For an element of the form

ef (kωα) ∈ k
∥K

n
α,x

with f ∈ kG0α,x ∼= OkVα,x
satisfying f ≡ 0(mod m), there exist h(q) ∈ kR = C[q]/(qk+1) and

v ∈ kG−1
α,x with h, v ≡ 0(mod m) such that

(4.4) ef (kωα) = eheLv(kωα)

in k
∥Knα,x, where we recall that Lv := (−1)|v|∂ ◦ (v⌟)− (v⌟) ◦ ∂.

Proof. To simplify notations in this proof, we will drop the subscript α. We prove the first statement
by induction on k. The initial case is trivial. Assuming that this has been done for the (k−1)st-order,
then, by taking an arbitrary lifting ṽ of v to the kth-order, we have

e−h+f+q
kϵ(kω) = eLṽ(kω)

for some ϵ ∈ O0Vx
. By Lemmas 4.4 and 4.5, we have ϵ 0ω = c 0ω+∂(γ) for some γ and some suitable

constant c. Letting θ ⌟ (0ω) = γ and v̆ = ṽ + qkθ, we have

eLv̆(kω) = eLv(kω)− qk ∂(θ ⌟ (0ω)) = e−h+f+cq
k
(kω).

By defining h̃(q) := h(q)− cqk in C[q]/(qk+1), we obtain the desired expression. □

4.3. A global pre-dgBV algebra from gluing. One approach for smoothing 0X is to look for

gluing morphisms kψαβ :
kV†

α|Vαβ
→ kV†

β|Vαβ
between the local smoothing models which satisfy the

cocycle condition, from which one obtain a kth-order thickening kX over kS†. This was done by
Kontsevich–Soibelman [36] (in 2d) and Gross–Siebert [29] (in general dimensions) using consistent

scattering diagrams. If such gluing morphisms kψαβ’s are available, one can certainly glue the global

kth-order sheaves kG∗, kK∗ and the volume form kω.

In [8], we instead took suitable dg-resolutions kPV ∗,∗
α := Ω∗(kG∗α)’s of the sheaves kG∗α’s (more

precisely, we used the Thom–Whitney resolution in [8, §3]) to construct gluings

kgαβ : Ω
∗(kG∗α)|Vαβ

→ Ω∗(kG∗β)|Vαβ

of sheaves which only preserve the Gerstenhaber algebra structure but not the differential. The
key discovery in [8] was that, as the sheaves Ω∗(kG∗α)’s are soft, such a gluing problem could be
solved without any information from the complicated scattering diagrams. What we obtained is a
pre-dgBV algebra5 kPV ∗,∗(X), in which the differential squares to zero only modulo m = (q). Using
well-known algebraic techniques [48, 33], we can solve the Maurer–Cartan equation and construct
the thickening kX. In this subsection, we will summarize the whole procedure, incorporating the
nice reformulation by Felten [16] in terms of deformations of Gerstenhaber algebras.

To begin with, we assume the following condition holds:

Condition 4.7. There is a sheaf (Ω∗, d) of unital differential graded algebras (abbrev. as dga) (over
R or C) over B, with degrees 0 ≤ ∗ ≤ L for some L, such that

• the natural inclusion R → Ω∗ (or C → Ω∗) of the locally constant sheaf (concentrated at
degree 0) gives a resolution, and

5This was originally called an almost dgBV algebra in [8], but we later found the name pre-dgBV algebra from [16]
more appropriate.
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• for any open cover U = {Ui}i∈I , there is a partition of unity subordinate to U , i.e. we have

{ρi}i∈I with ρi ∈ Γ(Ui,Ω
0) and supp(ρi) ⊂ Ui such that {supp(ρi)}i is locally finite and∑

i ρi ≡ 1.

It is easy to construct such an Ω∗ and there are many natural choices. For instance, if B is a
smooth manifold, then we can simply take the usual de Rham complex on B. In §3.3.2, the sheaf of
monodromy invariant differential forms we constructed using the (singular) integral affine structure
on B is another possible choice for Ω∗ (with degrees 0 ≤ ∗ ≤ n). Yet another variant, namely
the sheaf of monodromy invariant tropical differential forms, will be constructed in §5.1; this links
tropical geometry on B with the smoothing of the maximally degenerate Calabi–Yau variety 0X.

Let us recall how to obtain a gluing of the dg resolutions of the sheaves kG∗α and kK∗
α using any

possible choice of such an Ω∗. We fix a good cover W := {Wα}α of B and the corresponding Stein
open cover V := {Vα}α of 0X, where Vα = ν−1(Wα) for each α.

Definition 4.8. We define kPV p,q
α = Ωq(kGpα) := Ωq|Wα ⊗R

kGpα and kPV ∗,∗
α =

⊕
p,q

kPV p,q
α , which

gives a sheaf of dgBV algebras over Wα. The dgBV structure (∧, ∂̄α,∆α) is defined componentwise
by

(φ⊗ v) ∧ (ψ ⊗ w) := (−1)|v||ψ|(φ ∧ ψ)⊗ (v ∧ w),

∂̄α(φ⊗ v) := (dφ)⊗ v, ∆α(φ⊗ v) := (−1)|φ|φ⊗ (∆v),

for φ,ψ ∈ Ω∗(U) and v, w ∈ kG∗α(U) for each open subset U ⊂Wα.

Definition 4.9. We define kAp,qα = Ωq(kKpα) := Ωq|Wα ⊗R
kKpα and kA∗,∗

α =
⊕

p,q
kAp,qα , which gives

a sheaf of dgas over Wα equipped with the natural filtration k
•A

∗,∗
α inherited from k

•K∗
α. The structures

(∧, ∂̄α, ∂α) are defined componentwise by

(φ⊗ v) ∧ (ψ ⊗ w) := (−1)|v||ψ|(φ ∧ ψ)⊗ (v ∧ w),

∂̄α(φ⊗ v) := (dφ)⊗ v, ∂α(φ⊗ v) = (−1)|φ|φ⊗ (∂v),

for φ,ψ ∈ Ω∗(U) and v, w ∈ kK∗
α(U) for each open subset U ⊂Wα.

There is an action of kPV ∗,∗
α on kA∗,∗

α by contraction ⌟ defined by the formula

(φ⊗ v) ⌟ (ψ ⊗ w) := (−1)|v||ψ|(φ ∧ ψ)⊗ (v ⌟ w),

for φ,ψ ∈ Ω∗(U), v ∈ kG∗α(U) and w ∈ kK∗
α(U) for each open subset U ⊂ Wα. Note that the

local holomorphic volume form kωα ∈ k
∥A

n,0
α (Wα) satisfies ∂̄α(

kωα) = 0, and we have the identity
k∂α(ϕ ⌟ kωα) = k∆α(ϕ) ⌟ kωα of operators.

The next step is to consider gluing of the local sheaves kPV α’s for higher orders k. Similar
constructions have been done in [8, 16] using the combinatorial Thom–Whitney resolution for the
sheaves kGα’s. We make suitable modifications of those arguments to fit into our current setting.

First, since kV†
α|Vαβ

and kV†
β|Vαβ

are divisorial deformations (in the sense of [28, Def. 2.7]) of

the intersection V †
αβ := V †

α ∩ V †
β , we can use [28, Thm. 2.11] and the fact that Vαβ is Stein to

obtain an isomorphism kψαβ :
kV†

α|Vαβ
→ kV†

β|Vαβ
of divisorial deformations which induces the

gluing morphism kψαβ :
kG∗α|Wαβ

→ kG∗β|Wαβ
that in turn gives kψαβ :

kPV α|Wαβ
→ kPV β|Wαβ

.

Definition 4.10. A kth-order Gerstenhaber deformation of 0PV is a collection of gluing morphisms
kgαβ :

kPV α|Wαβ
→ kPV β|Wαβ

of the form

kgαβ = e[ϑαβ ,·] ◦ kψαβ
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for some θαβ ∈ kPV −1,0
β (Wαβ) with θαβ ≡ 0 (mod m), such that the cocycle condition

kgγα ◦ kgβγ ◦ kgαβ = id

is satisfied.

An isomorphism between two kth-order Gerstenhaber deformations {kgαβ}αβ and {kg′αβ}αβ is a

collection of automorphisms khα :
kPV α → kPV α of the form

khα = e[bα,·]

for some bα ∈ kPV −1,0
α (Wα) with bα ≡ 0(mod m), such that

kg′αβ ◦ khα = khβ ◦ kgαβ.

A slight modification of [16, Lem. 6.6], with essentially the same proof, gives the following:

Proposition 4.11. Given a kth-order Gerstenhaber deformation {kgαβ}αβ, the obstruction to the

existence of a lifting to a (k+ 1)st-order deformation {k+1gαβ}αβ lies in the Čech cohomology (with
respect to the cover W = {Wα}α)

Ȟ2(W, 0PV −1,0)⊗C (mk+1/mk+2).

The isomorphism classes of (k + 1)st-order liftings are in

Ȟ1(W, 0PV −1,0)⊗C (mk+1/mk+2).

Fixing a (k + 1)st-order lifting {k+1gαβ}αβ, the automorphisms fixing {kgαβ}αβ are in

Ȟ0(W, 0PV −1,0)⊗C (mk+1/mk+2).

Since Ωi satisfies Condition 4.7, we have Ȟ>0(W, 0PV −1,0) = 0. In particular, we always have
a set of compatible Gerstenhaber deformations g = (kg)k∈N where kg = {kgαβ}αβ and any two of

them are equivalent. Fixing such a set g, we obtain a set {kPV }k∈N of Gerstenhaber algebras which
is compatible, in the sense that there are natural identifications k+1PV ⊗k+1R

kR = kPV .

We can also glue the local sheaves kA∗,∗
α ’s of dgas using g = (kg)k∈N. First, we can define

kψαβ :
kK∗

α|Wαβ
→ kK∗

β|Wαβ
using kψαβ :

kV†
α|Vαβ

→ kV†
β|Vαβ

. For each fixed k, we can write
kgαβ = e[ϑαβ ,·] ◦ kψαβ as before. Then

(4.5) kg := e
Lϑαβ ◦ kψαβ : kA∗,∗

α |Wαβ
→ kA∗,∗

β |Wαβ
,

where we recall that Lv := (−1)|v|∂ ◦ (v⌟) − (v⌟) ◦ ∂, preserves the dga structure (∧, ∂α) and the
filtration on k

•A
∗,∗
α ’s. As a result, we obtain a set of compatible sheaves {(kA∗,∗,∧, ∂)}k∈N of dgas.

The contraction action ⌟ is also compatible with the gluing construction, so we have a natural action
⌟ of kPV ∗,∗ on kA∗,∗.

Next, we glue the operators ∂̄α’s and ∆α’s.

Definition 4.12. A kth-order pre-differential ∂̄ on kPV ∗,∗ is a degree (0, 1) operator obtained from

gluing the operators ∂̄α + [ηα, ·] specified by a collection of elements ηα ∈ kPV −1,1
α (Wα) such that

ηα ≡ 0 (mod m) and
kgβα ◦ (∂̄β + [ηβ, ·]) ◦ kgαβ = (∂̄α + [ηα, ·]).

Two pre-differentials ∂̄ and ∂̄′ are equivalent if there is a Gerstenhaber automorphism (for the
deformation kg) h : kPV ∗,∗ → kPV ∗,∗ such that h−1 ◦ ∂̄ ◦ h = ∂̄′.
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Notice that we only have ∂̄2 ≡ 0 (mod m), which is why we call it a pre-differential. Using the

argument in [8, Thm. 3.34] or [16, Lem. 8.1], we can always lift any kth-order pre-differential
k
∂̄

to a (k + 1)st-order pre-differential. Furthermore, any two such liftings differ by a global element

d ∈ 0PV −1,1 ⊗mk+1/mk+2. We fix a set ∂̄ := {k∂̄}k∈N of such compatible pre-differentials. For

each k, the action of
k
∂̄ on kA∗,∗ is given by gluing of the action of ∂̄α+Lηα on kA∗,∗

α . On the other
hand, the elements

(4.6) lα := ∂̄α(ηα) +
1

2
[ηα, ηα] ∈ kPV −1,2

α (Wα)

glue to give a global element l ∈ kPV −1,2(B), and for different k’s, these elements are compatible.
Computation shows that ∂̄2 = [l, ·] on kPV ∗,∗ and ∂̄2 = Ll on kA∗,∗.

To glue the operators ∆α’s, we need to glue the local volume elements kωα’s to a global kω. We
consider an element of the form efα⌟ · kωα, where fα ∈ kPV 0,0(Wα) satisfies fα ≡ 0 (mod m). Given

a kth-order global volume element efα⌟ · kωα, we take a lifting ef̃α⌟ · k+1ωα such that

k+1gαβ
(
ef̃α⌟ · k+1ωα

)
= e(̃fβ−oαβ)⌟ · k+1ωβ,

for some element oαβ ∈ 0PV 0,0(Wβ)⊗mk+1/mk+2. By construction, {oαβ}αβ gives a Čech 1-cycle

in 0PV 0,0 which is exact. So there exist uα’s such that uβ|Wαβ
− uα|Wαβ

= oαβ, and we can modify

f̃α as f̃α + uα, which gives the desired (k+1)st-order volume element. Inductively, we can construct
compatible volume elements kω ∈ k

∥An,0(B), k ∈ N. Any two such volume elements kω and kω′

differ by kω = ef⌟ · kω′, where f ∈ kPV 0,0(B) is some global element. Notice that
k
∂̄(kω) ̸= 0 unless

mod m.

Using the volume element ω (we omit the dependence on k if there is no confusion), we may now
define the global BV operator ∆ by

(4.7) (∆φ) ⌟ ω = ∂(φ ⌟ ω),

which can locally be written as k∆α + [fα, ·]. We have ∆2 = 0. The local elements

(4.8) nα := k∆α(ηα) + ∂̄α(fα) + [ηα, fα]

glue to give a global element n ∈ kPV 0,1(B) which satisfies ∂̄ ∆+ ∆∂̄ = [n, ·]. Also, the elements l
and n satisfy the relation ∂̄(n) + ∆(l) = 0 by a local calculation.

In summary, we obtain pre-dgBV algebras (kPV , ∂̄,∆,∧) and pre-dgas (kA, ∂̄, ∂,∧) with a natural

contraction action ⌟ of
k
∂̄ on kA∗,∗, and also volume elements ω. We set

PV := lim←−
k

kPV , A := lim←−
k

kA,

and define a total de Rham operator d : A∗,∗ → A∗,∗ by

(4.9) d := ∂̄ + ∂ + l⌟,

which preserves the filtration •A∗,∗. Using the contraction ω⌟ : PV ∗,∗ → ∥A∗+n,∗ to pull back the

operator, we obtain the operator d = ∂̄ + ∆+ (l+ n)∧ acting on PV ∗,∗. Direct computation shows
that d2 = 0, and indeed it plays the role of the de Rham differential on a smooth manifold. Readers
may consult [8, §4.2] for the computations and more details.

Definition 4.13. We call PV ∗,∗ (resp. kPV ∗,∗) the sheaf of (resp. kth-order) smooth relative
polyvector fields over S†, and A∗,∗ (resp. kA∗,∗) the sheaf of (resp. kth-order) smooth forms over
S†. We denote the corresponding total complexes by PV ∗ =

⊕
p+q=∗ PV

p,q (resp. kPV ∗) and

A∗ =
⊕

p+q=∗ Ap,q (resp. kA∗).
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4.4. Smoothing by solving the Maurer–Cartan equation. With the sheaf PV ∗ of pre-dgBV
algebras defined, we can now consider the extended Maurer–Cartan equation

(4.10) (∂̄ + t∆)φ+
1

2
[φ,φ] + l+ tn = 0

for φ = (kφ)k, where
kφ ∈ kPV 0(B)[[t]] := kPV 0(B) ⊗C C[[t]]. Setting t = 0 gives the (classical)

Maurer–Cartan equation

(4.11) ∂̄φ+
1

2
[φ,φ] + l = 0

for φ ∈ PV 0(B). To inductively solve these equations, we need two conditions, namely the holo-
morphic Poincaré Lemma and the Hodge-to-de Rham degeneracy.

We begin with the holomorphic Poincaré Lemma, which is a local condition on the sheaves

j∗(Ω
∗
kV†

α/C
)’s. We consider the complex (j∗(Ω

∗
kV†

α/C
)[u], ∂̃α), where

∂̃α

(
l∑

s=0

νsu
s

)
:=
∑
s

(∂ανs)u
s + sd log(q) ∧ νsus−1.

There is a natural exact sequence

(4.12) 0 //kK̄∗
α

//j∗(Ω
∗
kV†

α/C
)[u]

k̃,0♭ //j∗(Ω
∗
0V†

α/
0S†)

//0,

where k̃,0♭(
∑l

s=0 νsu
s) := k,0♭(ν0) as elements in j∗(Ω

∗
0V†

α/
0S†).

Condition 4.14. We say that the holomorphic Poincaré Lemma holds if at every point x ∈ 0X†,

the complex (
k
K̄∗
α,x, ∂̃α) is acyclic, where

k
K̄∗
α,x denotes the stalk of

k
K̄∗
α at x.

The holomorphic Poincaré Lemma for our setting was proved in [28, proof of Thm. 4.1], but a
gap was subsequently pointed out by Felten–Filip–Ruddat in [17], who used a different strategy to
close the gap and give a correct proof in [17, Thm. 1.10]. From this condition, we can see that the

cohomology sheaf H∗(k∥K∗
α,
k∂α) is free over kR = C[q]/(qk+1) (cf. [34, Lem. 4.1]). We will need

freeness of the cohomology H∗(k∥A∗(B),d) over kR, which can be seen by the following lemma (see

[34] and [8, §4.3.2] for similar arguments).

Lemma 4.15. Under Condition 4.14 (the holomorphic Poincaré Lemma), the natural map

k,0♭ : H∗(k∥A
∗(B),d)→ H∗(0∥A

∗(B),d)

is surjective for each k ≥ 0.

Proof. First of all, applying the functor ν∗ to the exact sequence

0 //kK̄∗
α

//j∗(Ω
∗
kV†

α/C
)[u]

k̃,0♭ //j∗(Ω
∗
0V†

α/
0S†)

//0

gives the following exact sequence of sheaves on B:

0 //kK∗
α

//kK∗
α[u]

k̃,0♭ //0K∗
α

//0.

This is true because every sheaf in the first exact sequence is a direct limit of coherent analytic
sheaves, Rν! commutes with direct limits of sheaves, and Rν! = Rν∗ as the fiber ν

−1(x) is a compact
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Hausdorff topological space; see e.g. [32]. By taking a Cartan–Eilenberg resolution, we have the
implication:

(
k
K̄∗
α,x,

k̃∂α) is acyclic =⇒ RΓU ((
k
K̄∗
α,
k̃∂α)) = 0

for any open subset U , where RΓU is the derived global section functor in the derived category of
sheaves. In our case, U = ν−1(W ) and we have RΓν−1(W ) = RΓW ◦Rν∗. Furthermore, we see that

Rν∗(
k
K̄∗
α, ∂̃α) = (kK∗

α, ∂̃α).

This can be seen by taking a double complex C∗,∗ resolving (
k
K̄∗
α, ∂̃α) such that ν∗(C

∗,∗) computes

Rν∗(
k
K̄∗
α, ∂̃α). The spectral sequence associated to the double complex has the E1-page given by

Rqν∗(
k
K̄pα), which is 0 if q > 0 because

k
K̄pα is a direct limit of coherent analytic sheaves. Therefore,

ν∗(
k
K̄∗
α, ∂̃α) → ν∗(C

∗,∗) = Rν∗(
k
K̄∗
α, ∂̃α) is a quasi-isomorphism. Combining these, we obtain that

RΓiW (kK∗
α, ∂̃α) = 0 for each i.

Next, by Condition 4.7, (Ω∗|Wα⊗R
kK∗

α) is a resolution with a partition of unity, so the cohomology
of the complex (

kB∗α(W ), ∂̄α + ∂̃α

)
:=
(
(Ω∗|Wα ⊗R

kK∗
α)(W ), ∂̄α + ∂̃α

)
computes RΓW (kK∗

α). Through an isomorphism eηα⌟ : kB∗α → kB∗α, we can identify the operator:

dα := ∂̄α + Lηα + ∂̃α + ι∂̄α(ηα)+ 1
2
[ηα,ηα]

with ∂̄α + ∂̃α, and hence deduce that (kB∗α(W ),dα) is acyclic for any open subset W .

Now, we consider the global sheaf (kB∗,d) of complexes on B obtained by gluing the local sheaves

(kB∗α,dα). We also have (k̃A∗,d) obtained by gluing (Ω∗|Wα ⊗ kK∗
α[u],dα), and (0∥A∗,d) obtained

by gluing (Ω∗|Wα ⊗ 0
∥K∗

α,dα). Then there is an exact sequence of complexes of sheaves

0 //kB∗ // k̃A∗ //0
∥A∗ //0.

To see that the complex (kB∗(B),d) is acyclic, we consider the total Čech complex associated to the
cover {Wα}α. The associated spectral sequence has zero E1 page, thus (

kB∗(B),d) is indeed acyclic.

As a result, the map H i(k̃A∗
α(B),dα)→ H i(0∥A∗

α(B),dα) is an isomorphism. Finally, surjectivity of

the map k,0♭ follows from the fact that the isomorphism H i(k̃A∗
α(B),dα)→ H i(0∥A∗

α(B),dα) factors

through k,0♭. □

The Hodge-to-de Rham degeneracy is a global Hodge-theoretic condition on 0X†. We consider
the Hodge filtration F≥rj∗(Ω

∗
0X†/ 0S†) =

⊕
p≥r j∗(Ω

p
0X†/ 0S†); the spectral sequence associated to it

computes the hypercohomology of the complex of sheaves (j∗(Ω
∗
0X†/ 0S†),

0∂)

Condition 4.16. We say that the Hodge-to-de Rham degeneracy holds for 0X† if the spectral
sequence associated to the above Hodge filtration degenerates at E1.

Under the assumption that (B,P) is strongly simple (Definition 2.10), the Hodge-to-de Rham
degeneracy for the maximally degenerate Calabi–Yau scheme 0X† was proved in [28, Thm. 3.26].
This was later generalized to the case when (B,P) is only simple (instead of strongly simple)6 and
further to log toroidal spaces in Felten–Filip–Ruddat [17] using different methods.

6The subtle difference between the log Hodge group and the affine Hodge group when (B,P) is just simple, instead
of strongly simple, was studied in details by Ruddat in his thesis [42].



SMOOTHING, SCATTERING, AND A CONJECTURE OF FUKAYA 39

We consider the dgBV algebra 0PV ∗(B)[[t]] equipped with the operator ∂̄ + t∆.

Lemma 4.17. Under Condition 4.16 (the Hodge-to-de Rham degeneracy), H∗(0PV ∗(B)[[t]], ∂̄+t∆)
is a free C[[t]]-module.

Proof. Recall that we are working with a good cover W = {Wα}α, so that the inverse image
Vα = ν−1(Wα) is Stein for each α. We have RΓν−1(W ) = RΓW ◦Rν∗ and

Rν∗(j∗(Ω
∗
0X†/ 0S†), ∂) = (0∥K

∗, ∂).

If ν−1(W ) is Stein, then RΓν−1(W )(j∗(Ω
r
0X†/ 0S†)) = Γν−1(W )(j∗(Ω

r
0X†/ 0S†)) and hence

RΓW (0∥K
r) = ΓW (0∥K

r).

The hypercohomology of (j∗(Ω
∗
0X†/ 0S†), ∂) is computed using the Čech double complex

Č∗(V, j∗(Ω∗
0X†/ 0S†))

with respect to the Stein open cover V = {ν−1(Wα)}α. Similarly, the hypercohomology of the
complex (0∥K∗, ∂) is computed using the Čech double complex Č∗(W, 0∥K∗) with respect to the cover

W = {Wα}α; here, the Hodge filtration is induced from the filtration F≥r 0
∥K∗ =

⊕
p≥r

0
∥K≥p.

These two Čech complexes, as well as their corresponding Hodge filtrations, are identified as
0
∥K∗(W ) = j∗(Ω

r
0X†/ 0S†)(ν

−1(W )) for each W = Wα1 ∩ · · · ∩Wαk
. Hence, under Condition 4.16,

we have E1 degeneracy also for Č∗(W, 0∥K∗), or equivalently, that (Č∗(W, 0∥K∗)[[t]], δ + t ∂) is a free

C[[t]]-module. In view of the isomorphisms (0G∗,∆) ∼= (0∥K, ∂) and

H∗(0PV ∗(B)[[t]], ∂̄ + t∆) ∼= H∗(Č∗(W, 0∥K
∗)[[t]], δ + t ∂),

we conclude that H∗(0PV ∗(B)[[t]], ∂̄ + t∆) is a free C[[t]]-module as well. □

For the purpose of this paper, we restrict ourselves to the case that

kφ = kϕ+ t(kf),

where kϕ ∈ kPV −1,1(B) and kf ∈ kPV 0,0(B). The extended Maurer-Cartan equation (4.10) can be

decomposed, according to orders in t, into the (classical) Maurer–Cartan equation (4.11) for kϕ and
the equation

(4.13) ∂̄(kf) + [kϕ, kf ] + ∆(kϕ) + n = 0.

Theorem 4.18. Suppose that both Conditions 4.14 and 4.16 hold. Then for any kth-order solution
kφ = kϕ + t(kf) to the extended Maurer–Cartan equation (4.10), there exists a (k + 1)st-order

solution k+1φ = k+1ϕ + t(k+1f) to (4.10) lifting kφ. The same statement holds for the Maurer–

Cartan equation (4.11) if we restrict to kϕ ∈ kPV −1,1(B).

Proof. The first statement follows from [8, Thm. 5.6] and [8, Lem. 5.12]: Starting with a kth-

order solution kφ = kϕ + t(kf) for (4.10), one can always use [8, Thm. 5.6] to lift it to a general
k+1φ ∈ k+1PV 0(B)[[t]]. The argument in [8, Lem. 5.12] shows that we can choose k+1φ such that

the component of k+1φ|t=0 in k+1PV 0,0(B) is zero. As a result, the component of k+1ϕ+ t(k+1f) in
k+1PV −1,1(B)⊗ t(k+1PV 0,0(B)) is again a solution to (4.10).

For the second statement, we argue that, given kϕ, there always exists kf ∈ kPV 0,0(B) such that
kϕ+ t(kf) is a solution to (4.10). We need to solve the equation (4.13) by induction on the order k.
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The initial case is trivial by taking 0f = 0. Suppose the equation can be solved for j−1f . Then we

take an arbitrary lifting
j
f̃ to the jth-order. We can define an element o ∈ 0PV 0,0(B) by

qjo = ∂̄(
j
f̃) + [jϕ,

j
f̃ ] + ∆(jϕ) + n,

which satisfies ∂̄(o) = 0. Therefore, the class [o] lies in the cohomology

H1(0PV 0,∗, ∂̄) ∼= H1(0X,O) ∼= H1(B,C),
where the last equivalence is from [27, Prop. 2.37]. By our assumption in §2, we have H1(B,C) = 0,

and hence we can find an element f̆ such that ∂̄(f̆) = o. Letting jf =
j
f̃ + qj · f̆ (mod qj+1) proves

the induction step from the (j − 1)st-order to the jth-order. Now, applying the first statement, we

can lift the solution kφ := kϕ+ t(kf) to k+1φ = k+1ϕ+ t(k+1f) which satisfies equation (4.10), and

hence k+1ϕ solves (4.11). □

From Theorem 4.18, we obtain a solution ϕ ∈ PV −1,1(B) to the Maurer–Cartan equation (4.11),
from which we obtain the sheaves ker(∂̄ + [ϕ, ·]) ⊂ kPV ∗,∗ and ker(∂̄ + Lϕ) ⊂ k

∥A∗,∗ over B. These

sheaves are locally isomorphic to kG∗α and k
∥K∗

α, so we may treat them as obtained from gluing of

the local sheaves kG∗α’s and k
∥K∗

α’s. From these, we can extract consistent and compatible gluings
kΦαβ :

kV†
α|Vαβ

→ kV†
β|Vαβ

satisfying the cocycle condition, and hence obtain a k-th order thichening
kX of 0X over kS†; see [8, §5.3]. Also, ef ⌟ω, as a section of ker(∂̄+Lϕ) over B, defines a holomorphic

volume form on the k-th order thickening kX.

4.4.1. Normalized volume form. For later purposes, we need to further normalize the holomorphic
volume

Ω := ef ⌟ ω ∈ ker(∂̄ + Lϕ)(B) ⊂ k
∥A

n,0(B)

by adding a suitable power series h(q) ∈ (q) ⊂ C[[q]] to f , so that the condition that
∫
T e

f ⌟ ω = 1,
where T is a nearby n-torus in the smoothing, is satisfied.

The kth-order Hodge bundle over Specan(C[q]/qk+1) is defined as the cohomology

kH := Hn(k∥A
∗,d),

equipped with a Gauss–Manin connection k∇, where k∇ ∂
∂ log q

is the connecting homomorphism of

the long exact sequence associated to

(4.14) 0→ k
∥A

∗−1 ⊗C C⟨d log q⟩ → kA∗ → k
∥A

∗ → 0;

here C⟨d log q⟩ is the 1-dimensional graded vector space spanned by the degree 1 element d log q.

We denote Ĥ := lim←−k
kH. Restricting to the 0th-order, we have N = 0∇ ∂

∂ log q
, which is a nilpotent

operator acting on 0H = Hn(0∥A∗) ∼= Hn(X, j∗Ω
∗
X†/C†), where X = 0X. If we consider the top

cohomoloy H2n(0∥A∗), which is 1-dimensional, we see that N = 0∇ ∂
∂ log q

= 0. So k∇ ∂
∂ log q

is a flat

connection without log poles at q = 0. Hence, we can find a basis (order by order in q) to identify
H2n(k∥A∗) ∼= H2n(0∥A∗)⊗ C[q]/qk+1, which also trivializes the flat connection ∇ as ∂

∂ log q .

Since Hn(B,C) ∼= C, we can fix a non-zero generator and choose a representative ϱ ∈ Ωn(B).

Then the element ϱ⊗ 1 ∈ k
∥An(B) (which may simply be written as ϱ) represents a section [ϱ] in Ĥ.

A direct computation shows that ∇[ϱ] = 0, i.e. it is a flat section to all orders. The pairing with
the 0th-order volume form 0ω gives a non-zero element [0ω ∧ ϱ] in H2n(0∥A∗).

Definition 4.19. The volume form Ω = ef ⌟ ω is said to be normalized if [Ω ∧ ϱ] is flat under ∇.
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In other words, we can write [Ω ∧ ϱ] = [0ω ∧ ϱ] under the identification

H2n(k∥A
∗) ∼= H2n(0∥A

∗)⊗ C[q]/qk+1.

By modifying f to f +h(q), this can always be achieved. Further, after the modification, φ = ϕ+ tf
still solves (4.10).

5. From smoothing of Calabi–Yau varieties to tropical geometry

5.1. Tropical differential forms. To tropicalize the pre-dgBV algebra PV ∗,∗, we need to replace
the Thom–Whitney resolution used in [8] by a geometric resolution. To do so, we first need to recall
some background materials from our previous works [7, §4.2.3] and [9, §3.2]. Of crucial importance
is the notion of differential forms with asymptotic support (which will be called tropical differential
forms in this paper) that originated from multi-valued Morse theory and Witten deformations. Such
differential forms can be regarded as distribution-valued forms supported on tropical polyhedral
subsets. This key notion allows us to develop tropical intersection theory via differential forms, and
in particular, define the intersection pairing between possibly non-transversal tropical polyhedral
subsets simply using the wedge product.

Let U be an open subset of MR. We consider the space Ωkℏ(U) := Γ(U × R>0,
∧
k T∨U), where

we take C∞ sections of
∧
k T∨U and ℏ is a coordinate on R>0. Let Wk

−∞(U) ⊂ Ωkℏ(U) be the subset
of k-forms α such that, for each q ∈ U , there exist a neighborhood q ∈ V ⊂ U , constants Dj,V , cV
and a sufficiently small real number ℏ0 > 0 such that ∥∇jα∥L∞(V ) ≤ Dj,V e

−cV /ℏ for all j ≥ 0 and
for 0 < ℏ < ℏ0; here, the L∞-norm is defined by ∥α∥L∞(V ) = supx∈V ∥α(x)∥ for any section α of the

tensor bundle TU⊗k⊗T∨U⊗l, where we fix a constant metric on MR and use the induced metric on
TU⊗k ⊗ T∨U⊗l; ∇j denotes an operator of the form ∇ ∂

∂xl1

· · · ∇ ∂
∂xlj

, where ∇ is a torsion-free, flat

connection defining an affine structure on U and x = (x1, . . . , xn) is an affine coordinate system (note
that ∇ is not the Gauss–Manin connection in the previous section). Similarly, let Wk

∞(U) ⊂ Ωkℏ(U)
be the set of k-forms α such that, for each q ∈ U , there exist a neighborhood q ∈ V ⊂ U , a constant
Dj,V , Nj,V ∈ Z>0 and a sufficiently small real number ℏ0 > 0 such that ∥∇jα∥L∞(V ) ≤ Dj,V ℏ−Nj,V

for all j ≥ 0 and for 0 < ℏ < ℏ0.
The assignment U 7→ Wk

−∞(U) (resp. U 7→ Wk
∞(U)) defines a sheaf Wk

−∞ (resp. Wk
∞) on MR

([7, Defs. 4.15 & 4.16]). Note that Wk
−∞ and Wk

∞ are closed under the wedge product, ∇ ∂
∂x

and

the de Rham differential d. Since Wk
−∞ is a dg ideal of Wk

∞, the quotient W∗
∞/W∗

−∞ is a sheaf of
dgas when equipped with the de Rham differential.

Now suppose U is a convex open set. By a tropical polyhedral subset of U , we mean a connected
convex subset of U which is defined by finitely many affine equations or inequalities over Q of the
form a1x1 + · · ·+ anxn ≤ b.

Definition 5.1 ([7], Def. 4.19). A k-form α ∈ Wk
∞(U) is said to have asymptotic support on a

closed codimension k tropical polyhedral subset P ⊂ U with weight s ∈ Z, denoted as α ∈ WP,s(U),
if the following conditions are satisfied:

(1) For any p ∈ U \ P , there is a neighborhood p ∈ V ⊂ U \ P such that α|V ∈ Wk
−∞(V ).

(2) There exists a neighborhood WP ⊂ U of P such that α = h(x, ℏ)νP + η on WP , where

νP ∈
∧kNR is a non-zero affine k-form (defined up to non-zero constant) which is normal

to P , h(x, ℏ) ∈ C∞(WP × R>0) and η ∈ Wk
−∞(WP ).

(3) For any p ∈ P , there exists a convex neighborhood p ∈ V ⊂ U equipped with an affine coordi-
nate system x = (x1, . . . , xn) such that x′ := (x1, . . . , xk) parametrizes codimension k affine
linear subspaces of V parallel to P , with x′ = 0 corresponding to the subspace containing
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P . With the foliation {(PV,x′)}x′∈NV
, where PV,x′ = {(x1, . . . , xn) ∈ V | (x1, . . . , xk) = x′}

and NV is the normal bundle of V , we require that, for all j ∈ Z≥0 and multi-indices
β = (β1, . . . , βk) ∈ Zk≥0, the estimate∫

x′
(x′)β

(
sup
PV,x′
|∇j(ιν∨Pα)|

)
νP ≤ Dj,V,βℏ−

j+s−|β|−k
2

holds for some constant Dj,V,β and s ∈ Z, where |β| =
∑

l βl and ν
∨
P = ∂

∂x1
∧ · · · ∧ ∂

∂xk
.7

Observe that ∇ ∂
∂xl

WP,s(U) ⊂ WP,s+1(U) and (x′)βWP,s(U) ⊂ WP,s−|β|(U). It follows that

(x′)β∇ ∂
∂xl1

· · · ∇ ∂
∂xlj

WP,s(U) ⊂ WP,s+j−|β|(U).

The weight s defines a filtration of Wk
∞ (we drop the U dependence from the notation whenever it

is clear from the context):8

Wk
−∞ ⊂ · · · ⊂ WP,−1 ⊂ WP,0 ⊂ WP,1 ⊂ · · · ⊂ Wk

∞ ⊂ Ωkℏ(U).

This filtration, which keeps track of the polynomial order of ℏ for k-forms with asymptotic support
on P , provides a convenient tool to express and prove results in asymptotic analysis.

Definition 5.2 ([9], Def. 3.10). A differential k-form α is in W̃k
s (U) if there exist polyhedral subsets

P1, . . . , Pl ⊂ U of codimension k such that α ∈
∑l

j=1WPj ,s(U). If, moreover, dα ∈ W̃k+1
s+1 (U), then

we write α ∈ Wk
s (U). For every s ∈ Z, let W∗

s (U) =
⊕

kWk
s+k(U).

Example 5.3. Let U = R and x be an affine coordinate on U . Then we consider the ℏ-dependent
1-form

δ :=

(
1

ℏπ

) 1
2

e−
x2

ℏ dx.

Direct calculations in [7, Lem 4.12] showed that δ ∈ W1
1 (U) has asymptotic support on the hyperplane

P defined by x = 0.

The hyperplane P separates U into two chambers H+ and H−. If we fix a base point in H−
and apply the integral operator I in [7, Lem. 4.23], we obtain I(δ) ∈ W 0

0 (U) which has asymptotic
support on H+ ∪ P , playing the role of a step function.

Taking finite products of elements of the above form, we obtain α ∈ Wk
k (U) with asymptotic

support on arbitrary tropical polyhedral subsets of U . Any forms obtained from a finite number of
steps of applying the differential d, applying the integral operator I and taking wedge product are in
W ∗

0 (U).

We say that two closed tropical polyhedral subsets P1, P2 ⊂ U of codimension k1, k2 intersect
transversally if the affine subspaces of codimension k1 and k2 which contain P1 and P2, respectively,
intersect transversally. This definition applies also when P1 ∩ P2 = ∅ or ∂Pi ̸= ∅.

Lemma 5.4 ([7, Lem. 4.22]). (1) Let P1, P2, P ⊂ U be closed tropical polyhedral subsets of codi-
mension k1, k2 and k1 + k2, respectively, such that P contains P1 ∩ P2 and is normal to
νP1 ∧ νP2. Then WP1,s(U)∧WP2,r(U) ⊂ WP,r+s(U) if P1 and P2 intersect transversally with

P1 ∩ P2 ̸= ∅, and WP1,s(U) ∧WP2,r(U) ⊂ Wk1+k2
−∞ (U) otherwise.

7For k = 0, we use the convention that νP = 1 ∈
∧0 NR = R and also set ν∨

P = 1.
8Note that k is equal to the codimension of P ⊂ U .
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(2) We haveWk1
s1 (U)∧Wk2

s2 (U) ⊂ Wk1+k2
s1+s2 (U). In particular,W∗

0 (U) ⊂ W∗
∞(U) is a dg subalgebra

and W∗
−1(U) ⊂ W∗

0 (U) is a dg ideal.

Definition 5.5. Let W∗
s be the sheafification of the presheaf defined by U 7→ W∗

s (U). We call the
quotient sheaf T∗ := W∗

0/W∗
−1 the sheaf of tropical differential forms, which is a sheaf of dgas on

MR with structures (∧, d).

From [9, Lem. 3.6], we learn that R → T∗ is a resolution. Furthermore, given any point x ∈ U
and a sufficiently small neighborhood x ∈ W ⊂ U , we can show that there exists f ∈ W0

0 (W )
with compact support in W and satisfying f ≡ 1 near x (using an argument similar to the proof of
Lemma 3.10). Therefore, T∗ has a partition of unity subordinate to a given open cover. Replacing
the sheaf of de Rham differential forms on Λ∗

ρ1,R⊕Qτ,R by the sheaf T∗ of tropical differential forms,
we can construct a particular complex on the integral tropical manifold B satisfying Condition 4.7,
which dictates the tropical geometry of B.

Definition 5.6. Given a point x as in §3.3.2 (with a chart as in equation (3.10)), the stalk of T∗

at x is defined as T∗
x := (x−1T∗)x. This defines the complex (T∗, d) (or simply T∗) of monodromy

invariant tropical differential forms on B. A section α ∈ T∗(W ) is a collection of elements αx ∈ T∗
x,

x ∈ W such that each αx can be represented by x−1βx in a small neighborhood Ux ⊂ p−1(Ux) for
some tropical differential form βx on Ux, and satisfies the relation αx̃ = x̃−1(p∗βx) in T∗

x̃ for every
x̃ ∈ Ux.

Notice that the definition of T∗ requires the projection map p in equation (3.11) to be affine,
while that of Ω∗ in §3.3.2 does not. But like Ω∗, T∗ satisfies Condition 4.7 and can be used for the
purpose of gluing the sheaf PV ∗ of dgBV algebras in §4.3. In the rest of this section, we shall use
the notations PV ∗ and A∗ to denote the complexes of sheaves constructed using T∗.

5.2. The semi-flat dgBV algebra and its comparison with the pre-dgBV algebra PV ∗,∗.
In this section, we define a twisting of the semi-flat dgBV algebra by the slab functions (or initial
wall-crossing factors) in §2.4, and compare it with the dgBV algebra we constructed in §4.3 using
gluing of local smoothing models. The key result is Lemma 5.10, which is an important step in the
proof of our main result.

We start by recalling some notations from §2.4. Recall that for each vertex v, we fix a represen-
tative φv : Uv → R of the strictly convex multi-valued piecewise linear function φ ∈ H0(B,MPLP)
to define the cone Cv and the monoid Pv. The natural projection Tv ⊕ Z→ Tv induces a surjective
ring homomorphism C[ρ−1Pv] → C[ρ−1Σv]; we denote by m̄ ∈ ρ−1Σv the image of m ∈ ρ−1Pv
under the natural projection. We consider V(τ)v := Specan(C[τ−1Pv]) for some τ containing v,
and write zm for the function corresponding to m ∈ τ−1Pv. The element ϱ together with the cor-
responding function zϱ determine a family Specan(C[τ−1Pv]) → C, whose central fiber is given by
Specan(C[τ−1Σv]). The variety V(τ)v = Specan(C[τ−1Pv]) is equipped with the divisorial log struc-

ture induced by Specan(C[τ−1Σv]), which is log smooth. We write V(τ)†v if we need to emphasize
the log structure.

Since B is orientable, we can choose a nowhere vanishing integral element µ ∈ Γ(B \Se,
∧n TB,Z).

We fix a local representative µv ∈
∧n Tv for every vertex v and µσ ∈

∧n Λσ for every maximal cell
σ. Writing µv = m1 ∧ · · · ∧mn, we have the corresponding relative volume form

µv = d log zm1 ∧ · · · ∧ d log zmn
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in Ωn
V(τ)†v/C† . Now the relative log polyvector fields can be written as∧−l

Θ
V(τ)†v/C† =

⊕
m∈τ−1Pv

zm∂n1 ∧ · · · ∧ ∂nl
.

The volume form µv defines a BV operator via contraction (∆α) ⌟ µv := ∂(α ⌟ µv), which is given
explicitly by

∆(zm∂n1 ∧ · · · ∧ ∂nl
) =

l∑
j=1

(−1)j−1⟨m,nj⟩zm∂n1 ∧ · · · ∂̂nj · · · ∧ ∂nl
.

A Schouten—Nijenhuis–type bracket is given by extending the following formulae skew-symmetrically:

[zm1∂n1 , z
m2∂n2 ] = zm1+m2∂⟨m̄1,n2⟩n1−⟨m̄2,n1⟩n2

,

[zm, ∂n] = ⟨m̄, n⟩zm.

This gives
∧−∗Θ

V(τ)†v/C† the structure of a BV algebra.

5.2.1. Construction of the semi-flat sheaves. For each k ∈ N, we shall define a sheaf kG∗
sf (resp.

kK∗
sf) of k

th-order semi-flat log vector fields (resp. semi-flat log de Rham forms) over the open dense
subset W0 ⊂ B defined by

W0 :=
⋃

σ∈P[n]

intre(σ) ∪
⋃

ρ∈P[n−1]
0

intre(ρ) ∪
⋃

ρ∈P[n−1]
1

(
intre(ρ) \ (S ∩ intre(ρ))

)
,

where P
[n−1]
0 consists of ρ’s such that intre(ρ)∩Se = ∅ and P

[n−1]
1 of ρ’s that intersect with Se. These

sheaves use the natural divisorial log structure on V(ρ)†v and will not depend on the slab functions
fvρ’s. This construction is possible because we are using the much more flexible Euclidean topology
on W0, instead of the Zariski topology on 0X.

For σ ∈ P[n], recall that we have V (σ) = Specan(C[σ−1Σv]) for some v ∈ σ[0]. We also have
Specan(C[σ−1Σv]) = Λ∗

σ,C/Λ
∗
σ, which is isomorphic to (C∗)n, because σ−1Σv = Λσ,R = Tv,R. The

local kth-order thickening

kV(σ)† := Specan(C[σ−1Pv/q
k+1]) ∼= (C∗)n × Specan(C[q]/qk+1)

is obtained by identifying σ−1Pv as Λσ × N. Choosing a different vertex v′, we can use the parallel
transport Tv ∼= Tv′ from v to v′ within intre(σ) and the difference φv|σ − φv′ |σ between two affine
functions to identify the monoids σ−1Pv ∼= σ−1Pv′ . We take

kG∗
sf |intre(σ) := ν∗

(∧−∗
ΘkV(σ)†/ kS†

)
∼= ν∗(OkV(σ)†)⊗R

∧−∗
Λ∗
σ,R.

Next, we need to glue the sheaves kG∗
sf |intre(σ)’s along neighborhoods of codimension one cells

ρ’s. For each codimension one cell ρ, we fix a primitive normal ďρ to ρ and label the two adjacent

maximal cells σ+ and σ− so that ďρ is pointing into σ+. There are two situations to consider.

The simpler case is when Se ∩ intre(ρ) = ∅, where the monodromy is trivial. In this case, we have
V (ρ) = Specan(C[ρ−1Σv]), with the gluing V (σ±) ↪→ V (ρ) as described below Definition 2.13 using
the open gluing data sρσ± . We take the kth-order thickening given by

kV(ρ)† := Specan(C[ρ−1Pv/q
k+1])†,

equipped with the divisorial log structure induced by V (ρ). We extend the open gluing data

sρσ± : Λσ± → C∗
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to

sρσ± : Λσ± ⊕ Z→ C∗

so that sρσ±(0, 1) = 1, which acts as an automorphism of Specan(C[σ−1Σv]). In this way we can
extend the gluing V (σ±) ↪→ V (ρ) to

Specan(C[σ−1
± Pv/q

k+1])→ Specan(C[ρ−1Pv/q
k+1])

by twisting with the ring homomorphism induced by zm → sρσ±(m)−1zm. On a sufficiently small
neighborhood Wρ of intre(ρ), we take

kG∗
sf |Wρ := ν∗

(∧−∗
ΘkV(ρ)†/ kS†

)∣∣∣
Wρ

.

Choosing a different vertex v′, we may use parallel transport to identify the fans ρ−1Σv ∼= ρ−1Σv′ ,
and further use the difference φv|Wρ − φv′ |Wρ to identify the monoids ρ−1Pv ∼= ρ−1Pv′ . One can

check that the sheaf kG∗
sf |Wρ is well-defined.

The more complicated case is when Se ∩ intre(ρ) ̸= ∅, where the monodromy is non-trivial. We
write intre(ρ) \ S =

⋃
v intre(ρ)v, where intre(ρ)v is the unique component which contains the vertex

v in its closure. We fix one v, the corresponding intre(ρ)v, and a sufficiently small open subset Wρ,v

of intre(ρ)v. We assume that the neighborhood Wρ,v of intre(ρ)v intersects neither Wv′,ρ′ nor Wρ′

for any possible v′ and ρ′. Then we consider the scheme-theoretic embedding

V (ρ) = Specan(C[ρ−1Σv])→ Specan(C[ρ−1Pv])

given by

zm 7→

{
zm̄ if m lies on the boundary of the cone ρ−1Pv,

0 if m lies in the interior of the cone ρ−1Pv.

We denote by kV(ρ)†v the kth-order thickening of V (ρ)|ν−1(Wρ,v) in Specan(C[ρ−1Pv]) and equip it

with the divisorial log structure which is log smooth over kS† (note that it is different from the local
model kV(ρ)† introduced earlier in §4 because the latter depends on the slab functions fv,ρ, as we
can see explicitly in §5.2.2, while the former doesn’t). We take

kG∗
sf |Wρ,v :=

∧−∗
ΘkV(ρ)†v/

kS† .

The gluing with nearby maximal cells σ± on the overlap intre(σ±) ∩Wρ,v is given by parallel

transporting through the vertex v to relate the monoids σ−1
± Pv and ρ

−1Pv constructed from Pv, and

twisting the map Specan(C[σ−1
± Pv])→ Specan(C[ρ−1Pv]) with the open gluing data

zm 7→ s−1
ρσ±(m)zm,

using previous liftings of sρσ± to Λσ± ⊕Z. We obtain a commutative diagram of holomorphic maps

V (σ±)|D //

��

kV(σ±)†|D

��
V (ρ)|D //kV(ρ)†|D

,

where D = ν−1(Wρ,v ∩ intre(σ±)) and the vertical arrow on the right hand side respects the log
structures. The induced isomorphism

ν∗

(∧−∗
ΘkV(ρ)†v/

kS†

)
∼= ν∗

(∧−∗
ΘkV(σ±)†v/

kS†

)
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of sheaves on the overlap Wρ,v ∩ intre(σ±) then gives the desired gluing for defining the sheaf kG∗
sf

on W0. Note that the cocycle condition is trivial here as there is no triple intersection of any three
open subsets from intre(σ), Wρ and Wρ,v.

Similarly, we can define the sheaf kK∗
sf of semi-flat log de Rham forms, together with a relative

volume form kω0 ∈ k
∥K

n
sf(W0) obtained from gluing the local µv’s specified by the element µ as

described in the beginning of §5.2.

It would be useful to write down elements of the sheaf kG∗
sf more explicitly. For instance, fixing

a point x ∈ intre(ρ)v, we may write

(5.1) kG∗
sf,x = ν∗(OkV(ρ)v

)x ⊗R
∧−∗

T ∗
v,R,

and use ∂n to stand for the semi-flat holomorphic vector field associated to an element n ∈ T ∗
v,R.

Note that analytic continuation around the singular locus Se ∩ intre(ρ) acts non-trivially on the

semi-flat sheaf kG∗
sf due to the presence of non-trivial monodromy of the affine structure. Below is

a simple example.

Example 5.7. We consider the local affine charts which appeared in Example 2.3, equipped with
a strictly convex piecewise linear affine function φ on Σρ whose change of slopes is 1. Let us
study the analytic continuation of a local section along the loop γ which starts at a point b+, as
shown in Figure 7. First, we can identify both ρ−1Pv+ and ρ−1Pv− with the monoid in the cone

Figure 7. Analytic continuation along γ

P = {(x, y, z) | z ≥ φ(x)} via parallel transport through σ+. Writing u = z(1,0,1), v = z(−1,0,0),

w = z(0,−1,0) and q = z(0,0,1), we have C[P ] ∼= C[u, v, w±, q]/(uv−q) . Now the analytic continuation
of u ∈ ν∗(OkV(ρ)v+

)b+ along γ (going from the chart UII to the chart UI and then back to UII) is

given by as a sequence of elements:

u //sρσ+((1, 0))
−1u //uw //sρσ−((1, 0))

−1qv−1w //wu,

via the following sequence of maps between the stalks over b+, c+ ∈ UII and b−, c− ∈ UI:

ν∗(OkV(ρ)v+
)b+

//ν∗(OkV(σ+)†)c+
//ν∗(OkV(ρ)v−

)b−
//ν∗(OkV(σ−)†)c−

//ν∗(OkV(ρ)v+
)b+ .

So we see that the analytic continuation along γ maps u to wu.
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kG∗
sf is equipped with the BV algebra structure inherited from Specan(C[ρ−1Pv])

† (as described

in the beginning of §5.2), which agrees with the one induced from the volume form kω0. This allows
us to define the sheaf of semi-flat tropical vertex Lie algebras as

(5.2) kh := Ker(∆)|kG−1
sf
[−1].

Remark 5.8. The sheaf can actually be extended over the non-essential singular locus S\Se because
the monodromy around that locus acts trivially, but this is not necessary for our later discussion.

5.2.2. Explicit gluing away from codimension 2. When we define the sheaves kG∗α’s in §4.1, the open
subset Wα is taken to be a sufficiently small neighborhood of x ∈ intre(τ) for some τ ∈ P. In fact,
we can choose one of these open subsets to be the large open dense subset W0. In this subsection,
we construct the sheaves kG∗0 and kK∗

0 on W0 using an explicit gluing of the underlying complex
analytic space.

Over intre(σ) for σ ∈ P[n] or over Wρ for ρ ∈ P[n−1] with Se ∩ intre(ρ) = ∅, we have kG∗0 = kG∗
sf ,

which was just constructed in §5.2.1. So it remains to consider ρ ∈ P[n−1] such that Se∩ intre(ρ) ̸= ∅.
The log structure of V (ρ)† is prescribed by the slab functions fv,ρ ∈ Γ(OVρ(v))’s, which restrict to

functions s−1
v,ρ(fv,ρ)’s on the torus Specan(C[Λρ]) ∼= (C∗)n−1. Each of these can be pulled back via

the natural projection Specan(C[ρ−1Σv]) → Specan(C[Λρ]) to give a function on Specan(C[ρ−1Σv]).

In this case, we may fix the log chart V (ρ)†|ν−1(Wρ,v) → Specan(C[ρ−1Pv])
† given by the equation

zm 7→

{
zm̄ if ⟨ďρ, m̄⟩ ≥ 0 ,

zm̄
(
s−1
vρ (fv,ρ)

)⟨ďρ,m̄⟩
if ⟨ďρ, m̄⟩ ≤ 0 .

Write kV(ρ)†v for the corresponding kth-order thickening in Specan(C[ρ−1Pv]), which gives a local
model for smoothing V (ρ)|ν−1(Wρ,v) (as in §4). We take

kG∗0|Wρ,v := ν∗

(∧−∗
ΘkV(ρ)†v/ kS†

)
.

We have to specify the gluing on the overlap Wρ,v ∩ intre(σ±) with the adjacent maximal cells σ±.

This is given by first using parallel transport through v to relate the monoids σ−1
± Pv and ρ−1Pv as

in the semi-flat case, and then an embedding Specan(C[σ−1
± Pv/q

k+1])→ Specan(C[ρ−1Pv/q
k+1]) via

the formula

(5.3) zm 7→

{
s−1
ρσ+(m)zm for σ+ ,

s−1
ρσ−(m)zm

(
s−1
vσ−(fv,ρ)

)⟨ďρ,m̄⟩
for σ− ,

where svσ± , sρσ± are treated as maps Λσ± ⊕ Z→ C∗ as before. We observe that there is a commu-
tative diagram of log morphisms

V (σ±)
†|D //

��

kV(σ±)†|D

��
V (ρ)†|D //kV(ρ)†|D

,

where D = ν−1(Wρ,v ∩ intre(σ±)). The induced isomorphism

ν∗

(∧−∗
ΘkV(ρ)†v/ kS†

)
∼= ν∗

(∧−∗
ΘkV(σ±)†v/

kS†

)
of sheaves on the overlap D then provides the gluing for defining the sheaf kG∗0 on W0. Hence,

we obtain a sheaf kG∗0 of BV algebras, where the BV structure is inherited from the local models
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Specan(C[σ−1Pv]) and Specan(C[ρ−1Pv]). Similarly, we can define the sheaf kK∗
0 of log de Rham

forms over W0, together with a relative volume form kω0 ∈ k
∥Kn0 (W0) by gluing the local µv’s.

5.2.3. Relation between the semi-flat dgBV algebra and the log structure. The difference between
kG∗0 and kG∗

sf is that analytic continuation along a path γ in intre(σ±)∪ intre(ρ), where ρ = σ+ ∩σ−,
induces a non-trivial action on kG∗

sf (the semi-flat sheaf) but not on kG∗0 (the corrected sheaf). This

is because, near a singular point p ∈ Γ of the affine structure on B, there is another local model kG∗α
for p ∈Wα constructed in 4.1, where restrictions of sections are invariant under analytic continuation
(cf. Example 5.7). This is in line with the philosophy that monodromy is being cancelled by the
slab functions fv,ρ’s (which we also call initial wall-crossing factors). In view of this, we should be

able to relate the sheaves kG∗0 and kG∗
sf by adding back the initial wall-crossing factors fv,ρ’s.

Recall that the slab function fv,ρ is a function on Vρ(v) ⊂ 0Xρ, whose zero locus is Zρ1 ∩ Vρ(v)
for ρ such that Se ∩ intre(ρ) ̸= ∅. Also recall that, for ρ containing v, ρv is the unique contractible
component in ρ ∩ C−1(B \ S) such that v ∈ ρv, as defined in Assumption 3.5. Note that the inverse
image µ−1(ρv) ⊂ Vρ(v) under the generalized moment map µ is also a contractible open subset.
It contains the 0-dimensional stratum xv in Vρ(v) that corresponds to v. Since fv,ρ(xv) = 1, we
can define log(fv,ρ) in a small neighborhood of xv, and it can further be extended to the whole
of µ−1(ρv) ⊂ Vρ(v) because this subset is contractible. Restricting to the open dense torus orbit
Specan(C[Λρ]) ∩ µ−1(ρv), we obtain log(s−1

vρ (fv,ρ)), which can in addition be lifted to a section in
kG0

sf(Wρ,v) = Γ(Wρ,v,OkV(ρ)v
) for a sufficiently small Wρ,v.

Now we resolve the sheaves kG∗0 and kG∗
sf by the complex T∗ introduced in §5.1. We let

kPV∗,∗
sf := T∗|W0 ⊗R

kG∗
sf

and equip it with ∂̄◦ = d⊗ 1, ∆ and ∧, making it a sheaf of dgBV algebras. Over the open subset

Wρ,v, using the explicit description of kG∗
sf |Wρ,v , we consider the element

(5.4) ϕv,ρ := −δv,ρ ⊗ log(s−1
vρ (fv,ρ))∂ďρ ∈

kPV−1,1
sf (Wρ,v),

where δv,ρ is any 1-form with asymptotic support in intre(ρ)v and whose integral over any curve
transversal to intre(ρ)v going from σ− to σ+ is asymptotically 1; such a 1-form can be constructed
using a family of bump functions in the normal direction of intre(ρ)v similar to Example 5.3 (see
also [7, §4]). We can further extend the section ϕv,ρ to the whole W0 by setting it to be 0 outside a
small neighborhood of intre(ρ)v in Wρ,v.

Definition 5.9. The sheaf of semi-flat polyvector fields is defined as

kPV∗,∗
sf := T∗|W0 ⊗R

kG∗
sf ,

which is equipped with a BV operator ∆, a wedge product ∧ (and hence a Lie bracket [·, ·]) and the
operator

∂̄sf := ∂̄◦ + [ϕin, ·] = ∂̄◦ +
∑
v,ρ

[ϕv,ρ, ·],

where ∂̄◦ = d⊗ 1 and ϕin :=
∑

v,ρ ϕv,ρ. We also define the sheaf of semi-flat log de Rham forms as

kA∗,∗
sf := T∗|W0 ⊗R

kK∗
sf ,

equipped with ∂, ∧,
∂̄sf := ∂̄◦ +

∑
v,ρ

Lϕv,ρ ,

and a contraction action ⌟ by elements in kPV∗,∗
sf .
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It can be easily checked that ∂̄2sf = [∂̄sf ,∆] = 0, so we have a sheaf of dgBV algebras.

On the other hand, we write
kPV ∗,∗

0 := T∗|W0 ⊗R
kG∗0,

which is equipped with the operators ∂̄0 = d ⊗ 1, ∆ and ∧. The following important lemma is a
comparison between the two sheaves of dgBV algebras.

Lemma 5.10. There exists a set of compatible isomorphisms

Φ : kPV ∗,∗
0 →

kPV∗,∗
sf , k ∈ N

of sheaves of dgBV algebras such that Φ ◦ ∂̄0 = ∂̄sf ◦ Φ for each k ∈ N.
There also exists a set of compatible isomorphisms

Φ : kA∗,∗
0 →

kA∗,∗
sf , k ∈ N

of sheaves of dgas preserving the contraction action ⌟ and such that Φ ◦ ∂̄0 = ∂̄sf ◦Φ for each k ∈ N.
Furthermore, the relative volume form kω0 is identified via Φ.

Proof. Outside those intre(ρ)’s such that Se ∩ intre(ρ) ̸= ∅, the two sheaves are identical. So we will
take a component intre(ρ)v of intre(ρ) \ S and compare the sheaves on a neighborhood Wρ,v.

We fix a point x ∈ intre(ρ)v and describe the map Φ at the stalks of the two sheaves. First,
the preimage K := ν−1(x) ∼= Λ∗

ρ,R/Λ
∗
ρ can be identified as a real (n − 1)-dimensional torus in

Specan(C[Λρ]) ∼= (C∗)n−1. We have an identification ρ−1Σv ∼= Σρ × Λρ, and we choose the unique
primitive element mρ ∈ Σρ in the ray pointing into σ+. As analytic spaces, we write

Specan(C[Σρ]) = {uv = 0} ⊂ C2,

where u = zmρ and v = z−mρ , and

Specan(C[ρ−1Σv]) = (C∗)n−1 × {uv = 0}.
The germ OV (ρ),K of analytic functions can be written as

OV (ρ),K =

{
a0 +

∞∑
i=1

aiu
i +

−∞∑
i=−1

aiv
−i
∣∣∣ ai ∈ O(C∗)n−1(U) for neigh. U ⊃ K, sup

i ̸=0

log |ai|
|i|

<∞

}
.

Using the embedding V (ρ)|ν−1(Wρ,v) →
kV(ρ)†v in §5.2.2, we can write

kG00,x = OkV(ρ)v ,K =
k∑
j=0

(a0,j +

∞∑
i=1

ai,ju
i +

−∞∑
i=−1

ai,jv
−i)qj

∣∣∣ ai,j ∈ O(C∗)n−1(U) for neigh. U ⊃ K, sup
i ̸=0

log |ai,j |
|i|

<∞

 ,

with the relation uv = qls−1
vρ (fv,ρ) (here l is the change of slopes for φv across ρ). For the elements

(mρ, φv(mρ)) and (−mρ, φv(−mρ)) in ρ
−1Pv, we have the identities (we omit the dependence on k

when we write elements in the stalks of sheaves):

z(mρ,φv(mρ)) = u,

z−(−mρ,φv(−mρ)) = s−1
vρ (fv,ρ)

−1v,

describing the embedding kV(ρ)†v ↪→ Specan(C[ρ−1Pv])
†. For polyvector fields, we can write

kG∗0,x = kG00,x ⊗R

−∗∧
T ∗
v,R.
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The BV operator is described by the relations ∆(∂n) = 0, [∂n1 , ∂n2 ] = 0, and

(5.5)


[zm, ∂n] = ∆(zm∂n) = ⟨m,n⟩zm for m with m̄ ∈ Λρ, n ∈ T ∗

v,R;

[u, ∂n] = ∆(u∂n) = ⟨mρ, n⟩u for n ∈ T ∗
v,R;

[v, ∂n] = ∆(v∂n) = ⟨−mρ, n⟩v + ∂n(log s
−1
vρ (fv,ρ))v for n ∈ T ∗

v,R.

Similarly, we can write down the stalk for kG∗
sf,x = kG∗

sf,x ⊗R
∧−∗ T ∗

v,R. As a module over

O(C∗)n−1,K ⊗C C[q]/(qk+1), we have kG∗
sf,x = kG∗0,x; the ring structure on kG0

sf,x differs from that

on kG00,x and is determined by the relation uv = ql. The embedding kV(ρ)†v ↪→ Specan(C[ρ−1Pv])
† is

given by

z(mρ,φv(mρ)) = u,

z−(−mρ,φv(−mρ)) = v.

The formulae for the BV operator are the same as that for kG∗0,x, except that for the last equation

in (5.5), we have [v, ∂n] = ∆(v∂n) = ⟨−mρ, n⟩v instead.

We apply the argument in [7, §4], where we considered a scattering diagram consisting of only

one wall, to relate these two sheaves. We can find a set of compatible elements θ = (kθ)k∈N,

where kθ ∈ kPV−1,0
sf (Wρ,v) for k ∈ N, such that eθ ∗ ∂̄◦ = ∂̄sf and ∆(θ) = 0. Explicitly, θ is a

step-function-like section of the form

θ =

{
log(s−1

vρ (fv,ρ))∂ďρ on intre(σ+) ∩Wρ,v,

0 on intre(σ−) ∩Wρ,v.

For each k ∈ N, we also define θ0 := log(s−1
vρ (fv,ρ))∂ďρ , as an element in kG−1

sf (Wρ,v). Now we define

the map Φx :
kPV ∗,∗

0,x →
kPV∗,∗

sf,x at the stalks by writing

kPV ∗,∗
0,x = T∗

x ⊗R
kG00,x ⊗R

−∗∧
T ∗
v,R,

(and similarly for kPV∗,∗
sf,x), and extending the formulae

Φx(α) = α for α ∈ Tx,

Φx(f) = e[θ,·]f = f for f ∈ O(C∗)n−1,K ,

Φx(u) = e[θ−θ0,·]u,

Φx(v) = e[θ,·]v,

Φx(∂n) = e[θ−θ0,·]∂n for n ∈ T ∗
v,R

through the tensor product ⊗R and skew-symmetrically in ∂n’s.

To see that Φ is the desired isomorphism, we check all the relations by computations:

• Since e[θ,·] ◦ ∂̄◦ ◦ e−[θ,·] = ∂̄sf , we have

∂̄sfΦx(u) = e[θ,·]∂̄◦(e
−[θ0,·]u) = 0;

similarly, we have ∂̄sf(Φx(v)) = 0 = ∂̄sf(Φx(∂n)). Hence, we have Φx ◦ ∂̄0 = ∂̄sf ◦ Φx.
• We have e−[θ0,·]u = s−1

vρ (fv,ρ)u and

Φx(u)Φx(v) = e[θ,·](s−1
vρ (fv,ρ)u)e

[θ,·]v = s−1
vρ (fv,ρ)e

[θ,·](uv) = qls−1
vρ (fv,ρ) = Φx(uv),

i.e. the map Φx preserves the product structure.



SMOOTHING, SCATTERING, AND A CONJECTURE OF FUKAYA 51

• From the fact that ∆(θ) = 0 = ∆(θ0), we see that e[θ−θ0,·] commutes with ∆, and hence

∆(Φx(∂n)) = e[θ−θ0,·] ∆(∂n) = 0. We also have [Φx(∂n1), Φx(∂n2)] = e[θ−θ0,·][∂n1 , ∂n2 ] = 0.
• Again from ∆(θ) = 0 = ∆(θ0), we have

∆(Φx(u)Φx(∂n)) = ∆(e[θ−θ0,·](u∂n)) = e[θ−θ0,·] (∆(u∂n))

= ⟨mρ, n⟩e[θ−θ0,·](u) = ⟨mρ, n⟩Φx(u) = Φx(∆(u∂n)).

• Finally, we have

∆(Φx(v)Φx(∂n)) = ∆
(
e[θ−θ0,·]((e[θ0,·]v)∂n)

)
= e[θ−θ0,·]

(
∆(s−1

vρ (fv,ρ)v∂n)
)

= e[θ−θ0,·]
(
⟨−mρ, n⟩s−1

vρ (fv,ρ)v + ∂n(s
−1
vρ (fv,ρ))v

)
= ⟨−mρ, n⟩(e[θ,·]v) + ∂n

(
log s−1

vρ (fv,ρ)
)
(e[θ,·]v)

= ⟨−mρ, n⟩Φx(v) + ∂n
(
log s−1

vρ (fv,ρ)
)
Φx(v)

= Φx(∆(v∂n)).

We conclude that Φx :
kPV ∗,∗

0,x →
kPV∗,∗

sf,x is an isomorphism of dgBV algebras. We need to check

that the map Φx agrees with the isomorphism kPV ∗,∗
0 |C →

kPV∗,∗
sf |C induced simply by the identity

kG∗0|C ∼= kG∗
sf |C, where C = W0 \

⋃
Se∩intre(ρ)̸=∅ intre(ρ). For this purpose, we consider two nearby

maximal cells σ± such that σ+∩σ− = ρ. We have kV(σ±) = Specan(C[σ−1
± Pv]/q

k+1), and the gluing

of kG∗0 over Wρ,v ∩ σ+ is given by parallel transporting through v, and then by the formulae

(5.6)


zm 7→ s−1

ρσ+(m)zm for m ∈ Λρ,

u 7→ s−1
ρσ+(mρ)z

mρ ,

v 7→ qls−1
vσ+(fv,ρ)s

−1
ρσ+(−mρ)z

−mρ .

The only difference for gluing of kG∗
sf is the last equation in (5.6), which is now replaced by the

formula v 7→ qls−1
ρσ+(−mρ)z

−mρ . Since we have

Φx(v) =

{
s−1
vρ (fv,ρ)v on Ux ∩ intre(σ+),

v on Ux ∩ intre(σ−)

on a sufficiently small neighborhood Ux of x, we see that Φx(v) 7→ qls−1
vσ+(fv,ρ)s

−1
ρσ+(−mρ)z

−mρ under

the gluing map of kG∗
sf on Ux ∩ intre(σ+). This shows the compatibility of Φx with the gluing of kG∗0

and kG∗
sf over Ux ∩ intre(σ+). A similar argument applies for Ux ∩ intre(σ−).

The proof for Φ : kA∗,∗
0 → kA∗,∗

sf is similar and will be omitted. The volume form is preserved
under Φ because we have ∆(θ) = 0 = ∆(θ0). This completes the proof of the lemma. □

5.2.4. A global sheaf of dgLas from gluing of the semi-flat sheaves. We shall apply the procedure
described in §4.3 to the semi-flat sheaves to glue a global sheaf of dgLas. First of all, we choose
an open cover {Wα}α∈I satisfying the Condition 4.1, together with a decomposition I = I1 ⊔ I2
such that W1 = {Wα}α∈I1 is a cover of the semi-flat part W0, and W2 = {Wα}α∈I2 is a cover of a
neighborhood of

(⋃
τ∈P[n−2] τ

)
∪
(⋃

ρ∩Se ̸=∅ S ∩ intre(ρ)
)
.

For each Wα, we have a compatible set of local sheaves kG∗α of BV algebras, local sheaves kK∗
α

of dgas, and relative volume elements kωα, k ∈ N (as in §4.1). We can further demand that, over
the semi-flat part W0, we have kG∗α = kG∗0|Wα ,

kK∗
α = kK∗

0|Wα and kωα = kω0|Wα , and hence
kPV ∗,∗

α = kPV ∗,∗
0 |Wα and kA∗,∗

α = kA∗,∗
0 |Wα for α ∈ I1.
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Using the construction in §4.3, we obtain a Gerstenhaber deformation kgαβ = e[θαβ ,·] ◦ kψαβ
specified by θαβ ∈ kPV −1,0

β (Wαβ), which give rise to sets of compatible global sheaves kPV ∗,∗ and
kA∗,∗, k ∈ N. Restricting to the semi-flat part, we get two Gerstenhaber deformations kPV ∗,∗

0

and kPV ∗,∗|W0 , which must be equivalent as Ȟ>0(W1,
0PV −1,0|W0) = 0. So we have a set of

compatible isomorphisms locally given by hα = e[bα,·] : kPV ∗,∗
0 |Wα → kPV ∗,∗|Wα

∼= kPV ∗,∗
α for some

bα ∈ kPV −1,0
0 (Wα), for each k ∈ N, and they fit into the following commutative diagram

kPV ∗,∗
0 |Wαβ

id //

hα
��

kPV ∗,∗
0 |Wαβ

hβ
��

kPV ∗,∗
α |Wαβ

kgαβ //kPV ∗,∗
β |Wαβ

.

Since the pre-differential on kPV ∗,∗|W0 obtained from the construction in §4.3 is of the form ∂̄α+[ηα, ·]
for some ηα ∈ kPV −1,1

0 (Wα), pulling back via hα gives a global element η ∈ kPV −1,1
0 (W0) such that

h−1
α ◦ (∂̄α + [ηα, ·]) ◦ hα = ∂̄0 + [η, ·].

Theorem 4.18 gives a Maurer–Cartan solution ϕ ∈ kPV −1,1(B) such that (∂̄ + [ϕ, ·])2 = 0, together
with a holomorphic volume form ef ω, compatible for each k. We denote the pullback of ϕ under hα’s

to kPV −1,1
0 (W0) as ϕ0, and that of volume form to k

∥A
n,0
0 (W0) as e

g ω0. We see that the equation

(∂̄0 + Lη+ϕ0)eg ω0 = 0

is satisfied, or equivalently, that η + ϕ0 + tg is a solution to the extended Maurer–Cartan equation
4.10.

Lemma 5.11. If the holomorphic volume form ef ω is normalized in the sense of Definition 4.19,

then we can find a set of compatible V ∈ kPV −1,0
0 (W0), k ∈ N such that

e−LV ω0 = eg ω0.

As a consequence, the Maurer–Cartan solution η + ϕ0 + tg is gauge equivalent to a solution of the
form ζ0 + t · 0 for some ζ0 ∈ kPV −1,1

0 (W0), via the gauge transformation e[V,·] : kPV ∗,∗
0 → kPV ∗,∗

0 .

Proof. We should construct V by induction on k as in the proof of Lemma 4.6. Namely, suppose V
is constructed for the (k − 1)st-order, then we shall lift it to the kth-order. We prove the existence

of a lifting Vx ∈ kPV −1,0
0,x at every stalk x ∈W0 and use partition of unity to glue a global lifting V.

First of all, we can always find a gauge transformation θ ∈ kPV −1,0
0,x such that

e−[θ,·] ◦ ∂̄0 ◦ e[θ,·] = ∂̄0 + [η + ϕ0, ·].

So we have ∂̄0(e
Lθeg ω0) = 0, which implies that eLθeg ω0 ∈ k

∥Kn0,x. We can write eLθeg ω0 = eh ω0

in the stalk at x for some germ h ∈ kG00,x of holomorphic functions. Applying Lemma 4.6, we can

further choose θ so that h = h(q) ∈ (q) ⊂ C[q]/qk+1. In a sufficiently small neighborhood Ux, we find
an element ϱx ∈ Tn(Ux) as in Definition 4.19. The fact that the volume form is normalized forces

eh(q)[ω0 ∧ ϱx] to be constant with respect to the Gauss–Manin connection k∇. Tracing through the
exact sequence (4.14) on Ux, we can lift ω0 to kKn0 (Ux) which is closed under ∂. As a consequence,

we have k∇ ∂
∂ log q

[ω0 ∧ ϱx] = 0, and hence we conclude that h(q) = 0.

Now we have to solve for a lifting Vx such that eLθe−LVx ω0 = ω0 up to the kth-order. This is
equivalent to solving for a lifting u satisfying eLu ω0 = ω0 for the kth-order once the (k − 1)st-order
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is given. Take an arbitrary lifting ũ to the kth-order, and making use of the formula in [8, Lem.
2.8], we have

eLũ ω0 = exp

( ∞∑
s=0

δsũ
(s+ 1)!

∆(ũ)

)
ω0,

where δũ = −[ũ, ·]. From eLũ ω0 = ω0 (mod mk), we use induction on the order j to prove that
∆(ũ) = 0 up to order (k − 1). Therefore we can write

∆(ũ) = qk ∆(ŭ) (mod mk)

for some ŭ ∈ 0PV −1,0
0,x , by the fact that the cohomology sheaf under ∆ is free over kR = C[q]/(qk+1)

(see the discussion right after Condition 4.14). Setting u = ũ− qkŭ will then solve the equation. □

The element V obtained in Lemma 5.11 can be used to conjugate the operator ∂̄0 + [η + ϕ0, ·] to
get ∂̄0 + [ζ0, ·], i.e.

e−[V,·] ◦ (∂̄0 + [ζ0, ·]) ◦ e[V,·] = ∂̄0 + [η + ϕ0, ·].

The volume form ω0 will be holomorphic under the operator ∂̄0+[ζ0, ·]. From the equation (4.13), we

observe that ∆(ζ0) = 0. Furthermore, the image of ζ0 under the isomorphism Φ : kPV ∗,∗
0 →

kPV∗,∗
sf

in Lemma 5.10 gives ϕs ∈ kPV−1,1
sf (W0), and an operator of the form

(5.7) ∂̄◦ + [ϕin + ϕs, ·] = ∂̄◦ +
∑
v,ρ

[ϕv,ρ, ·] + [ϕs, ·],

where ϕin =
∑

v,ρ ϕv,ρ, that acts on
kPV∗,∗

sf .

Equipping with this operator, the semi-flat sheaf kPV∗,∗
sf can be glued to the sheaves kPV ∗,∗

α ’s for
α ∈ I2, preserving all the operators. More explicitly, on each overlap W0α :=W0 ∩Wα, we have

(5.8) kg0α :
kPV∗,∗

sf |W0α → kPV ∗,∗|W0α

defined by

kgαβ ◦ kg0α|Wαβ
:= hβ ◦ e−[V,·] ◦ Φ−1|Wαβ

for β ∈ I1, which sends the operator ∂̄◦ + [ϕin + ϕs, ·] to ∂̄α + [ηα + ϕ, ·].

Definition 5.12. We call kTL∗sf := Ker(∆)[−1] ⊂ kPV−1,∗
sf [−1], equipped with the structure of a

dgLa using ∂̄◦ and [·, ·] inherited from kPV−1,∗
sf , the sheaf of semi-flat tropical vertex differential

graded Lie algebras (abbrev. as sf-TVdgLa).

Note that kTL∗sf
∼= T∗|W0 ⊗R

kh. Also, we have ∆(ϕs) = 0 since ∆(ζ0) = 0, and a direct

computation shows that ∆(ϕin) = 0. Thus ϕin, ϕs ∈ kTL1sf(W0), and the operator ∂̄◦ + [ϕin + ϕs, ·]
preserves the sub-dgLa kTL∗sf .

From the description of the sheaf T∗, we can see that locally on U ⊂ W0, ϕs is supported on
finitely many codimension one polyhedral subsets, called walls or slabs, which are constituents of a
scattering diagram. This is why we use the subscript ‘s’ in ϕs, which stands for ‘scattering’.

5.3. Consistent scattering diagrams and Maurer–Cartan solutions.
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5.3.1. Scattering diagrams. In this subsection, we recall the notion of scattering diagrams introduced
by Kontsevich–Soibelman [36] and Gross–Siebert [29], and make modifications to suit our needs.
We begin with the notion of walls from [29, §2]. Let

Ŝ =

 ⋃
τ∈P[n−2]

τ

 ∪
 ⋃
ρ∈P[n−1]

ρ∩Se ̸=∅

S ∩ intre(ρ)


be equipped with a polyhedral decomposition induced from P and S. For the exposition below, we
will always fix k > 0 and consider all these structures modulo mk+1 = (qk+1).

Definition 5.13. A wall (w, σw, ďw,Θw) consists of

• a maximal cell σw ∈ P[n],
• a closed (n− 1)-dimensional tropical polyhedral subset w of σw such that

intre(w) ∩

 ⋃
ρ∈P[n−1]

ρ∩Se ̸=∅

intre(ρ)

 = ∅,

• a choice of a primitive normal ďw, and
• a section Θw of the tropical vertex group exp(q · kh) over a sufficiently small neighborhood
of w.

We call Θw the wall-crossing factor associated to the wall w. We may write a wall as (w,Θw) for
simplicity.

A wall cannot be contained in ρ with ρ ∩ Se ̸= ∅. We define a notion of slabs for these subsets of
codimension one strata ρ intersecting Se. The difference is that we have an extra term Θv,ρ coming
from the slab function fv,ρ.

Definition 5.14. A slab (b, ρb, ďρ, Ξb) consists of

• an (n− 1)-cell ρb ∈ P[n−1] such that ρb ∩ Se ̸= ∅,
• a closed (n− 1)-dimensional tropical polyhedral subset b of ρb \ (ρb ∩ S),
• a choice of a primitive normal ďρ, and

• a section Ξb of exp(q · kh) over a sufficiently small neighborhood of b.

The wall-crossing factor associated to the slab b is given by

Θb := Θv,ρ ◦Ξb,

where v is the unique vertex such that intre(ρ)v contains b and

Θv,ρ = exp([log(s−1
vρ (fv,ρ))∂ďρ , ·])

(cf. equation (5.4)). We may write a slab as (b,Θb) for simplicity.

Remark 5.15. In the above definition, a slab is not allowed to intersect the singular locus S. This is
different from the situation in [29, §2]. However, in our definition of consistent scattering diagrams,
we will require consistency around each stratum of S.
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Example 5.16. We consider the 3-dimensional example shown in Figure 8, from which we can
see possible supports of the walls and slabs. There are two adjacent maximal cells intersecting at
ρ ∈ P[n−1] with Se ∩ ρ = S ∩ ρ colored in red. The 2-dimensional polyhedral subsets colored in blue
can support walls and the polyhedral subset colored in green can support a slab because it is lying
inside ρ with Se ∩ ρ ̸= ∅.

Figure 8. Supports of walls/slabs

Definition 5.17. A (kth-order) scattering diagram is a countable collection

D = {(wi,Θi)}i∈N ∪ {(bj ,Θj)}j∈N
of walls or slabs such that the intersections of any two walls/slabs is at most an (n−2)-dimensional
tropical polyhedral subset, and {wi ∩W0}i∈N ∪ {bj ∩W0}j∈N is locally finite in W0.

Our notion of scattering diagrams is more flexible than the one defined in [36, 29] in two ways:
First, there is no relation between the affine direction orthogonal to a wall w or a slab b and its
wall crossing factor. As a result, we cannot allow overlapping of walls/slabs in their relative interior
because in that case their associated wall crossing factors are not necessarily commuting. Second,
we only require that the intersection of D with W0 is a locally finite collection of W0, which implies

that we allow a possibly infinite number of walls/slabs approaching strata of Ŝ. In the construction
of the scattering diagram D(φ) associated to a Maurer–Cartan solution φ below, all the walls/slabs

will be compact subsets of W0. These walls will not intersect Ŝ, as illustrated in Figure 8. However,

there could be a union of infinitely many walls limiting to some strata of Ŝ. See also Remark 1.2.

Example 5.18. For the 2-dimensional example shown in Figure 9, we see a vertex v and its adjacent
cells, and the singular locus Se consists of the red crosses. In our version of scattering diagrams, we
allow infinitely many intervals limiting to {v} or Se.

Given a scattering diagram D, we can define its support as |D| :=
⋃
i∈Nwi∪

⋃
j∈N bj . There is an

induced polyhedral decomposition on |D| such that its (n− 1)-cells are closed subsets of some walls
or slabs, and all intersections of walls or slabs are lying in the union of the (n− 2)-cells. We write

|D|[i] for the collection of all the i-cells in this polyhedral decomposition. We may assume, after
further subdividing the walls or slabs in D if necessary, that every wall or slab is an (n− 1)-cell in

|D|. We call an (n− 2)-cell j ∈ |D|[n−2] a joint, and a connected component of W0 \ |D| a chamber.
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Figure 9. Walls/slabs around Ŝ

Given a wall or slab, we shall make sense of wall crossing in terms of jumping of holomorphic
functions across it. Instead of formulating the definition in terms of path-ordered products of
elements in the tropical vertex group as in [29], we will express it in terms of the action by the

tropical vertex group on the local sections of kG0
sf . There is no harm in doing so since we have the

inclusion kG−1
sf ↪→ Der(kG0

sf ,
kG0

sf), i.e. a relative vector field is determined by its action on functions.

In this regard, we would like to define the (kth-order) wall-crossing sheaf kOD on the open set

W0(D) :=W0 \
⋃

j∈|D|[n−2]

j,

which captures the jumping of holomorphic functions described by the wall-crossing factor when
crossing a wall/slab. We first consider the sheaf kG0

sf of holomorphic functions over the subset
W0 \ |D|, and let

kOD|W0\|D| :=
kG0

sf |W0\|D|.

To extend it through the walls/slabs, we will specify the analyic continuation through intre(w) for

each w ∈ |D|[n−1]. Given a wall/slab w with two adjacent chambers C+, C− and ďw pointing into
C+, and a point x ∈ intre(w) with the germ Θw,x of wall-crossing factors near x, we let

kOD,x := kG0
sf,x,

but with a different gluing to nearby chambers C±: in a sufficiently small neighborhood Ux of x, the
gluing of a local section f ∈ kOD,x is given by

(5.9) f |Ux∩C± :=

{
Θw,x(f)|Ux∩C+ on Ux ∩ C+,
f |Ux∩C− on Ux ∩ C−.

In this way, the sheaf kOD|W0\|D| extends to W0(D).

Now we can formulate consistency of a scattering diagram D in terms of the behaviour of the sheaf
kOD over the joints j’s and (n − 2)-dimensional strata of Ŝ. More precisely, we consider the push-

forward i∗(
kOD) along the embedding i : W0(D)→ B, and its stalk at x ∈ intre(j) and x ∈ intre(τ) for

strata τ ⊂ Ŝ. Similar to above, we can define the (lth-order) sheaf lOD by using lG0
sf and considering

equation (5.9) modulo (q)l+1. There is a natural restriction map k,l♭ : i∗(
kOD) → i∗(

lOD). Taking

tensor product, we have k,l♭ : i∗(
kOD)⊗kR

lR→ i∗(
lOD), where

kR = C[q]/(qk+1).

The proof of the following lemma will be given in Appendix §A.
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Lemma 5.19 (Hartogs extension property). We have

ι∗(
0G0|W0) =

0G0,
where ι : W0 → B is the inclusion. Moreover, for any scattering diagram D, we have

i∗(
0G0|W0(D)) =

0G0,
where i : W0(D)→ B is the inclusion.

Lemma 5.20. The 0th-order sheaf i∗(
0OD) is isomorphic to the sheaf 0G0.

Proof. In view of Lemma 5.19, we only have to show that the two sheaves are isomorphic on the
open subset W0(D). Since we work modulo (q), only the wall-crossing factor Θv,ρ associated to a

slab matters. So we take a point x ∈ intre(b) ⊂ intre(ρ)v for some vertex v, and compare 0OD,x with
0G0x = 0G0

sf,x. From the proof of Lemma 5.10, we have

0G0x = 0G0
sf,x = OkV(ρ)v ,K

=

{
a0,j +

∞∑
i=1

aiu
i +

−∞∑
i=−1

aiv
−i
∣∣∣ ai ∈ O(C∗)n−1(U) for some neigh. U ⊃ K, sup

i ̸=0

log |ai|
|i|

<∞

}
,

with the relation uv = 0. The gluings with nearby maximal cells σ± of both 0G0 and 0G0
sf are simply

given by the parallel transport through v and the formulae

σ+ :


zm 7→ s−1

ρσ+(m)zm for m ∈ Λρ,

u 7→ s−1
ρσ+(mρ)z

mρ ,

v 7→ 0,

σ− :


zm 7→ s−1

ρσ−(m)zm for m ∈ Λρ,

u 7→ 0,

v 7→ s−1
ρσ−(−mρ)z

−mρ

in the proof of Lemma 5.10.

Now for the wall-crossing sheaf 0OD,x
∼= 0G0

sf,x, the wall-crossing factor Θv,ρ acts trivially except

on the two coordinate functions u, v because ⟨m, ďρ⟩ = 0 for m ∈ Λρ. The gluing of u to the nearby
maximal cells which obeys wall crossing is given by

u|Ux∩σ± :=

{
u|Ux∩σ+ on Ux ∩ σ+,
Θ−1
v,ρ,x(u)|Ux∩σ− = 0 on Ux ∩ σ−,

in a sufficiently small neighborhood Ux of x. Here, the reason that we have Θ−1
v,ρ,x(u)|Ux∩σ− = 0 on

Ux ∩ σ− is simply because we have u 7→ 0 in the gluing of 0G0
sf . For the same reason, we see that

the gluing of v agrees with that of 0G0 and 0G0
sf . □

Definition 5.21. A (kth-order) scattering diagram D is said to be consistent if there is an isomor-

phism i∗(
kOD)|Wα

∼= kG0α as sheaves of C[q]/(qk+1)-algebras on each open subset Wα.

The above consistency condition would imply that k,l♭ : i∗(
kOD) → i∗(

lOD) is surjective for any

l < k and hence i∗(
kOD) is a sheaf of free C[q]/(qk+1)-modules on B. We are going to see that i∗(

kOD)
agrees with the push-forward of the sheaf of holomorphic functions on a (kth-order) thickening kX
of the central fiber 0X under the modified moment map ν.

Let us elaborate a bit on the relation between this definition of consistency and that in [29].
Assuming we have a consistent scattering diagram in the sense of [29], then we obtain a kth-order
thickening kX of 0X which is locally modeled on the thickenings kVα’s by [28, Cor. 2.18]. Pushing
forward via the modified moment map ν, we obtain a sheaf of algebras over C[q]/(qk+1) lifting 0G0,
which is locally isomorphic to the kG0α’s. This consequence is exactly what we use to formulate our
definition of consistency.
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Lemma 5.22. Suppose we have W ⊂Wα∩Wβ such that V = ν−1(W ) is Stein, and an isomorphism

h : kG0β|W →
kG0α|W of sheaves of C[q]/(qk+1)-algebras which is the identity modulo (q). Then there

is a unique isomorphism ψ : kVα|V → kVβ|V of analytic spaces inducing h.

Proof. From the description in §2.4, we can embed both families kVα, kVβ over Specan(C[q]/(qk+1))

as closed analytic subschemes of CN+1 = CN ×Cq and CL+1 = CL ×Cq respectively, where projec-

tion to the second factor defines the family over C[q]/(qk+1). Let Jα and Jβ be the corresponding
ideal sheaves, which can be generated by finitely many elements. We can take Stein open subsets
Uα ⊆ CN+1 and Uβ ⊆ CL+1 such that their intersections with the subschemes give kVα|V and
kVβ|V respectively. By taking global sections of the sheaves over W , we obtain the isomorphism
h : OkVβ

(V )→ OkVα
(V ). Using the fact that Uα is Stein, we can lift h(zi)’s, where zi’s are restric-

tions of coordinate functions to kVβ|V ⊂ Uβ, to holomorphic functions on Uα. In this way, h can be

lifted as a holomorphic map ψ : Uα → Uβ. Restricting to kVα|V , we see that the image lies in kVβ|V ,
and hence we obtain the isomorphism ψ. The uniqueness follows from the fact the ψ is determined
by ψ∗(zi) = h(zi). □

Given a consistent scattering diagram D (in the sense of Definition 5.21), the sheaf i∗(
kOD) can

be treated as a gluing of the local sheaves kG0α’s. Then from Lemma 5.22, we obtain a gluing of the
local models kVα’s yielding a thickening kX of 0X. This justifies Definition 5.21.

5.3.2. Constructing consistent scattering diagrams from Maurer–Cartan solutions. We are finally
ready to demonstrate how to construct a consistent scattering diagramD(φ) in the sense of Definition
5.21 from a Maurer–Cartan solution φ = ϕ+ tf obtained in Theorem 4.18. As in §5.2.4, we obtain
a kth-order Maurer–Cartan solution ζ0 and define its scattered part as ϕs ∈ kTL1sf(W0). From this,

we want to construct a kth-order scattering diagram D(φ).

We take an open cover {Ui}i by pre-compact convex open subsets of W0 such that, locally on Ui,
ϕin + ϕs can be written as a finite sum

(ϕin + ϕs)|Ui =
∑
j

αij ⊗ vij ,

where αij ∈ T1(Ui) has asymptotic support on a codimension one polyhedral subset Pij ⊂ Ui, and

vij ∈ kh(Ui). We take a partition of unity {ϱi}i subordinate to the cover {Ui}i such that supp(ϱi)
has asymptotic support on a compact subset Ci of Ui. As a result, we can write

(5.10) ϕin + ϕs =
∑
i

∑
j

(ϱiαij)⊗ vij ,

where each (ϱiαij) has asymptotic support on the compact codimension one subset Ci ∩ Pij ⊂ Ui.
The subset

⋃
ij Ci ∩ Pij will be the support |D| of our scattering diagram D = D(φ).

We may equip |D| :=
⋃
ij Ci ∩ Pij with a polyhedral decomposition such that all the boundaries

and mutual intersections of Ci ∩ Pij ’s are contained in (n − 2)-dimensional strata of |D|. So, for
each (n − 1)-dimensional cell τ of |D|, if intre(τ) ∩ (Ci ∩ Pij) ̸= ∅ for some i, j, then we must have
τ ⊂ Ci ∩ Pij . Let I(τ) := {(i, j) | τ ⊂ Ci ∩ Pij}, which is a finite set of indices. We will equip the
(n− 1)-cells τ ’s of |D| with the structure of walls or slabs.

We first consider the case of a wall. Take τ ∈ |D|[n−1] such that intre(τ) ∩ intre(ρ) = ∅ for all ρ
with ρ ∩ Se ̸= ∅. We let w = τ , choose a primitive normal ďw of τ , and give the labels C± to the
two adjacent chambers C± so that ďw is pointing into C+. In a sufficiently small neighborhood Uτ
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of intre(τ), we have ϕin|Uτ = 0 and we may write

ϕs|Uτ =
∑

(i,j)∈I(τ)

(ϱiαij)⊗ vij ,

where each (ϱiαij) has asymptotic support on intre(τ). Since locally on Uτ any Maurer–Cartan

solution is gauge equivalent to 0, there exists an element θτ ∈ T0(Uτ )⊗ q · kh(Uτ ) such that

e[θτ ,·] ◦ ∂̄◦ ◦ e−[θτ ,·] = ∂̄◦ + [ϕs, ·].
Such an element can be constructed inductively using the procedure in [37, §3.4.3], and can be
chosen to be of the form

(5.11) θτ |Uτ∩C± =

{
θτ,0|Uτ∩C+ on Uτ ∩ C+,
0 on Uτ ∩ C−,

for some θτ,0 ∈ q · kh(Uτ ). From this we obtain the wall-crossing factor associated to the wall w

(5.12) Θw := e[θτ,0,·].

Remark 5.23. Here we need to apply the procedure in [37, §3.4.3], which is a generalization of that
in [7], because of the potential non-commutativity: [vij , vij′ ] ̸= 0 for j ̸= j′.

For the case where τ ⊂ intre(ρ)v for some ρ with ρ ∩ Se ̸= ∅, we will define a slab. We take Uτ
and I(τ) as above, and let the slab b = τ . The primitive normal ďρ is the one we chose earlier for
each ρ. Again we work in a small neighborhood Uτ of intre(τ) with two adjacent chambers C±. As
in the proof of Lemma 5.10, we can find a step-function-like element θv,ρ of the form

θv,ρ =

{
log(s−1

vρ (fv,ρ))∂ďρ on Uτ ∩ C+,
0 on Uτ ∩ C−

to solve the equation e[θv,ρ,·] ◦ ∂̄◦ ◦ e−[θv,ρ,·] = ∂̄◦ + [ϕin, ·] on Uτ . In other words,

Ψ := e−[θv,ρ,·] : (kTL∗sf |Uτ , ∂̄sf)→ (kTL∗sf |Uτ , ∂̄◦)

is an isomorphism of sheaves of dgLas. Computations using the formula in [8, Lem. 2.5] then gives
the identity

Ψ−1(∂̄◦ + [Ψ(ϕs), ·]) ◦ Ψ = ∂̄◦ + [ϕin + ϕs, ·].
Once again, we can find an element θτ such that

e[θτ ,·] ◦ ∂̄◦ ◦ e−[θτ ,·] = ∂̄◦ + [Ψ(ϕs), ·],

and hence a corresponding element θτ,0 ∈ q · kh(Uτ ) of the form (5.11). From this we get

(5.13) Ξb := e[θτ,0,·]

and hence the wall-crossing factor Θb := Θv,ρ ◦Ξb associated to the slab b.

Next we would like to argue that consistency of the scattering diagram D follows from the fact
that ϕ is a Maurer–Cartan solution. First of all, on the global sheaf kPV ∗,∗ over B, we have the
operator ∂̄ϕ := ∂̄ + [ϕ, ·] which satisfies [∆, ∂̄ϕ] = 0 and ∂̄2ϕ = 0. This allows us to define the sheaf of

kth-order holomorphic functions as

kOϕ := Ker(∂̄ϕ) ⊂ kPV 0,0,

for each k ∈ N. It is a sequence of sheaves of commutative C[q]/(qk+1)-algebras over B, equipped

with a natural map k,l♭ : kOϕ → lOϕ for l < k that is induced from the maps for kPV ∗,∗. By

construction, we see that 0Oϕ ∼= 0G0 ∼= ν∗(O0X).
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We claim that the maps k,l♭’s are surjective. To prove this, we fix a point x ∈ B and take an open
chartWα containing x in the cover of B we chose at the beginning of §5.2.4. There is an isomorphism
Φα :

kPV ∗,∗|Wα
∼= kPV ∗,∗

α identifying the differential ∂̄ with ∂̄α + [ηα, ·] by our construction. Write
ϕα = Φα(ϕ) and notice that ∂̄α+ [ηα+ϕα, ·] squares to zero, which means that ηα+ϕα is a solution
to the Maurer–Cartan equation for kPV ∗,∗

α (Wα). We apply the same trick as above to the local

open subset Wα, namely, any Maurer–Cartan solution lying in kPV −1,1
α (Wα) is gauge equivalent to

the trivial one, so there exists θα ∈ kPV −1,0
α (Wα) such that

e[θα,·] ◦ ∂̄α ◦ e−[θα,·] = ∂̄α + [ηα + ϕα, ·].

As a result, the map e−[θα,·] ◦Φα : (kPV ∗,∗|Wα , ∂̄+[ϕ, ·]) ∼= (kPV ∗,∗
α , ∂̄α) is an isomorphism of dgLas,

sending kOϕ isomorphically onto kG0α.
We shall now prove the consistency of the scattering diagram D = D(φ) by identifying the

associated wall-crossing sheaf kOD with the sheaf kOϕ|W0(D) of k
th-order holomorphic functions.

Theorem 5.24. There is an isomorphism Φ: kOϕ|W0(D) → kOD of sheaves of C[q]/(qk+1)-algebras
onW0(D). Furthermore, the scattering diagram D = D(φ) associated to the Maurer–Cartan solution
ϕ is consistent in the sense of Definition 5.21.

Proof. To prove the first statement, we first notice that there is a natural isomorphism

kOϕ|W0\|D| ∼= kOD|W0\|D|,

so we only need to consider those points x ∈ intre(τ) where τ is either a wall or a slab. Since

W0(D) ⊂ W0, we will work on the semi-flat locus W0 and use the model kPV∗,∗
sf , which is equipped

with the operator ∂̄◦ + [ϕin + ϕs, ·]. Via the isomorphism

Φ : (kPV ∗,∗
0 , ∂̄ϕ)→ (kPV∗,∗

sf , ∂̄◦ + [ϕin + ϕs, ·])
from Lemma 5.10, we may write

kOϕ|W0 = Ker(∂̄ϕ) ⊂ kPV0,0
sf .

We fix a point x ∈W0(D)∩|D| and consider the stalk at x for both sheaves. In the above construction
of walls and slabs from the Maurer–Cartan solution ϕ, we first take a sufficiently small open subset
Ux and then find a gauge transformation of the form Ψ = e[θτ ,·] in the case of a wall, and of the form
Ψ = e[θv,ρ,·] ◦ e[θτ ,·] in the case of a slab. We have

Ψ ◦ ∂̄◦ ◦ Ψ−1 = ∂̄◦ + [ϕin + ϕs, ·]
by construction, so this further induces an isomorphism

Ψ : kG0
sf |Ux → kOϕ|Ux

of C[q]/(qk+1)-algebras.

It remains to see how the stalk Ψ : kG0
sf,x →

kOϕ,x is glued to nearby chambers C±. For this
purpose, we let

Ψ0 := e[θτ,0,·]

as in equation (5.12) in the case of a wall, and

Ψ0 := Θv,ρ ◦ e[θτ,0,·]

as in (5.13) in the case of a slab. Then, the restriction of an element f ∈ kG0
sf,x to a nearby chamber

is given by

Ψ(f) =

{
Ψ0(f) on Ux ∩ C+,
f on Ux ∩ C−
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in a sufficiently small neighborhood Ux. This agrees with the description of the wall-crossing sheaf
kOD,x in equation (5.9). Hence we obtain an isomorphism kOϕ|W0(D)

∼= kOD.

To prove the second statement, we first apply pushing forward via i : W0(D) → B to the first
statement to get the isomorphism

i∗(
kOϕ|W0(D)) ∼= i∗(

kOD).

Now, by the discussion right before this proof, we may identify kOϕ with kG0α locally. But the sheaf
kG0α, which is isomorphic to the restriction of 0G0 ⊗C C[q]/(qk+1) to Wα as sheaves of C[q]/(qk+1)-
modules, satisfies the Hartogs extension property from W0(D) ∩Wα to Wα by Lemma 5.19. So we
have i∗(

kOϕ|W0(D)) ∼= kOϕ. Hence, we obtain

i∗(
kOD)|Wα

∼= (kOϕ)|Wα
∼= kG0α,

from which follows the consistency of the diagram D = D(φ). □

Remark 5.25. From the proof of Theorem 5.24, we actually have a correspondence between step-
function-like elements in the gauge group and elements in the tropical vertex group as follows. We
fix a generic point x in a joint j, and consider a neighborhood of x of the form Ux ×Dx, where Ux
is a neighborhood of x in intre(j) and Dx is a disk in the normal direction of j. We pick a compact
annulus Ax ⊂ Dx surrounding x, intersecting finitely many walls/slabs. We let τ1, . . . , τs be the
walls/slabs in anti-clockwise direction. For each τi, we take an open subset Wi just containing the
wall τi such that Wi \ τi = Wi,+ ∪Wi,−. The following Figure 10 below illustrates the situation.

As in the proof of Theorem 5.24, there is a gauge transformation on each Wi of the form

Ψi : (
kPV∗,∗

sf |Wi
, ∂̄◦)→ (kPV∗,∗

sf |Wi
, ∂̄◦ + [ϕin + ϕs, ·]),

where Ψi = e[θv,ρ,·] ◦ e[θτ ,·] for a slab and Ψi = e[θτ ,·] for a wall. These are step-function-like elements
in the gauge group satisfying

Ψi =

{
Θi on Wi,+,

id on Wi,−,

where Θi is the wall crossing factor associated to τi.

On the overlap Wi,+ = Wi ∩Wi+1 (where we set i + 1 = 1 if i = s), there is a commutative
diagram

(kPV∗,∗
sf |Wi,+

, ∂̄◦)
Θi //

Ψi

��

(kPV∗,∗
sf |Wi,+

, ∂̄◦)

Ψi+1

��
(kPV∗,∗

sf |Wi,+
, ∂̄◦ + [ϕin + ϕs, ·])

id //(kPV∗,∗
sf |Wi,+

, ∂̄◦ + [ϕin + ϕs, ·])

allowing us to interpret the wall crossing factor Θi as the gluing between the two sheaves kPV∗,∗
sf |Wi

and kPV∗,∗
sf |Wi+1

over Wi,+.

Notice that the Maurer–Cartan element ϕ is global. On a small neighborhood Wα containing
Ux ×Dx, we have the sheaf (kPV ∗,∗

α , ∂̄ϕ) on Wα, and there is an isomorphism

e[θα,·] : (kPV ∗,∗
α , ∂̄α) ∼= (kPV ∗,∗

α , ∂̄ϕ).

Composing with the isomorphism

(kPV ∗,∗
α |Wi

, ∂̄ϕ) ∼= (kPV∗,∗
sf |Wi

, ∂̄◦ + [ϕin + ϕs, ·]),
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we have a commutative diagram of isomorphisms

(kPV∗,∗
sf |Wi,+

, ∂̄◦)
Ψi,0 //

))

(kPV∗,∗
sf |Wi,+

, ∂̄◦)

uu
(kPV ∗,∗

α |Wi,+
, ∂̄α)

.

This is a Čech-type cocycle condition between the sheaves kPV∗,∗
sf |Wi

’s and kPV ∗,∗
α , which can be

understood as the original consistency condition defined using path-ordered products in [36, 29]. In
particular, taking a local holomorphic function in kG0α(Wα) and restricting it to Ux ×Ax, we obtain

elements in kG0
sf(Wi) that jump across the walls according to the wall crossing factors Θi’s.

Figure 10. Wall crossing around a joint j

Appendix A. The Hartogs extension property

The following lemma is an application of the Hartogs extension theorem [41].

Lemma A.1. Consider the analytic space (C∗)k × Specan(C[Στ ]) for some τ and an open subset
of the form U × V , where U ⊂ (C∗)k and V is a neighborhood of the origin o ∈ Specan(C[Στ ]).
Let W := V \

(⋃
ω Vω

)
, where dimR(ω) + 2 ≤ dimR(Στ ) (i.e. W is the complement of complex

codimension 2 orbits in V ). Then the restriction O(U × V )→ O(U ×W ) is a ring isomorphism.

Proof. We first consider the case where dimR(Στ ) ≥ 2 and W = V \ {0}. We can further assume
that Στ consists of just one cone σ, because the holomorphic functions on V are those on V ∩σ that
agree on the overlaps. So we can write

O(U ×W ) =

{ ∑
m∈Λσ

amz
m
∣∣∣ am ∈ O(C∗)k(U)

}
,

i.e. as Laurent series converging in W . We may further assume that W is a sufficiently small
Stein open subset. Take f =

∑
m∈Λσ

amz
m ∈ O(U ×W ). We have the corresponding holomorphic
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function
∑

m∈Λσ
am(u)z

m onW for each point u ∈ U , which can be extended to V using the Hartogs
extension theorem [41] because {0} is a compact subset of V such that W = V \ {0} is connected.
Therefore, we have am(u) = 0 for m /∈ σ ∩Λσ for each u, and hence f =

∑
σ∩Λσ

amz
m is an element

in O(U × V ).

For the general case, we use induction on the codimension of ω to show that any holomorphic
function can be extended through Vω\

⋃
τ Vτ with dimR(τ) < dimR(ω). Taking a point x ∈ Vω\

⋃
τ Vτ ,

a neighborhood of x can be written as (C∗)l×Specan(C[Σω]). By the induction hypothesis, we know
that holomorphic functions can already be extended through (C∗)l × {0}. We conclude that any
holomorphic function can be extended through Vω \

⋃
τ Vτ . □

We will make use of the following version of the Hartogs extension theorem, which can be found
in e.g. [31, p. 58], to handle extension within codimension one cells ρ’s and maximal cells σ’s.

Theorem A.2 (Hartogs extension theorem, see e.g. [31]). Let U ⊂ Cn be a domain with n ≥ 2,
and A ⊂ U such that U \ A is still a domain. Suppose π(U) \ π(A) is a non-empty open subset,
and π−1(π(x)) ∩A is compact for every x ∈ A, where π : Cn → Cn−1 is projection along one of the
coordinate direction. Then the natural restriction O(U)→ O(U \A) is an isomorphism.

Proof of Lemma 5.19. To prove the first statement, we apply Lemma A.1. So we only need to show
that, for ρ ∈ P[n−1], a holomorphic function f in Ux \ S ⊂ V (ρ) can be extended uniquely to Ux,
where Ux is some neighborhood of x ∈ intre(ρ) ∩ S. Writing V (ρ) = (C∗)n−1 × Specan(C[Σρ]), we
may simply prove that this is the case with Σρ consisting of a single ray σ as in the proof of Lemma
A.1. Thus we can assume that V (ρ) = (C∗)n−1 × C and the open subset Ux = U × V for some
connected U . We observe that extensions of holomorphic functions from (U \ S)× V to U × V can
be done by covering the former open subset with Hartogs’ figures.

To prove the second statement, we need to further consider extensions through intre(j) for a joint
j. For those joints lying in some codimension one stratum ρ, the argument is similar to the above. So
we assume that σj = σ is a maximal cell. We take a point x ∈ intre(j) and work in a sufficiently small
neighborhood U of x. In this case, we may find a codimension one rational hyperplane ω containing
j, together with a lattice embedding Λω ↪→ Λσ which induces the projection π : (C∗)n → (C∗)n−1

along one of the coordinate directions. Letting A = ν−1(A ∩ U) and applying Theorem A.2, we
obtain extensions of holomorphic functions in U . □
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