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Abstract. This article gives an exposition of the deformation theory for pairs

(X,E), where X is a compact complex manifold and E is a holomorphic vector
bundle over X, adapting an analytic viewpoint à la Kodaira-Spencer. By intro-

ducing and exploiting an auxiliary differential operator, we derive the Maurer–

Cartan equation and differential graded Lie algebra (DGLA) governing the de-
formation problem, and express them in terms of differential-geometric notions

such as the connection and curvature of E, obtaining a chain level refinement of

the classical results that the tangent space and obstruction space of the moduli
problem are respectively given by the first and second cohomology groups of

the Atiyah extension of E over X. As an application, we give examples where

deformations of pairs are unobstructed.
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1. Introduction

The theory of deformations of pairs (X,E), where X is a compact complex man-
ifold and E is a holomorphic vector bundle over X, has been studied using both
algebraic [21, 16, 9, 15] and analytic [22, 6] approaches and is well-understood among
experts. In this mostly expository paper, we revisit this problem from a viewpoint
à la Kodaira-Spencer [12, 13, 11], emphasizing the use of differential-geometric no-
tions such as connections and curvatures of E and the induced differential operators.
What we obtain is a chain level refinement of the classical results.

Date: January 24, 2016.

1



2 K. CHAN AND Y.-H. SUEN

To illustrate our strategy, recall that a family of deformations {Xt}t∈∆ of a
compact complex manifold X over a small ball ∆ can be represented by elements
{ϕt}t∈∆ ⊂ Ω0,1(TX), where TX is the holomorphic tangent bundle of the complex

manifold X. While the Dolbeault operator ∂̄t : Ω0
Xt
→ Ω0,1

Xt
on Xt is not easy to

write down explicitly, one may consider the more convenient operator

∂̄ + ϕty∂ : Ω0
X → Ω0,1

X .

Although ∂̄ + ϕty∂ is not the same as ∂̄t, their kernels coincide (see Proposition
3.1), and hence ∂̄+ϕty∂ completely determines the local holomorphic functions with

respective to the complex structure Jt on Xt. In fact, we have Ω0,1
Xt

= (id− ϕ̄∗t )Ω
0,1
X

and the commutative diagram

Ω0
X

∂̄+ϕty∂   

∂̄t // Ω0,1
Xt

πt

��
Ω0,1
X

where πt is the inverse of the canonical projection Pt : Ω0,1
X ⊂ Ω1

X → Ω0,1
Xt

(see the
proof of Proposition 3.13); in this way we can compute everything in terms of the
holomorphic structure on X.

The same idea can be applied to deformations of pairs. First of all, given a family
of deformations {(Xt, Et)}t∈∆ of (X,E), we have a family of elements {ϕt}t∈∆ ⊂
Ω0,1(TX) since {Xt} is in particular a family of deformations of X. Using a smooth
trivialization, we may further assume that E0

∼= E as smooth complex vector
bundles. By choosing a hermitian metric on E and considering the associated
Chern connection, we define a differential operator

D̄t : Ω0,q
X (E)→ Ω0,q+1

X (E),

which satisfies the Leibniz rule and D̄2
t = 0 (see Section 3 for details). While D̄t is

certainly not the Dolbeault operator ∂̄Et on the holomorphic bundle Et, its kernel
gives precisely the space of holomorphic sections of Et over Xt, and similar to the
case when E = OX (the trivial line bundle), we have a commutative diagram

Ω0
X(E)

D̄t $$

∂̄Et // Ω0,1
Xt

(E)

πt

��
Ω0,1
X (E)

relating the operators D̄t and ∂̄Et . Furthermore, D̄t determines a family of elements

At := D̄t − ∂̄E − ϕty∇ ∈ Ω0,1(End(E));

conversely, given any family of pairs of elements At ∈ Ω0,1(End(E)), ϕt ∈ Ω0,1(TX),
we can set

D̄t := ∂̄E + ϕty∇+At.

The upshot is the following Newlander–Nirenberg-type theorem for deformations
of pairs:
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Theorem 1.1 (=Theorem 3.12). Given ϕt ∈ Ω0,1(TX) and At ∈ Ω0,1(End(E)), if
the induced differential operator D̄t defined above satisfies D̄2

t = 0, then it defines
a holomorphic pair (Xt, Et) (i.e. an integrable complex structure Jt on X together
with a holomorphic bundle structure on E over (X, Jt)).

Applying this, we derive the Maurer–Cartan equation:

Theorem 1.2 (=Theorem 3.17). Given a holomorphic pair (X,E) and a smooth
family of elements {(At, ϕt)}t∈∆ ⊂ Ω0,1(A(E)). Then (At, ϕt) defines a holomor-
phic pair (Xt, Et) if and only if the Maurer–Cartan equation

∂̄A(E)(At, ϕt) +
1

2
[(At, ϕt), (At, ϕt)] = 0

is satisfied. Here, A(E) is the Atiyah extension of E which is equipped with the
Dolbeault operator ∂̄A(E), and the bracket [−,−] is defined in terms of connections
and curvatures on E in Proposition 3.14.

Moreover, the triple (Ω0,•(A(E)), ∂̄A(E), [−,−]) forms a differential graded Lie
algebra (DGLA), which (as expected) is naturally isomorphic to the one obtained
by algebraic means [21, 16] (see Appendix A). At this point, we should mention that
the relation between deformation theories and DGLAs was first recognized in [19]
by Nijenhuis and Richardson; later, it was suggested by Goldman and Millson [3, 4]
and many others that deformation problems should always be controlled by DGLAs
and solutions to the associated Maurer–Cartan equations form moduli spaces of the
deformation problems.

From the Maurer–Cartan equation, we deduce that the space of first order de-
formations of (X,E) is given by the first cohomology group H0,1

∂̄A(E)

∼= H1(X,A(E))

(see Section 4), and that the obstruction theory is captured by the Kuranishi map

Ob(X,E) : U ⊂ H1(X,A(E))→ H2(X,A(E)),
m∑
i=1

ti(Ai, ϕi) 7→ H[(At, ϕt), (At, ϕt)],

whence obstructions lie inside the second cohomology group H0,2

∂̄A(E)

∼= H2(X,A(E))

(see Section 5). Here, U is a small open neighborhood of the origin 0 ∈ H1(X,A(E)).
We also give a proof of the existence of a locally complete (or versal) family (see
Theorem 6.2; cf. [22]) using an analytic method originally due to Kuranishi [14].

Next we apply this analytic approach to look for situations where deformations
of holomorphic pairs are unobstructed (Section 7). The main tool is the following
proposition relating deformations of the pair (X,E) to that of X and E, which first
appeared in [7, Appendix A] without proof:

Proposition 1.3 (=Proposition 7.1). Denote the Kuranishi obstruction maps of
the deformation theory of X, E and (X,E) by ObX , ObE and Ob(X,E) respectively.
Then we have the following commutative diagram:

· · · // H1(X,End(E))

ObE
��

ι∗ // H1(X,A(E))

Ob(X,E)

��

π∗ // H1(X,TX)

ObX
��

δ // · · ·

· · · // H2(X,End(E))
ι∗ // H2(X,A(E))

π∗ // H2(X,TX)
δ // · · ·
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Here, the connecting homomorphism δ is given by contracting with the Atiyah class:

δ(ϕ) = ϕy[F∇].

Remark 1.4. The vertical maps (Kuranishi maps) in the above proposition are
understood to be defined on small neighborhoods around the origins of the corre-
sponding cohomology groups.

Applying this proposition, we obtain results which generalize some of those in
the recent work of X. Pan [20] (where only the case when E is a line bundle was
considered). We also prove that when X is a K3 surface and E is a good bundle over
X with c1(E) 6= 0 (Proposition 7.7), deformations of pairs (X,E) are unobstructed.

Remark 1.5. After we posted an earlier version of this article on the arXiv, Carl
Tipler informed us that the paper [6] of L. Huang already contained most of our
results, although we have more detailed expositions of first order deformations (Sec-
tion 4) and the proof of existence of Kuranishi families (Section 6) than Huang’s
paper and we have a comparison with the algebraic approach (Appendix A) showing
in particular that the isomorphism class of the DGLA is independent of the choice
of hermitian metric on E. As a result, this article should be regarded as largely
expository.
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2. Connections, curvature and the Atiyah class

In this section, we review some basic notions in the theory of holomorphic vector
bundles over complex manifolds and fix our notations. Excellent references for these
materials include the textbooks [5, 8].

Let E be a complex vector bundle over a smooth manifold X. For k ≥ 0,
we denote by Ωk the sheaf of k-forms and by Ωk(E) the sheaf of E-valued k-
forms over X. Recall that a connection on E is a C-linear sheaf homomorphism
∇ : Ω0(E)→ Ω1(E) satisfying the Leibniz rule:

∇(f · s) = df ⊗ s+ f · ∇s

for f ∈ Ω0 and s ∈ Ω0(E). We extend ∇ naturally to ∇ : Ωk(E) → Ωk+1(E) by
defining

∇(α⊗ s) = dα⊗ s+ (−1)kα ∧∇s
for α ∈ Ωk and any s ∈ Ω0(E). The curvature

F∇ = ∇ ◦∇ : Ω0(E)→ Ω2(E)
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of ∇ can then be regarded as a global End(E)-valued 2-form. Also, ∇ induces a
natural connection on End(E) by

(∇A)(s) = ∇(As)−A(∇s),

where A ∈ Ω0(End(E)) and s ∈ Ω0(E), and we have the Bianchi identity

∇F∇ = 0.

Now suppose that X is a complex manifold. For p, q ≥ 0, we denote by Ωp,q

the sheaf of (p, q)-forms and by Ωp,q(E) the sheaf of E-valued (p, q)-forms over
X. Recall that a holomorphic structure on a complex vector bundle E over X is
uniquely determined by a C-linear operator ∂̄E : Ω0(E) → Ω0,1(E) satisfying the
Leibniz rule and the integrability condition ∂̄2

E = 0. If we further equip E with a
hermitian metric h, then there exists a unique connection∇ on E which is hermitian
(i.e. dh(s1, s2) = h(∇s1, s2) + h(s1,∇s2) for any s1, s2 ∈ Ω0(E)) and compatible
with the holomorphic structure on E (i.e. ∇0,1 = ∂̄E , where ∇0,1 = Π0,1 ◦ ∇ and
Πp,q : Ωp+q(E) → Ωp,q(E) is the natural projection map). ∇ is usually called the
Chern connection on (E, h). The curvature F∇ of the Chern connection on (E, h)
is real and of type (1, 1), so the Bianichi identity implies that ∂̄End(E)F∇ = 0, and
thus this defines a class

[F∇] ∈ H1,1(X,End(E)),

called the Atiyah class of E [1]. We have the following lemma.

Lemma 2.1 ([8], Proposition 4.3.10). The Atiyah class is independent of the choice
of the Hermitian metric.

Using the Atiyah class, one can define an extension of End(E) by TX ; indeed,
in the language of algebraic geometry, we can interpret the Atiyah class as an
element in the extension group Ext1(E ⊗ TX , E) = Ext1(TX ,End(E)). Consider
the smooth vector bundle A(E) := End(E) ⊕ TX and the differential operator
∂̄A(E)B : Ω0(A(E))→ Ω0,1(A(E)) on A(E) defined by

∂̄A(E)B :=

∂̄End(E) B

O ∂̄TX

 ,

where B ∈ Ω0,1(Hom(TX ,End(E))) acts on Ω0(TX) by

B ∧ ϕ := −(−1)|ϕ|ϕyF∇.

To simplify notations, from this point on, we will denote the vector bundles End(E)
and Hom(TX ,End(E)) by Q and H respectively unless specified otherwise.

Proposition 2.2. B ∈ Ω0,1(H) is ∂̄H-closed.

Proof. This follows from the Bianchi identity ∂̄QF∇ = 0: For any v ∈ TX ,

(∂̄HB)(v) = ∂̄Q(Bv) +B(∂̄TXv) = −∂̄Q(vyF∇) + ∂̄TXvyF∇ = vy∂̄QF∇ = 0.

�

Proposition 2.3.
(
A(E), ∂̄A(E)B

)
defines a holomorphic vector bundle over X

whose holomorphic structure depends only on the class [B].
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Proof. Clearly ∂̄A(E)B satisfies the Leibniz rule, so it suffices to prove that ∂̄2
A(E)B

=

0. But ∂̄2
A(E)B

= 0 if and only if ∂̄HB = 0 which holds by Proposition 2.2. This

proves the first part of the proposition.
To see the second part, suppose that B′ −B = ∂̄Hf for some f ∈ Hom(TX , Q).

Define the smooth bundle isomorphism F : A(E)→ A(E) by

F : (A, v) 7−→ (A− fv, v),

and extend to A(E)-valued p-forms. We compute

∂̄A(E)B′
F (A, v) = (∂̄Q(A− fv) +B′v, ∂̄TXv) = (∂̄QA− ∂̄Qfv +Bv + ∂̄Hfv, ∂̄TXv)

= (∂̄QA+Bv − f∂̄TXv, ∂̄TXv) = F ∂̄A(E)B (A, v).

Hence F in fact defines a holomorphic bundle isomorphism between (A(E), ∂̄A(E)B )

and (A(E), ∂̄A(E)B′
). Since the curvature F∇ differs by an exact End(E)-valued 1-

form if another metric was used, this shows that the holomorphic structure of
A(E)B only depends on the class [B] but not the metric. �

Remark 2.4. Under the Dolbeault isomorphism

H1(X,Hom(TX , Q)) ∼= H1,1(X,Q),

the class [B] corresponds to the Atiyah class [F∇]. Hence the holomorphic structure
of A(E) depends only on the Atiyah class of E.

By abuse of notations, we will now write ∂̄A(E)B simply as ∂̄A(E), keeping in
mind that a hermitian metric on E has been chosen.

Definition 2.5. The holomorphic vector bundle
(
A(E), ∂̄A(E)

)
, which is an exten-

sion of Q = End(E) by TX , is called the Atiyah extension of E.

3. Maurer–Cartan equations

In this section, we start our study of the deformation theory of pairs (X,E).
Our goal is to derive the DGLA and Maurer–Cartan equation which govern this
deformation problem.

3.1. Deformations of complex structures and holomorphic vector bun-
dles. We begin by a brief review of the classical theory of deformations of complex
structures and holomorphic vector bundles; the textbooks [11] and [10] are classic
references for these theories respectively.

We first recall that a family of deformations π : X → ∆ of a compact complex
manifold X can be represented by a family of sections ϕt ∈ Ω0,1(TX), where TX is
the holomorphic tangent bundle of X (or the i-eigenbundle of the almost complex
structure defining X), satisfying the Maurer–Cartan equation

(1) ∂̄TXϕt +
1

2
[ϕt, ϕt] = 0.

An essential ingredient in the proof is the Newlander–Nirenberg Theorem [18] which
states that any integrable almost complex structure comes from a complex struc-
ture.
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Proposition 3.1. Define an operator ∂̄ +ϕty∂ : Ω0 → Ω0,1 by f 7→ ∂̄f +ϕty(∂f),
where y denotes the contraction or interior product. Then a local smooth function
f is holomorphic on Xt if and only if

(
∂̄ + ϕty∂

)
f = 0, i.e.

∂̄tf = 0⇐⇒
(
∂̄ + ϕty∂

)
f = 0,

where ∂̄t is the ∂̄-operator of the complex manifold Xt.

Proof. Let z1, . . . , zn be local holomorphic coordinates on X (where n is the com-
plex dimension of X). Then ϕt is of the form 1

ϕt = ϕji (z, t)dz̄
i ⊗ ∂

∂zj
.

Hence T 0,1
Xt

is locally spanned by

∂

∂z̄i
+ ϕji (z, t)

∂

∂zj
.

The result follows. �

Next we recall the deformation theory of holomorphic vector bundles. Let E →
X be a complex vector bundle over a complex manifold X. It is a standard fact in
complex geometry that E admits a holomorphic structure if and only if there exists
a linear operator ∂̄E : Ω0,q(E)→ Ω0,q+1(E) satisfying ∂̄2

E = 0 and the Leibniz rule

∂̄E(α⊗ s) = ∂̄α⊗ s+ (−1)|α|α ∧ ∂̄E(s),

for any α ∈ Ω0,q(E) and smooth section s of E (we call this the linearized version
of the Newlander–Nirenberg Theorem; see e.g. [8, Theorem 2.6.26] or [17, Theorem
3.2]). Hence if we have a family of holomorphic vector bundles E → ∆ (or {Et}t∈∆)
on X, then we have a family of Dolbeault operators ∂̄Et , whose squares are zero
and all satisfy the Leibniz rule.

Proposition 3.2. Given a family of deformations {Et}t∈∆ of E, the element At :=
∂̄Et − ∂̄E ∈ Ω0,1(End(E)) satisfies the Maurer–Cartan equation

∂̄End(E)At +
1

2
[At, At] = 0

for all t ∈ ∆. Conversely, if we are given a family {At}t∈∆ ⊂ Ω0,1(End(E)) which
satisfies the Maurer–Cartan equation for each t, then

{
(E, ∂̄E +At)

}
t∈∆

defines a
family of deformations of E.

Proof. Note that

(∂̄E +At)
2 = ∂̄EAt +At∂̄E +At ∧At = ∂̄End(E)At +

1

2
[At, At].

The result follows from the linearized version of the Newlander–Nirenberg Theorem.
�

1The Einstein summation convention will be used throughout this article.
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3.2. Deformations of holomorphic pairs and the operator D̄t.

Definition 3.3. A holomorphic pair (X,E) consists of a compact complex manifold
X together with a holomorphic vector bundle E over X.

Definition 3.4. Let (X,E) be a holomorphic pair. A family of deformations of
(X,E) over a small ball ∆ centered at the origin in Cd consists of a proper and
submersive holomorphic map π : X → ∆ (a family of deformations of X over ∆)
and a holomorphic vector bundle E → X such that π−1(0) = X and E|π−1(0) = E.
For t ∈ ∆, we denote by (Xt, Et) the holomorphic pair parametrized by t.

By the theorem of Ehresmann, if ∆ is chosen to be small enough, the family X
is smoothly trivial, i.e. one can find a diffeomorphism F : X → ∆×X. Restricting
to a fiber Xt ⊂ X , one can push forward the complex structure on Xt to define Jt
on Xt := {t} ×X via F . One can also trivialize E as ∆ × E by a smooth bundle
isomorphism P and the holomorphic structure on Et := {t} × E is induced from
that on E|Xt via the map P . Hence we can assume that our family is a smoothly
trivial family ∆× E → ∆×X over a small ball ∆ in Cd centered at the origin.

Now let {(Xt, Et)}t∈∆ be a family of deformations of (X,E). By definition,
{Xt}t∈∆ is a family of deformations of X, so it can be represented by an analytic
family of sections ϕt ∈ Ω0,1 (TX) satisfying the Maurer–Cartan equation (1). Define
the operator D̄t : Ω0,q(E)→ Ω0,q+1(E) by

D̄t(s
kek) = (∂̄ + ϕty∂)sk ⊗ ek,

where {ek} is a local holomorphic frame of Et.

Proposition 3.5. The linear operator D̄t is well-defined, that is, independent of
the local holomorphic frame of Et. Moreover, it satisfies the Leibniz rule

D̄t(α⊗ s) = (∂̄ + ϕty∂)α⊗ s+ (−1)|α|α ∧ D̄t(s)

for any s ∈ Ω0(E) and α ∈ Ω0,∗(X). Also, D̄t(s) = 0 if and only if ∂̄Et(s) = 0.

Proof. To prove well-definedness, we need to show that D̄t is independent of the
choice of a local holomorphic frame {ek} of Et. So suppose {fj} is another local
holomorphic frame of Et. Let τkj be local holomorphic functions on Xt such that

fj = τkj ek. Then for a local section s = skek = s̃jfj , we have s̃j = skτ jk and thus

D̄t(s̃
jfj) = (∂̄ + ϕty∂)s̃j ⊗ fj = (∂̄ + ϕty∂)(skτ jk)⊗ fj

= (∂̄ + ϕty∂)sk ⊗ τ jkfj = D̄t(s
kek).

Hence D̄t is well-defined.
The Leibniz rule for D̄t is clear since ∂̄ and ∂ both satisfy the usual Leibniz rule.

Finally, for a smooth section s of E, if we write s = skek locally with {ek} a local
holomorphic frame of Et, then we have

D̄t(s) = 0⇐⇒ (∂̄ + ϕty∂)sk = 0⇐⇒ ∂̄ts
k = 0⇐⇒ ∂̄Et(s) = 0.

�

We claim that D̄2
t = 0. By our definition of D̄t, for any smooth function f :

X → C and local nowhere vanishing holomorphic section e of Et, we have

D̄2
t (fe) = (∂̄ + ϕty∂)2f ⊗ e.

To compute the right hand side, we need the following
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Lemma 3.6. For any ϕ ∈ Ω0,p(TX) and α ∈ Ω1(E), we have the Leibniz rule

∂̄E(ϕyα) = ∂̄TXϕyα− (−1)pϕy∂̄Eα.

Proof. Writing ϕ = ϕiJdz̄
J ⊗ ∂

∂zi , we have

ϕyα = ϕiJdz̄
J ⊗ α

(
∂

∂zi

)
.

Let αi := α( ∂
∂zi ) ∈ Ω0(E). Then

∂̄E(ϕyα) = (∂̄ϕiJ ∧ dz̄J)⊗ αi + (−1)pϕiJdz̄
J ∧ ∂̄Eαi

= ∂̄TXϕyα+ (−1)pϕiJdz̄
J ∧ ∂̄Eαi.

To compute the last term, first note that the contraction of ∂
∂zi with α is taken

in the (1, 0)-part, we can therefore assume α = αki dz
i ⊗ ek, where {ek} is a local

holomorphic frame of E. So we have

ϕiJdz̄
J ∧ ∂̄Eαi = −ϕiJdz̄J ∧

(
∂

∂zi
y∂̄αkl ∧ dzl

)
⊗ ek

= −ϕiJdz̄J ⊗
∂

∂zi
y∂̄E(αkl dz

l ⊗ ek) = −ϕy∂̄Eα,

and hence the desired formula. �

We can now compute D̄2
t .

Lemma 3.7. For any smooth function, f : X → C, we have the equality

(∂̄ + ϕty∂)2f =

(
∂̄TXϕt +

1

2
[ϕt, ϕt]

)
y∂f.

Proof. First, we have

(∂̄ + ϕty∂)2f = ∂̄(ϕty∂f) + ϕty∂∂̄f + ϕty∂(ϕty∂f).

By Lemma 3.6, the first term is given by

∂̄(ϕty∂f) = ∂̄TXϕty∂f + ϕty∂̄∂f.

Since ∂∂̄ = −∂̄∂, we have

∂̄(ϕty∂f) + ϕty∂∂̄f = ∂̄TXϕty∂f.

For the last term, by writing ϕt = ϕlmdz̄
m ⊗ ∂

∂zl
in local coordinates, we have

ϕty∂f = ϕlm
∂f

∂zl
dz̄m,

and so

ϕty∂(ϕty∂f) = ϕij
∂ϕlm
∂zi

∂f

∂zl
dz̄j ∧ dz̄m + ϕijϕ

l
m

∂2f

∂zi∂zl
dz̄j ∧ dz̄m

But

ϕijϕ
l
m

∂2f

∂zi∂zl
dz̄j ∧ dz̄m = −ϕlmϕij

∂2f

∂zl∂zi
dz̄m ∧ dz̄j ,

so we obtain

ϕty∂(ϕty∂f) = ϕij
∂ϕlm
∂zi

∂f

∂zl
dz̄j ∧ dz̄m =

1

2
[ϕt, ϕt]y∂f.

The result follows. �
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As {Xt}t∈∆ is an honest family of deformations of X, the Maurer–Cartan equa-
tion (1) for ϕt holds. Hence we have

Proposition 3.8. D̄2
t = 0.

From the viewpoint of Proposition 3.1, it is natural to compare the operator D̄t

with ∂̄E + ϕty∇.

Proposition 3.9. At := D̄t − ∂̄E − ϕty∇ ∈ Ω0,1(End(E)).

Proof. Let f be a smooth function and s a smooth section of E. Using the Leibniz
rules, and the fact that the contraction is only taken in the (1, 0)-part, we have

At(fs) = (∂̄ + ϕty∂)f ⊗ s+ fD̄t(s)− ∂̄f ⊗ s− f∂̄E(s)− ϕty∇(fs)

= (ϕty∂)f ⊗ s+ fD̄t(s)− f∂̄E(s)− ϕtydf ⊗ s− fϕty∇(s) = fAt(s).

�

In the other direction, suppose we are now given elements At ∈ Ω0,1(End(E))
and ϕt ∈ Ω0,1(TX), parameterized by t ∈ ∆, we can then define an operator
D̄t : Ω0(E)→ Ω0,1(E) by

D̄t := ∂̄E + ϕty∇+At.

We extend D̄t to Ω0,q(E) in the obvious way, so that the Leibniz rule

D̄t(α⊗ s) = (∂̄ + ϕty∂)α⊗ s+ (−1)|α|α ∧ D̄ts

holds. We want to show that if D̄2
t = 0, then (At, ϕt) defines a holomorphic pair

(Xt, Et). First of all, we have

Proposition 3.10. If D̄2
t = 0, then Xt is a complex manifold.

Proof. Using the Leibniz rule, we have for any smooth function and sections of E
that

0 = D̄2(fs) = (∂̄ + ϕty∂)2f ⊗ s.
Hence (∂̄ + ϕty∂)2 = 0, which is equivalent to the Maurer–Cartan equation (1) by
Lemma 3.7. Therefore, the almost complex structure defined by ϕt is integrable. �

We now need to show that E also admits a holomorphic structure over Xt. We
will follow the approach of [17]. Let us first make the following assertion:

Any smooth sections of E can locally be written as skek,

where {ek} ⊂ ker(D̄t). We can then define ∂̄Et by

∂̄Et(s
kek) := ∂̄ts

k ⊗ ek.

To check that it is well-defined, suppose we have another local basis {fj} ⊂ ker(D̄t),
then there exist (hkj ) such that fj = hkj ek. Applying D̄t, we have

(∂̄ + ϕty∂)hkj ⊗ ek = 0.

Since {ek} is assumed to be a local basis, we have (∂̄ + ϕty∂)hkj = 0, which is

equivalent to ∂̄th
k
j = 0. Hence

∂̄Et(s̃
jfj) = ∂̄ts̃

j ⊗ fj = ∂̄t(s
khjk)⊗ fj = ∂̄t(s

j)⊗ hjkfj = ∂̄Et(s
kek).

This proves well-definedness.
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Clearly, it satisfies the Leibniz rule

∂̄Et(α⊗ s) = ∂̄tα⊗ s+ (−1)|α|α ∧ ∂̄Ets

and ∂̄2
Et

= 0 since ϕt defines an integrable complex structure on X. Hence by

the linearized version of the Newlander–Nirenberg Theorem, Et = (E, ∂̄Et) is a
holomorphic vector bundle over Xt.

It remains to prove that our assertion is correct:

Lemma 3.11. ker(D̄t) generates Ω0(E) locally.

Proof. Let us first fix a smooth local frame {σk} of Et over a coordinate neighbor-
hood U ⊂ Xt. What we need are coordinate changes (f ij(z, t)) ∈ Γsm(U,GLr(C))

such that f ijσi ∈ ker(D̄t). Writing D̄tσi = τki ⊗σk with τki ∈ Ω0,1(X), the existence

of (f ij(z, t)) is equivalent to

0 = D̄t(f
i
jσi) = (∂̄f ij + ϕty∂f

i
j)⊗ σi + f ijτ

k
i σk.

This in turn is equivalent to the following system of PDEs

(∂̄ + ϕty∂)fkj + f ijτ
k
i = 0

subject to the condition:

D̄2
t = 0⇐⇒ (∂̄ + ϕty∂)τ ij = τ ik ∧ τkj .

We will show that this system is solvable, following the line of proof in [17, Theorem
9.2] (linearized version of the Newlander–Nirenberg Theorem).

First of all we set

N := U × Cr, T := span{dzα − ϕtydzα, dwi − τki wk}.

We want to show that d(T ) ⊂ Ω0(
∧1

CN) ∧ T . First we have

d(dzα − ϕtydzα) =
∂ϕαβ
∂zγ

dz̄β ∧ dzγ − ∂̄TXϕtydzα.

Then applying the Maurer–Cartan equation (1) gives

d(dzα − ϕtydzα) =
∂ϕαβ
∂zγ

dz̄β ∧
(
dzγ − ϕµηdz̄η ⊗

∂

∂zµ
ydzγ

)
=
∂ϕαβ
∂zγ

dz̄β ∧ (dzγ − ϕtydzγ).

Secondly,

d(dwi − τ liwl) = −∂τ liwl − ∂̄τ liwl + τ li ∧ dwl
= −(∂ − ϕty∂)τ liwl − (∂̄ + ϕty∂)τ liwl + τ li ∧ dwl
= −(∂ − ϕty∂)τ liwl − τki ∧ τ lkwl + τ li ∧ dwl
= −(∂ − ϕty∂)τ liwl − τki ∧ (dwk − τ lkwl).

Hence by the Newlander–Nirenberg Theorem, we obtain holomorphic coordinates
(ζαt , u

t
i) on N and smooth functions Fαβ (ζt) = Fαβ (z, t), F li (ζt, ut) = F li (z, u, t), and

F lα(ζt, ut) = Flα(z, w, t) such that{
dζαt =Fαβ (z, t)(dzβ − ϕtydzβ),

dutl =F il (z, w, t)(dwi − τki wk) + Flα(z, w, t)(dzα − ϕtydzα).
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Since {dzα − ϕtydzα, dwi − τki wk} and {dζαt , duit} are basis of T , we see that the
(n+ r)× (n+ r)-matrix (Fαβ ) (Fiα)

Or×n (F il )


is invertible for all (z, w, t). It follows that (F il ) is also invertible for all (z, w, t).

Applying the exterior differential on N and evaluating at w = 0, we have

0 = dF il ∧ dwi + F il τ
k
i ∧ dwk + dFlα ∧ dzα − dFlα ∧ ϕtydzα − Flαd(ϕtydz

α).

Comparing the dz∧dw-component on both sides gives ∂zF
i
l ∧dwi+∂wFlα∧dzα = 0,

which implies, by contracting with ϕt, that

ϕtydF
i
l ∧ dwi + ∂wFlα ∧ ϕtydzα = 0.

Then by comparing the dz̄ ∧ dw-component, we have

∂̄F il ∧ ∂zwi + F il τ
k
i ∧ dwk − ∂wFlα ∧ ϕtydzα = 0.

Together with the formula we just obtained, we arrive at

(∂̄ + ϕty∂)F il (z, 0) + F kl (z, 0)τ ik = 0.

The result now follows by setting f ji (z, t) := F ji (z, 0, t). �

In summary, we have proved the following

Theorem 3.12. Given At ∈ Ω0,1(End(E)) and ϕt ∈ Ω0,1(TX). If the induced
differential operator D̄t : Ω0,q(E) → Ω0,q+1(E) satisfies D̄2

t = 0 and the Leibniz
rule

D̄t(α⊗ s) = (∂̄ + ϕty∂)α⊗ s+ (−1)|α|α ∧ D̄t(s),

then E admits a holomorphic structure over the complex manifold Xt, which we
will denote by Et → Xt or just Et.

The operator D̄t gives a cochain complex

(Ω0,•(E), D̄t).

It is then natural to compare the cohomologies H•(Xt, Et) and H•(Ω0,•(E), D̄t).
But D̄t captures only the holomorphicity of the pair (Xt, Et), so we would not
expect H•(Ω0,•(E), D̄t) to be something new.

Proposition 3.13. For any t ∈ ∆, we have the isomorphism

Hq(Xt, Et) ∼= Hq(Ω0,•(E), D̄t)

for any q ≥ 0.

Proof. We first prove the case when E = OX and q = 0. Let Pt : Ω0,1
X → Ω0,1

Xt

be the restriction of the projection Ω1
X → Ω0,1

Xt
. Since Pt is an isomorphism for |t|

small, it suffices to prove that

∂̄tPt = Pt(∂̄ + ϕty∂)

at every point x ∈ X. So let us fix x ∈ X and let {zj} be local complex coordinates
around x. Let v̄j := ∂

∂z̄j + ϕkj
∂
∂zk

and ε̄j be its dual vector. Then Maurer–Cartan
equation of ϕt implies

[v̄j , v̄k] = 0.
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By the Newlander-Nirenberg theorem, we have complex coordinates {ζj} on Xt

such that
∂

∂ζ̄j
= v̄j and dζ̄j = ε̄j

at the point x. Then at x,

Pt(∂̄ + ϕy∂)f =

(
∂f

∂z̄j
+ ϕkj

∂f

∂zk

)
Pt(dz̄

j).

We need to show that Pt(dz̄
j) = ε̄j . We write

dz̄j = cjk ε̄
j + djkε

k.

Then

cjk = dz̄j(v̄k) = dz̄j
(

∂

∂z̄j
+ ϕkj

∂

∂zk

)
= δik.

Hence P (dz̄j) = ε̄j . Therefore,

Pt(∂̄ + ϕy∂)f = (v̄jf)ε̄j =
∂f

∂ζ̄j
dζ̄j = ∂̄tPtf

at x. Since x is arbitrary, the case q = 0 is done.
For q > 0. By abusing the notation, we still denote the induced projection

Ω0,q
X → Ω0,q

Xt
by Pt. Let α = αJdz̄

J . Then at the point x,

Pt(∂̄ + ϕty∂)α = Pt(∂̄ + ϕty∂)(αJ) ∧ Pt(dz̄J) = ∂̄tPαJ ∧ ε̄J .

We need to show that ∂̄t(ε̄
j) = 0 for all j. Since {ε̄j} is a local frame of (T 0,1

Xt
)∗,

dε̄j ∈ Ω1,1
Xt
⊕ Ω0,2

Xt
. Hence, in order to prove ∂̄t(ε̄

j) = 0, it suffices to show that

dε̄j(v̄k, v̄l) = 0 for all k, l. This follows from

dε̄j(v̄k, v̄l) = v̄k ε̄
j(v̄l)− v̄lε̄j(v̄k)− ε̄j([v̄k, v̄l]) = 0.

This completes the case E = OX and q ≥ 0.
For a general holomorphic vector bundle E, D̄t is locally given by

D̄t(α
j ⊗ ej) = (∂̄ + ϕty∂)αj ⊗ ej ,

where {ej} are local holomorphic frame of Et over Xt. In this case, Pt is extended
by

αj ⊗ ej 7→ Pt(α
j)⊗ ej .

The required relation follows immediately from the E = OX case. �

3.3. DGLA and the Maurer–Cartan equation. We are now ready to derive
the Maurer–Cartan equation governing the deformations of pairs. Given At ∈
Ω0,1(End(E)), ϕt ∈ Ω0,1(TX) such that the induced differential operator D̄t satisfies
D̄2
t = 0, we have

(∂̄E + ϕty∇+At)
2 = D̄2

t = 0.

Let us expand the left hand side:

(∂̄E + ϕty∇+At)
2 =∂̄E(ϕty∇) + ϕty∇∂̄E + ϕty∇(ϕty∇)

+ ∂̄EAt +At∂̄E + ϕty∇At +At(ϕty∇) +At ∧At
=∂̄E(ϕty∇) + ϕty∇∂̄E + ϕty∇(ϕty∇)

+ ∂̄QAt + ϕty∇QAt +At ∧At.
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Applying Lemma 3.6 to the term ∂̄E(ϕty∇), we get

(∂̄E + ϕty∇+At)
2 =∂̄TXϕty∇+ ϕty(∂̄E∇+∇∂̄E) + ϕty∇(ϕty∇)

+ ∂̄QAt + ϕty∇QAt +At ∧At.

Since ∇ is the Chern connection, we have F∇ = ∂̄E∇+∇∂̄E , and so

(∂̄E+ϕty∇+At)
2 = (∂̄TXϕty∇+ϕty∇(ϕty∇))+∂̄QAt+ϕtyF∇+ϕty∇QAt+At∧At.

Note that the curvature F∇ is given by

F∇(ϕ,ψ) = ϕy∇(ψy∇)− (−1)|ϕ||ψ|ψy∇(ϕy∇) + [ϕ,ψ]y∇

for ϕ,ψ ∈ Ω0,∗(TCX). Hence

2ϕty∇(ϕty∇) = F∇(ϕt, ϕt) + [ϕt, ϕt]y∇.

However, ϕt ∈ Ω0,1(TX) and F∇ is of type-(1, 1), we must have F∇(ϕt, ϕt) = 0.
Therefore,

ϕty∇(ϕty∇) =
1

2
[ϕt, ϕt]y∇.

As a whole we obtain

(∂̄E+ϕty∇+At)
2 =

(
∂̄TXϕt +

1

2
[ϕt, ϕt]

)
y∇+∂̄QAt+ϕtyF∇+ϕty∇QAt+

1

2
[At, At].

But since Xt is integrable, ϕt satisfies the Maurer–Cartan equation (1), and so

(∂̄E + ϕty∇+At)
2 = ∂̄QAt + ϕtyF∇ + ϕty∇QAt +

1

2
[At, At].

Hence we conclude that D̄2
t = 0 is equivalent to the following two equations

(2)


∂̄QAt + ϕtyF∇ + ϕty∇QAt +

1

2
[At, At] = 0,

∂̄TXϕt +
1

2
[ϕt, ϕt] = 0.

Recall that A(E) = Q⊕ TX as smooth vector bundle. Define a bracket [−,−] :
Ω0,p(A(E))× Ω0,q(A(E))→ Ω0,p+q(A(E)) by

[(A,ϕ), (B,ψ)] := (ϕy∇QB − (−1)pqψy∇QA+ [A,B], [ϕ,ψ]).

The following proposition can be proven by straightforward, but tedious, compu-
tations which we omit:

Proposition 3.14. The bracket [−,−] : Ω0,p(A(E))×Ω0,q(A(E))→ Ω0,p+q(A(E))
defined by

[(A,ϕ), (B,ψ)] := (ϕy∇QB − (−1)pqψy∇QA+ [A,B], [ϕ,ψ])

satisfies

(1) [(A,ϕ), (B,ψ)] = −(−1)pq[(B,ψ), (A,ϕ)],
(2) [(A,ϕ), [(B,ψ), (C, τ)]] = [[(A,ϕ), (B,ψ)], (C, τ)]+(−1)pq[(B,ψ), [(A,ϕ), (C, τ)]],

for (A,ϕ) ∈ Ω0,p(A(E)), (B,ψ) ∈ Ω0,q(A(E)) and (C, τ) ∈ Ω0,r(A(E)).

We also recall the differential operator ∂̄A(E) defined in Section 2.
Again by direct computations, one can prove that the bracket [−,−] and the

Dolbeault operator ∂̄A(E) are compatible with each other:
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Proposition 3.15. We have

∂̄A(E)[(A,ϕ), (B,ψ)] = [∂̄A(E)(A,ϕ), (B,ψ)] + (−1)p[(A,ϕ), ∂̄A(E)(B,ψ)]

for (A,ϕ) ∈ Ω0,p(A(E)) and (B,ψ) ∈ Ω0,•(A(E)).

Propositions 3.14 and 3.15 together say that (Ω0,•(A(E)), ∂̄A(E), [−,−]) defines
a differential graded Lie algebra (DGLA).

Remark 3.16. In the appendix, we will prove that there exists a natural isomor-
phism between the complex (Ω0,•(A(E)), ∂̄A(E)) and the one obtained using alge-
braic methods [21, 16] intertwining our bracket [−,−] with the algebraic one. This
gives alternative proofs of Propositions 3.14 and 3.15, and shows that our DGLA
is naturally isomorphic to the one derived using algebraic methods. In particular,
the isomorphism class of our DGLA is independent of the choice of the hermitian
metric we used to define the Chern connection ∇.

Using the bracket [−,−] and the Dolbeault operator ∂̄A(E), we can now rewrite
the two equations (2) as the following Maurer–Cartan equation:

∂̄A(E)(At, ϕt) +
1

2
[(At, ϕt), (At, ϕt)] = 0,

which governs the deformation of pairs. We summarize our results by the following

Theorem 3.17. Given a holomorphic pair (X,E) and a smooth family of elements
{(At, ϕt)}t∈∆ ⊂ Ω0,1(A(E)). Then (At, ϕt) defines a holomorphic pair (Xt, Et)
(namely, an integrable complex structure Jt on X together with a holomorphic bun-
dle structure on E over (X, Jt)) if and only if the Maurer–Cartan equation

∂̄A(E)(At, ϕt) +
1

2
[(At, ϕt), (At, ϕt)] = 0(3)

is satisfied.

4. First order deformations

The Maurer–Cartan equation (3) implies that a first order deformation (A1, ϕ1)
(the linear term of the Taylor series expansion of a family (At, ϕt)) is ∂̄A(E)-closed:

∂̄A(E)(A1, ϕ1) = 0,

and hence defines a cohomology class in the Dolbeault cohomology group H0,1

∂̄A(E)

∼=
H1(X,A(E)). To determine the space of first order deformations of a holomorphic
pair (X,E), it remains to identify isomorphic deformations.

Definition 4.1. Two deformations E → X , E ′ → X ′ of (X,E) are said to be
isomorphic if there exists a biholomorphism F : X → X ′ and a holomorphic bundle
isomorphism Φ : E → E ′ covering F such that F |X = idX and Φ|E = idE.

Proposition 4.2. Suppose E → X and E ′ → X ′ are isomorphic 1-real parameter
family of deformations of (X,E). If we denote by (At, ϕt) and (A′t, ϕ

′
t) the elements

that represent the families E → X and E ′ → X ′ respectively, then there exists
(Θ1, v) ∈ Ω0(A(E)) such that

(A′t, ϕ
′
t) = (At, ϕt) + t∂̄A(E)(−Θ1, v) +R((At, ϕt), t(Θ1, v)),
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where the error R depends smoothly on t, A(t), ϕ(t),Θ1, v and first partial deriva-
tives of Θ, v. Moreover, R is of order s2 in the sense that

R(s(A,ϕ), s(Θ, v)) = s2R1((A,ϕ), (Θ, v), s),

for some map R1 which depends smoothly (with respect to the Sobolev norm; see Sec-
tion 6 for its precise definition) in s, (A,ϕ) ∈ Ω0,1(A(E)) and (Θ, v) ∈ Ω0(A(E)).

Proof. As before, let v ∈ Ω0(TX) be the vector field which generates the 1-parameter
family of diffeomorphisms Ft : X → X of the underlying smooth manifold X. Since

dFt(Graph(ϕt : T 0,1
X → T 1,0

X )) = Graph(ϕ′t : T 0,1
X → T 1,0

X ),

we already have
ϕ′t = ϕt + t∂̄TXv +R(ϕt, tv).

Hence it remains to show that

A′t = At + t(∂̄Q(−Θ1)− vyF∇) +R((At, ϕt), t(Θ1, v)),

for some Θ1 ∈ Ω0(Q).
We define an endomorphism of E as follows: Fix p ∈ X and the fiber Ep of

E. Let Pγp(t) : Ep → EFt(p) be the parallel transport along t 7−→ γp(t) := Ft(p).

Define Θt := P−1
γp(t)Φt : Ep → Ep. Then Θt defines a bundle endomorphism of E.

Let us write
Θt = Θ0 + tΘ1 +O(t2),

A′t = A′0 + tA′1 +O(t2),

Since Φ0 = idE , we have Θ0 = idE and A′0 = 0. We need to compute A′1.
Now let et be a local holomorphic section of Et ⊂ E . Since Φt is holomorphic,

Φt(et) is a holomorphic section of E′t ⊂ E ′, so that D̄′tΦt(et) = 0, i.e.

∂̄EΦt(et) = −ϕ′(t)y∇Φt(et)−A′tΦt(et).
We want to compute the first derivatives of both sides of this equation with respec-
tive to t at t = 0.

First note that Φt = Pγ(t)Θt, so we have

∂

∂t
Φt(et)|t=0 = −vy∇e+ Θ1(e) +

∂

∂t
et|t=0,

where e = e0. Hence

∂

∂t
∂̄EΦt(et)|t=0 = ∂̄E

(
∂

∂t
Φt(et)|t=0

)
= −∂̄E(vy∇e) + ∂̄E(Θ1(e)) + ∂̄E

(
∂

∂t
et|t=0

)
.

For the term, −ϕ′ty∇Φt(et), we have

∂

∂t
(−ϕ′ty∇Φt(et))|t=0 = −ϕ′1y∇e− ∂̄TXvy∇e

= −ϕ′1y∇e− ∂̄E(vy∇e)− vy∂̄E∇e.
Since e = e0 is holomorphic with respective to E|π−1(0), we have

∂̄E∇e = F∇(e).

Moreover, since et is holomorphic with respective to Et, we have D̄tet = 0, that is,

∂̄Eet = −ϕty∇et −Atet.
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Differentiate with respective to t and set t = 0, we obtain

−ϕ1y∇e = ∂̄E

(
∂

∂t
e(t)|t=0

)
+A1e.

Hence

∂

∂t
(−ϕ′ty∇Φt(et))|t=0 = ∂̄E

(
∂

∂t
et|t=0

)
− ∂̄E(vy∇e)− vyF∇e+A1e.

For the term −A′tΦt(et), we have

∂

∂t
(−A′tΦt(et))|t=0 = −A′1e.

As a whole we obtain the formula

∂̄E(Θ1(e)) = −vyF∇(e) + (A1 −A′1)(e).

Since e is holomorphic with respective to E|π−1(0), ∂̄E(Θ1(e)) = (∂̄QΘ1)(e), so that

A′1 = A1 + ∂̄Q(−Θ1)− vyF∇.
Therefore we have

∂

∂t
(A′t −At)|t=0 = A′1 −A1 = ∂̄Q(−Θ1)− vyF∇,

or in other words,

A′t = At + t(∂̄Q(−Θ1)− vyF∇) +O(t2).

Since A′t is completely determined by (At, ϕt) and t(Θ1, v), we have

A′t = At + t(∂̄Q(−Θ1)− vyF∇) +R((At, ϕt), t(Θ1, v)),

where R is of order t2 and depends smoothly on t, At, ϕt,Θ1, v. Moreover, since
the equation

∂̄EΦt(et) = −ϕ′ty∇Φt(et)−A′tΦt(et)
depends smoothly on first order partial derivatives of Θ1 and v, we see that the
error R also depends smoothly on first order partial derivatives of Θ1 and v.

Finally, R satisfies

R(s(A,ϕ), st(Θ, v)) = s2R1((A,ϕ), (Θ1, v), s),

for some map R1 which depends smoothly in s, (A,ϕ) ∈ Ω0,1(A(E)) and (Θ, v) ∈
Ω0(A(E)). This follows from the fact that

R((A,ϕ), (Θ, v))→ 0 as (Θ, v)→ 0, and

R((A,ϕ), (Θ, v))→ R((Θ, v)) as (A,ϕ)→ 0,

with R(s(Θ, v)) = s2R((Θ, v)). �

Corollary 4.3. If E → X and E ′ → X ′ are isomorphic deformations of (X,E),
then the first order terms (A1, ϕ1) and (A′1, ϕ

′
1) of the corresponding families (At, ϕt)

and (A′t, ϕ
′
t) respectively differ by an ∂̄A(E)-exact form.

Proof. We have A′1 −A1 = ∂̄Q(−Θ1)− vyF∇ and ϕ′1 − ϕ1 = ∂̄TXv, whence

(A′1, ϕ
′
1)− (A1, ϕ1) = ∂̄A(E)(−Θ1, v).

�

We conclude that the space of first order deformations of a holomorphic pair
(X,E) is precisely given by the Dolbeault cohomology groupH0,1

∂̄A(E)

∼= H1(X,A(E))
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5. Obstructions and Kuranishi family

Now given a first order deformation [(A1, ϕ1)] ∈ H0,1

∂̄A(E)

∼= H1(X,A(E)), it

is standard in deformation theory to ask whether one can find a family (At, ϕt)
integrating (A1, ϕ1) to give an actual family of deformations. To study this problem,
we use a method due to Kuranishi [14].

We need to review several operators commonly used in Hodge theory. We first
choose a hermitian metric g on X and h on A(E), so that we can define a hermitian
product (·, ·) on Ω0,•(A(E)). Define the formal adjoint of ∂̄A(E) with respective to
(·, ·) by (

∂̄A(E)α, β
)

=
(
α, ∂̄∗A(E)β

)
.

Then the Laplacian is defined by

∆A(E) := ∂̄A(E)∂̄
∗
A(E) + ∂̄∗A(E)∂̄A(E).

This is an elliptic self-adjoint operator and thus has a finite dimensional kernel
Hp(X,A(E)), consisting of harmonic forms. We have the standard isomorphism
from Hodge theory:

Hp(X,A(E)) ∼= H0,p

∂̄A(E)

∼= Hp(X,A(E)).

Take a completion of Ω0,•(A(E)) with respective to (·, ·) to get a Hilbert space
L∗, and let H : L∗ → H∗(X,A(E)) be the harmonic projection. The Green’s
operator G : L∗ → L∗ is defined by

I = H + ∆A(E)G = H +G∆A(E).

It commutes with ∂̄A(E) and ∂̄∗A(E).

Now let η1, . . . , ηm ∈ H1(X,A(E)) be a basis and ε1(t) :=
∑m
j=1 tjηj ∈ H1(X,A(E)).

Consider the equation

ε(t) = ε1(t)− 1

2
∂̄∗A(E)G[ε(t), ε(t)].

We denote the Hölder norm by ‖ · ‖k,α. The following estimates are obvious:

‖∂̄∗A(E)ε‖k,α ≤C1‖ε‖k+1,α

‖[ε, δ]‖k,α ≤C2‖ε‖k+1,α‖δ‖k+1,α.

In [2], Douglis and Nirenberg proved the following nontrivial a priori estimate:

‖ε‖k,α ≤ C3(‖∆A(E)ε‖k−2,α + ‖ε‖0,α).

Applying these and following the proof of [11, Chapter 4, Proposition 2.3], one can
deduce an estimate for the Green’s operator G:

‖Gε‖k,α ≤ C4‖ε‖k−2,α,

where all Ci’s are positive constants which depend only on k and α.
Then by the same argument as in [11, Chapter 4, Proposition 2.4], or alterna-

tively using an implicit function theorem for Banach spaces [14], we obtain a unique
solution ε(t) which satisfies the equation

ε(t) = ε1(t)− 1

2
∂̄∗A(E)G[ε(t), ε(t)],
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and is analytic in the variable t. Note that the solution ε(t) is always smooth.
Indeed, by applying the Laplacian to the above equation, we get

∆A(E)ε(t) +
1

2
∂̄∗A(E)[ε(t), ε(t)] = 0.

Also, the solution ε(t) is holomorphic in t, so we have∑
j

∂2ε(t)

∂tj∂t̄j
= 0.

Now since the operator

∆A(E) +
∑
j

∂2

∂tj∂t̄j

is elliptic, we see that ε(t) is smooth by elliptic regularity.
Following Kuranishi [14] (see also [11, Chapter 4]), we have the following

Proposition 5.1. The solution ε(t) that satisfies

ε(t) = ε1(t)− 1

2
∂̄∗A(E)G[ε(t), ε(t)]

solves the Maurer–Cartan equation if and only if H[ε(t), ε(t)] = 0, where H is the
harmonic projection.

Proof. Suppose the Maurer–Cartan equation holds. Then

H[ε(t), ε(t)] = 2H∂̄A(E)ε(t) = 0.

Conversely, suppose that H[ε(t), ε(t)] = 0. We must show that

δ(t) := ∂̄A(E)ε(t) +
1

2
[ε(t), ε(t)] = 0.

Recall that ε(t) is a solution to

ε(t) = ε1(t)− 1

2
∂̄∗A(E)G[ε(t), ε(t)]

and ε1(t) is ∂̄A(E)-closed. By applying ∂̄A(E) to this equation, we get

∂̄A(E)ε(t) = −1

2
∂̄A(E)∂̄

∗
A(E)G[ε(t), ε(t)].

Hence
2δ(t) = ∂̄A(E)∂̄

∗
A(E)G[ε(t), ε(t)]− [ε(t), ε(t)].

Using the Hodge decomposition on forms, we can write

[ε(t), ε(t)] = H[ε(t), ε(t)] + ∆A(E)G[ε(t), ε(t)] = ∆A(E)G[ε(t), ε(t)].

Therefore, we have

2δ(t) = (∆A(E)G− ∂̄A(E)∂̄
∗
A(E)G)[ε(t), ε(t)] = ∂̄∗A(E)∂̄A(E)G[ε(t), ε(t)] = 2∂̄∗A(E)G[∂̄A(E)ε(t), ε(t)],

and hence

δ(t) = ∂̄∗A(E)G[∂̄A(E)ε(t), ε(t)] = ∂̄∗A(E)G[δ(t)− 1

2
[ε(t), ε(t)], ε(t)] = ∂̄∗A(E)G[δ(t), ε(t)],

where we have used the Jacobi identity in the last equality. Using the estimate

‖[ξ, η]‖k,α ≤ Ck,α‖ξ‖k+1,α‖η‖k+1,α,

we get
‖δ(t)‖k,α ≤ Ck,α‖δ(t)‖k,α‖ε(t)‖k,α.
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By choosing |t| to be small enough so that Ck,α‖ε(t)‖k,α < 1, we must have δ(t) = 0
for all |t| small enough. This finishes the proof. �

In the case whenH[ε(t), ε(t)] vanishes identically (which always holds ifH2(X,A(E)) =
0), we have the following

Corollary 5.2. If H[ε(t), ε(t)] = 0 for all t, then we have a complex analytic family
E → X .

Proof. If H[ε(t), ε(t)] = 0 for all t, then ε(t) = (At, ϕt) satisfies the Maurer–Cartan
equation and so (Xt, Et) is holomorphic for each t. In particular, we obtain a
deformation X of X. Let E := ∆×E. A smooth section σ : X → E of E on X can
be written as

σ : (t, x) 7−→ (t, s(x, t)),

for some smooth map s : X → E. We define a Dolbeault operator ∂̄E : Ω0
X (E) →

Ω0,1
X (E) on E by

∂̄Eσ(t, x) = (t, ∂̄Ets(t, x)).

Note that ∂̄E is well-defined for, if {ek(t, x)} are local holomorphic frame of Et →
Xt, then we can write

∂̄Eσ(t, x) = (t, ∂̄E(s
k(t, x)ek(t, x)) = ∂̄ts

k(t, x)⊗ ek(t, x)),

which is a smooth section of Ω0,1
X (E). Clearly, ∂̄2

E = 0 and hence E is a holomorphic
vector bundle over X . �

In general, the condition H2(X,A(E)) = 0 may not be satisfied. But we can
define the (singular) analytic space

S := {t ∈ ∆ : H[ε(t), ε(t)] = 0}

and form a family E → X over S, which is called the Kuranishi family of (X,E).
In particular, we see that the obstruction space is precisely given by the Dolbeault
cohomology group H0,2

∂̄A(E)

∼= H2(X,A(E)), and the obstructions to deformations of

a holomorphic pair (X,E) is captured by the Kuranishi map

Ob(X,E) : U ⊂ H1(X,A(E))→ H2(X,A(E)),

m∑
i=1

tjηj 7→ H[ε(t), ε(t)],

where U is a small open subset around the origin 0 ∈ H1(X,A(E)) whose diameter
is less than twice of the radius of convergence of ε(t).

6. A proof of completeness

The goal of this section is to give a proof of the local completeness of a Kuranishi
family for the deformation of the pair (X,E). Existence of a locally complete (or
versal) family for deformations of pairs was first proved by Siu-Trautmann [22].
Here we give another proof using Kuranishi’s method.

Definition 6.1. A family E → X over an analytic space S is said to be locally
complete (or versal) if for any family E ′ → X ′ over a sufficiently small ball ∆, there
exists an analytic map f : ∆ → S such that the family E ′ → X ′ is the pull-back of
E → X via f .
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Recall that for given ε1(t) ∈ H1(X,A(E)), we have existence of solutions ε(t) to

ε(t) = ε1(t)− 1

2
∂̄∗A(E)G[ε(t), ε(t)]

and ε(t) satisfies the Maurer–Cartan equation if and only if H[ε(t), ε(t)] = 0. We
then obtain an analytic family E → X over

S := {t ∈ ∆ : H[ε(t), ε(t)] = 0}.

The main theorem is as follows:

Theorem 6.2. The Kuranishi family E → X over S is locally complete.

Before going into the details of the proof, we first introduce the Sobolev norm:
One can endow A(E) a hermitian metric H, induced from that of E and X, and
define the inner product

(α, β)k :=
∑
|I|≤k

∫
X

H(DIα,DIβ),

α, β ∈ Ω0,∗(A(E)). The Sobolev norm is defined by

|α| := (α, α)
1
2 .

One has the estimate

|[α, β]|k ≤ Ck|α|k+1|β|k+1,

for some constant Ck > 0.
We take a completion of Ω0,•(A(E)) with respective to (·, ·)k to get a Hilbert

space L∗k. The harmonic projection H : L•k → H•(X,A(E)) and the Green’s oper-
ator G : L•k → L•k+2 satisfy the estimates

|Hα|k ≤ Ck|α|k,

|∂̄∗A(E)Gα|k ≤ Ck|α|k−1.

The following lemma will be useful in the proof of the completeness theorem.

Lemma 6.3. For fixed ε1(t) ∈ H1(X,A(E)), t ∈ S, the equation

ε(t) = ε1(t)− 1

2
∂̄∗A(E)G[ε(t), ε(t)]

has only one small solution.

Proof. Suppose ε is another solution. Let δ := ε− ε(t). Then

δ = −1

2
∂̄∗A(E)G([ε, ε]− [ε(t), ε(t)])

= −1

2
∂̄∗A(E)G([δ, ε(t)] + [ε(t), δ] + [δ, δ])

= −1

2
∂̄∗A(E)G(2[δ, ε(t)] + [δ, δ]).

Hence

|δ|k ≤ Ck(|δ|k|ε(t)|k + |δ|2k) ≤ Ck|δ|k(|ε(t)|k + |δ|k).

For |ε(t)|k and |ε|k small, we can only have |δ|k = 0. �

We are now ready to prove the local completeness theorem.
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Proof of Theorem 6.2. Let E ′ → X ′ be a deformation of (X,E). Let ε′, be the
element representing this deformation. We first prove that if ∂̄∗A(E)ε

′ = 0, then

there exists t ∈ S such that ε′ = ε(t).
Note that ε′ satisfies the Maurer–Cartan equation:

∂̄A(E)ε
′ +

1

2
[ε′, ε′] = 0.

Applying ∂̄∗A(E), we get

∂̄∗A(E)∂̄A(E)ε
′ +

1

2
∂̄∗A(E)[ε

′, ε′] = 0.

Since ∂̄∗A(E)ε
′ = 0, we have

∆A(E)ε
′ +

1

2
∂̄∗A(E)[ε

′, ε′] = 0.

Then using I = H +G∆A(E), we get

ε′ = Hε′ − 1

2
∂̄∗A(E)G[ε′, ε′].

Note that Hε′ ∈ H1(X,A(E)) and by the estimate |Hε′|k ≤ Ck|ε′|, we see that
|Hε′|k is small if |ε′|k is small. Hence Hε′ = ε1(t) for some t ∈ S. Therefore, if the
ball ∆ is small enough, ε′ is a solution to

ε′ = ε1(t)− 1

2
∂̄∗A(E)G[ε′, ε′].

Therefore, ε′ = ε(t) for some t ∈ S by Lemma 6.3.
Now we prove that for any given small deformation E ′ → X ′, one can find an

isomorphic deformation E ′′ → X ′′ such that the element ε′′ which represents the
family E ′′ → X ′′ is ∂̄∗A(E)-closed. This will prove the local completeness. Indeed,

we will prove the following: Given a deformation ε′, there exists η ∈ Im(∂̄∗A(E)) ⊂
Ω0(A(E)) such that the element ε′′, which represents the deformation E ′′ → X ′′, is
∂̄∗A(E)-closed.

Let η = (Θ, v) ∈ Ω0(A(E)), then the elements ε′, ε′′, which represent the defor-
mations E ′ → X ′ and E ′′ → X ′′ respectively, satisfy

ε′′ = ε′ + ∂̄A(E)η +R(ε′, η),

where the error term R satisfies R(sε′, sη) = s2R1(ε′, η, s) as in Proposition 4.2.
Hence ∂̄∗A(E)ε

′′ = 0 if and only if

∂̄∗A(E)ε
′ + ∂̄∗A(E)∂̄A(E)η + ∂̄∗A(E)R(ε′, η) = 0.

If η ∈ Im(∂̄∗A(E)), then

∆A(E)(η) + ∂̄∗A(E)R(ε′(s), η) + ∂̄∗A(E)ε
′ = 0.

Applying G, we get

η + ∂̄∗A(E)GR(ε′, η) + ∂̄∗A(E)Gε
′ = 0.

Let U1 ⊂ L1
k and V1 ⊂ L0

k be neighborhoods around 0 such that R(ε′, η) is defined.
Define F : U1 × V1 → L0

k by

F (ε′, η) := η + ∂̄∗A(E)GR(ε′, η) + ∂̄∗A(E)Gε
′.
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By the order condition on the error term R, the derivative of F with respective to η
at (0, 0) is the identity map. Hence by the implicit function theorem, there is a C∞

function g such that F (ε′, η) = 0 if and only if η = g(ε′). By the error condition
again, the (second order) operator |∂̄∗A(E)R(ε′,−)|k is small if |ε′|k is small. Hence

∆A(E) + ∂̄∗A(E)R(ε′,−) + ∂̄∗A(E)ε
′

is still a quasi-linear elliptic operator. By elliptic regularity, η is smooth. This
completes our proof. �

7. Unobstructed deformations

In this section, we investigate various circumstances under which deformations
of holomorphic pairs are unobstructed.

To begin with, note that we have an exact sequence of holomorphic vector bun-
dles

0 −→ End(E) −→ A(E) −→ TX −→ 0

by the construction of A(E) (which shows that A(E) is an extension of Q = End(E)
by TX). This induces a long exact sequence in cohomology groups:

· · · −→ H1(X,Q) −→ H1(X,A(E)) −→ H1(X,TX) −→
−→ H2(X,Q) −→ H2(X,A(E)) −→ H2(X,TX) −→ · · · ,

and the first order term (A1, ϕ1) defines a class [(A1, ϕ1)] ∈ H1(X,A(E)).
The following proposition, which first appeared in [7, Appendix] without proof,

describes the relations between the deformations of a pair (X,E) and that of X
and E.

Proposition 7.1. Denote the Kuranishi obstruction maps of the deformation the-
ories of X, E and (X,E) by ObX , ObE and Ob(X,E) respectively. Then, wherever
the obstruction maps are defined, we have the following commutative diagram:

· · · // H1(X,Q)

ObE
��

ι∗ // H1(X,A(E))

Ob(X,E)

��

π∗ // H1(X,TX)

ObX
��

δ // · · ·

· · · // H2(X,Q)
ι∗ // H2(X,A(E))

π∗ // H2(X,TX)
δ // · · ·

Here, the connecting homomorphism δ is given by contracting with the Atiyah class:

δ(ϕ) = ϕy[F∇].

Proof. By definition,

ι∗([A]) = [(A, 0)], π∗([(A,ϕ)]) = [ϕ].

The commutative diagram follows directly from the definitions of the mapsObX ,ObE
and Ob(X,E). �

Remark 7.2. We remark that since tr[A,A] = 0 for any A ∈ Ω0,1(Q), the ob-
struction of deforming E (with X fixed) actually lies in H2(X,End0(E)), where
End0(E) ⊂ End(E) is the trace-free part of End(E).
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Remark 7.3. For any [(A,ϕ)] ∈ H1(X,A(E)) such that Ob(X,E)(A,ϕ) = 0, we
have

0 = ObX ◦ π∗[(A,ϕ)] = ObX([ϕ]).

In this case, the map (A,ϕ) 7→ ϕ induces a map of Kuranishi slices, i.e. every
deformation of the pair (X,E) induces a deformation of the manifold X.

An immediate consequence of this proposition is the following slight generaliza-
tion of a result in [20]:

Proposition 7.4. Suppose that ObX ◦ π∗ = 0 and the connecting homomorphism
δ : H1(X,TX) → H2(X,Q) is surjective, then deformations of the pair (X,E) are
unobstructed.

Proof. Surjectivity of δ implies that the map ι∗ : H2(X,Q) → H2(X,A(E)) is a
zero map, and hence the map π∗ : H2(X,A(E)) → H2(X,TX) is injective. But
π∗ ◦Ob(X,E) = ObX ◦ π∗ = 0, so we have Ob(X,E) = 0. �

In the case when E = L is a line bundle, we recover the following

Corollary 7.5 ([20], Lemma 2.4). Let X be a compact complex manifold with
unobstructed deformations and L be a holomorphic line bundle over X such that
the map

∪c1(L) : H1(X,TX)→ H2(X,OX)

is surjective. Then deformations of the pair (X,L) are unobstructed.

For example, if X is an n-dimensional compact Kähler manifold with trivial
canonical line bundle, then X admits unobstructed deformations. If we further
assume that H0,2(X) = 0 (e.g. when the holonomy of X is precisely SU(n)), then
deformations of (X,L) for any line bundle L are unobstructed.

Definition 7.6. A holomorphic vector bundle E over a compact complex manifold
X is said to be good if H2(X,Q0) = 0, where Q0 is the trace-free part of Q =
End(E).

Proposition 7.7. Let X be a compact complex surface with trivial canonical line
bundle (e.g. a K3-surface), and let E be a good bundle over X with c1(E) 6= 0.
Then deformations of the pair (X,E) are unobstructed.

Proof. By the theorem of Tian and Todorov [23, 24], we have ObX = 0. Hence the
condition ObX ◦ π∗ = 0 is automatic.

On the other hand, note that Q∗ = (E∗ ⊗ E)∗ = E∗ ⊗ E = Q and similarly
Q∗0 = Q0. By Serre duality and the fact that KX

∼= OX , we have H0(X,Q0) ∼=
(H2(X,Q0))∗ = 0 since E is good. This implies that H0(X,Q) ∼= H0(X,OX) ∼= C.
Then applying Serre duality again gives

H2(X,Q) ∼= (H0(X,Q∗ ⊗KX))∗ ∼= (H0(X,Q))∗ ∼= C.
In this case, the connecting homomorphism δ : H1(X,TX) ∼= H1,1(X)→ H2(X,Q) ∼=
C is simply given by

δ(ϕ) =

∫
X

ϕ ∪ [trF∇] = −2πi

∫
X

ϕ ∪ c1(E).

When c1(E) 6= 0, δ is a nonzero map and hence surjective. Proposition 7.4 then
says that any deformation of (X,E) is unobstructed. �



A DIFFERENTIAL-GEOMETRIC APPROACH TO DEFORMATIONS OF PAIRS 25

Appendix A. Comparison with the algebraic approach

The aim of this appendix is to give an explicit comparison between the analytic
approach we adopt here and the classical algebraic approach (see the book [21] for
the case when E = L is a holomorphic line bundle on X, and the thesis [16] for the
general case).

We start with a definition

Definition A.1. A differential operator of order 1 on a vector bundle E is a linear
map P : Ω0(E)→ Ω0(E) such that locally,

P = (gij) +
∑
k

hkij
∂

∂xk
,

with (gij) be a matrix with entries in OX(Uα) and hkij ∈ OX(Uα).
A differential operator of order 1 is said to be with scalar principle symbol if

hkij = hk · I.

In the algebraic approach, the role of the Atiyah extension A(E) is replaced by
the sheaf D1(E) of scalar differential operators of order less than 1 on E, namely,
we have an exact sequence

0 −→ End(E) −→ D1(E) −→ TX −→ 0,

where the surjective map σ : D1(E)→ TX is locally defined by the symbol

σ(P ) =
∑
k

hk
∂

∂xk
.

There is an obvious identification of D1(E) with A(E) as smooth vector bundles,
but we will see that in fact D1(E) can be given a holomorphic structure so that
D1(E) and A(E) are isomorphic as holomorphic vector bundles.

First of all, locally on an open set Uα, we can write

P |Uα = gα + dα.

Let eα be local sections of E, {fαβ} be holomorphic transition functions of E and
Pα := P |Uα(eα). To get a global differential operator, we must have

fαβPβ = Pαfαβ .

Hence

gβ = fβαgαfαβ + fβα(dαfβα), dα = dβ .

Set

τα := gα − dαy(h̄−1
α ∂h̄α),

where hα is the Hermitian metric on E|Uα . Define a map

Φ : gα + dα 7−→ (τα, dα).

Straightforward computations give the identities

fαβτβ = ταfαβ , ∂̄A(E)(τα, dα) = 0.

It then follows that Φ defines an isomorphism between D1(E) and A(E). So we can
give D1(E) a holomorphic structure by pulling back that on A(E) via Φ. Hence
we obtain
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Proposition A.2. D1(E) carries a natural holomorphic structure so that it is iso-
morphic to the Atiyah extension A(E). In particular, Hp(X,D1(E)) ∼= Hp(X,A(E))
for any p.

Together with the Lie bracket [16]

[ω ⊗ P, η ⊗Q] := ω ∧ η ⊗ [P,Q] + ω ∧ Lσ(P )η ⊗Q− (−1)|ω||η|η ∧ Lσ(Q)ω ⊗ P,

the triple (Ω0,∗(D1(E)), ∂̄, [−,−]) forms a DGLA. Note that the Lie derivative acts
by

LXω = d(iXω) + iXdω = iX∂ω,

for any ω ∈ Ω0,∗(X) and X ∈ Ω0(TX).

Theorem A.3. The isomorphism Φ : D1(E)→ A(E)

Φ : gα + dα 7−→ gα − h̄−1
α dαh̄α

intertwines with the brackets [−,−] and [−,−]h, i.e.

Φ[ϕ⊗ P,ψ ⊗Q] = [ϕ⊗ Φ(P ), ψ ⊗ Φ(Q)]h.

Proof. We first prove that

Φ[P,Q] = [Φ(P ),Φ(Q)]h.

Write P = g + d and Q = g′ + d′ locally in a coordinate neighborhood U ⊂ X.
Then

[P,Q] = [g, g′] + dg′ − d′g + [d, d′]

and so

Φ[P,Q] = ([g, g′] + dg′ − d′g − h̄−1[d, d′]h̄, [d, d′]).

On the other hand,

[Φ(P ),Φ(Q)]h = (∇Qd (g′−h̄−1d′h̄)−∇Qd′(g−h̄
−1dh̄)+[g−h̄−1d′h̄, g−h̄−1d′h̄], [d, d′])

Now, we compute

∇Qd (g′ − h̄−1d′h̄)−∇Qd′(g − h̄
−1dh̄)

=d(g′ − h̄−1d′h̄) + [h̄−1dh̄, g′ − h̄−1d′h̄]− d′(g + h̄−1dh̄)− [h̄−1d′h̄, g − h̄−1dh̄]

=dg′ − d′g + [h̄−1dh̄, g′]− [h̄−1d′h̄, g]− dh̄−1d′h̄+ d′h̄−1dh̄− 2[h̄−1dh̄, h̄−1d′h̄].

and

[g − h̄−1dh̄, g′ − h̄−1d′h̄] = [g, g′]− [g, h̄−1d′h̄]− [h̄−1dh̄, g′] + [h̄−1dh̄, h̄−1d′h̄].

Therefore, their sum equals to

[g, g′] + dg′ − d′g − dh̄−1d′h̄+ d′h̄−1dh̄− [h̄−1dh̄, h̄−1d′h̄].

Finally,

[h̄−1dh̄, h̄−1d′h̄] = h̄−1(dh̄)h̄−1(d′h̄)− h̄−1(d′h̄)h̄−1(dh̄)

= −(dh̄−1)(d′h̄) + (d′h̄−1)(dh̄)

= −d(h̄−1d′h̄) + h̄−1dd′h̄+ d′(h̄−1dh̄)− h̄−1d′dh̄

= −d(h̄−1d′h̄) + d′(h̄−1dh̄) + h̄−1[d, d′]h̄.
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Hence

∇Qd (g′ − h̄−1d′h̄)−∇Qd′(g − h̄
−1dh̄) + [g − h̄−1d′h̄, g − h̄−1d′h̄]

=[g, g′] + dg′ − d′g − h̄−1[d, d′]h̄,

which is the required equality.
To prove the general case, we have, by linearity and the case that we have proved,

the End(E)-part of Φ[ω ⊗ P, η ⊗Q] is equal to

ω ∧ η ⊗ [τ(P ), τ(Q)]h − ω ∧ η ⊗ [τ(P ), σ(Q)]h + ω ∧ η ⊗ [σ(P ), τ(Q)]h

+ω ∧ Lσ(P )η ⊗ τ(Q)− (−1)|ω||η|η ∧ Lσ(Q)ω ⊗ τ(P ),

where τ(P ) := prEnd(E) ◦ Φ(P ). On the other hand, the End(E)-part of [Φ(ω ⊗
P ),Φ(η ⊗Q)]h is equal to

((ω⊗σ(P ))y∇Q(η⊗τ(Q))−(−1)|ω||η|(η⊗σ(Q))y∇Q(ω⊗τ(P ))+ω∧η⊗[τ(P ), τ(Q)]h.

The Leibniz rule for connections implies that

((ω ⊗ σ(P ))y∇Q(η ⊗ τ(Q)) = ω ∧ Lσ(P )η ⊗ τ(Q) + ω ∧ η ⊗∇Qσ(P )τ(Q)

= ω ∧ Lσ(P )η ⊗ τ(Q) + ω ∧ η ⊗ [σ(P ), τ(Q)].

Similarly, we have

((η ⊗ σ(Q))y∇Q(ω ⊗ τ(P )) = η ∧ Lσ(Q)ω ⊗ τ(P ) + (−1)|ω||τ |ω ∧ η ⊗ [σ(Q), τ(P )].

Putting these back into [Φ(ω ⊗ P ),Φ(η ⊗Q)]h, we get

Φ[ω ⊗ P, η ⊗Q] = [Φ(ω ⊗ P ),Φ(η ⊗Q)]h.

This proves our theorem. �

Remark A.4. This theorem gives a proof of the required identities in Proposi-
tions 3.14 and 3.15, and the fact that the DGLA (Ω0,•(A(E)), ∂̄A(E), [−,−]h) is
independent of the choice of the hermitian metric h.
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