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Summary. Let D be the open unit disc and let @D be the boundary of D. For f(z)
analytic in ID and continuous on D, it follows from the open mapping theorem that
df(D) C f(OD). These two sets have very rich and intrigue geometric properties.
When f(z) is univalent, then they are equal and there is a large literature to study
their boundary behaviors. Our interest is on the class of analytic functions f(z) for
which the image curves f(9D) form infinitely many loops everywhere, they are not
univalent of course. We formulate this as the Cantor boundary behavior. We give
sufficient conditions for such property, making use of the distribution of the zeros
of f' and the mean growth rate of f’. Examples includes the complex Weierstrass
functions, and the Cauchy transform of the canonical Hausdorff measure on the
Sierpiski gasket.

1 Introduction

Let D be the open unit disk and let D be the boundary of . For f analytic
in D and continuous on D, it follows from the open mapping theorem that
df(D) C f(OD). These two sets have very rich and intriguing geometric prop-
erties. In fact, when f is conformal, then they are equal and there is a large
literature on the study of their boundary behaviors; the reader can refer to
Pommerenke [19] and Duren [8] for the classical developments, and to Lawler
[13] for the more recent development in connection with the Brownian mo-
tion. Also, the well-known conjecture that the Mandelbrot set M is locally
connected can be treated as a problem of boundary behavior of conformal
maps, because the complement of M in Coo(= C U {00}) is the image of a
conformal map f on D [2,7]. Hence, the problem is equivalent to whether the
f can be extended continuously to the boundary of D {19].

Our interest is in the class of analytic functions f for which the image
curve f(OD) forms infinitely many loops everywhere; they are not univalent
of course. Intuitively, for any open arc I on 0D, f(I) contains at least one
loop (which is inside f(ID)). If we let C = f~1(8f(D)), then C = aD\U;2, L,
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284 Xin-Han Dong and Ka-Sing Lau

where I; are open arcs of d, f(I;) C f(D), and Ji2, I, = OD. The condition
of loops everywhere implies that C is a nowhere dense close set (a Cantor-type
set) and the image stretches out to be f(C) = 8 f(D). This boundary behavior
was first observed by Strichartz et al. [14] through some computer graphics of
the Cauchy transform on the Sierpinski gasket (see Fig. 3).

We formulate this property as the Cantor boundary behavior on ID and
carry out an investigation via (a) the distribution of zeros of f’ and (b) the
fast mean growth rate of |f’| for z near the boundary (faster than the well-
known rate for univalent functions [18]). Our theorems allow us to use the
infinite Blaschke product to construct examples with the Cantor boundary
behavior. We show that the complex Weierstrass functions will have this prop-
erty (see Fig.1). In the fractal case, we show that the Cauchy transform of
the canonical Hausdorff measure on the Sierpinski gasket also possesses this
property, which answers the Cantor set conjecture in [14].

The detail of proofs will appear elsewhere.

2 The Basic Setup

The geometry of the curve f(OD) can be very complicated, and there are
difficulties in obtaining a precise meaning of “infinitely many loops” from
the intuitive idea. Our approach is to use a weaker topological concept of the
connected components determined by f(0D).

By a component of a set E in a topological space, we mean a maximal
connected subset of E. Let K C C be a compact subset, then Cy, \ K has
at most countably many components, they are simply connected if E is con-
nected. Furthermore, if K is locally connected, then each component will have
a locally connected boundary [21].

For {2 a bounded domain in C, we will consider the components of Cy, \
J(802) and 12\ f~1(f(042)). The former is used as a rigorous setup for the
loose concept of loops of f(8£2), and the second one divides {2 into connected
subregions that map onto components of Co, \ f(82). These two classes of
components play a key role in our consideration. In view of the facts stated
in the last paragraph, we have the following.

Proposition 1. Let £2 be a bounded simply connected domain. Let f be a non-
constant analytic function in 12 and continuous on 2. Suppose Cxo \ f(842) =
UJ‘ZO W, is the unique decomposition into components. Then

(i) Each Wj is a simply connected domain.
(i) f~2(f(892)) is connected and each component of 22\ f~1(f(812)) is a
simply connected domain.

Let ny(w; K) denote the number of roots z € K for the equation f(z) = w,
counting according to multiplicity. The more precise relationship of the com-
ponents is as follows.
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Proposition 2. With the above assumption, suppose that W; N f(£2) # 0.
Let f~Y(W;) = U, OF be the decomposition of the open set f~1(W;) into
components. Then 1 < ¢q; < +o0; each Oj-“ 15 a simply connected component

of 2\ f7}(f(012)) and
FO)) =W;,  f(905) = 0W;. 1)

Moreover, for each w € Wj, ns{w; O;‘) =n,k and 3 4o, njk =ng(w, 2).
If, in addition, 02 is locally connected, then all the OW; and 80;‘5 are
locally connected.

The above O;? has a close relationship with the zeros of f’.

Proposition 3. With the above assumption and notation, f' has njx—1 zeros
in OF.
J

The proof depends on the following lemma and the Riemann mapping
theorem.

Lemma 1. Let f be analytic in D with f(D) = D. Suppose ny(w;D) =k for
all w € D; then f is a finite Blaschke product of degree k, and f'(z) has k—1
zeros in D,

We need a special result on the finite Blaschke product f, which provides
a way to cut up the domain D into simply connected subregions so that f
is univalent in each of the subregions. It will be applied to f from O}“ onto
W; (Lemma 2). For clarity, we use D, and Dy, to denote the unit disk D as
domain and range.

Proposition 4. Let f be a Blaschke product of degree k and let Z be the set
of zeros of [’ in D,. Suppose f(Z) C L where L is a Jordan curve in Dy,
except for an end point & € ODy,. Let G = Dy, \ L (it is simply connected),
and let f~YG) = U;L] Oj; be the connected component decomposition as in
Proposition 2. Thend =k, and f is univalent in O; with f(O;) =G.

3 The Cantor Boundary Behavior

With the preceding notation, we can define the Cantor boundary behavior
for f.

Definition 1. Let f be analytic in D and continuous on D. We say that f
has the Cantor boundary behavior if f~1(8f(D)) and 90 N 0D are Cantor
type sets in OD (whenever it is non-empty) where O is any simply connected
component of D\ f~1(f(8D)) (as in Proposition 1).
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The geometric meaning of the definition is as follows: for C :=
S7HOf(D)) C OD to be a Cantor type set, C = 0D \ |J7o, I where I
are disjoint open arcs of O, with (J, Jy = 0D and f(I;) C f(D). Intuitively,
the curve f(I;) forms a loop {closed curves) inside the image f(D), and the
outer boundary of the image f(D) comes from the nowhere dense closed
set C' in 0. The same explanation applies for Of N oD with its image in
the boundary of f (Oj‘ ) = W; (as in Proposition 2). Putting these together,
we can perceive that for each loop f(Ii), there is another family of loops
inside f(I)) with the Cantor boundary behavior, and inductively we can see
that for f(0D) there is an infinite family of loops inside loops.

Also, it is clear that the definition implies the following: for any subarc
I C oD, f{(I) £ OW for any component W of C, \ (D).

Our main lemma is as follows.

Lemma 2. Let f be analytic in D and continuous on D. If there is a non-
degenerated arc J C 0D such that f(J) C Of(DD), then there exists a non-
degenerated subarc I C J and a bounded simply connected domain D C D
such that I C 8D, 9D is locally connected, and f is univalent in D.

Sketch of proof. Let J = {e®® : 0 < 6; < 0 < 6 < 27}. We choose a Jordan
curve 7 such that v° C I and has two end points e*, e%2. Let 2 be the closed
region enclosed by the simple closed curve J U+« and let f = f[f2. Then, by
assumption, we have f(J ) C (9f(.0). Let I' = f(J U «y); then, by applying
Propositions 1 and 2, we have the decompositions

a5
Co\I'=JW; and W)= |]OF
g1 k=1
As f(J) C 8f(£2), we can show that one of the Oj‘ will contain a subarc
£ C J. We denote this simply connected domain by O* and the corresponding
Wj by W,

Now consider f : O* - W*. By Proposition 2, f(O*) = W*, f(80*) =
OW*, and each w € W* has multiplicity, say, ¢. Let Z denote the g — 1 zeros
of f/in O* and let L be a Jordan curve in W* with one end point at OW*, We
can apply Proposition 4 (through the Riemann mapping theorem) to divide
O* into simply connected regions D;,i = 1,...,q and f is univalent on each
of the regions. We select the one D; such that £n D, is a non-degenerated arc
of 6. we denote this D; by D, and the arc £N D; by I. 1

We also need a similar lemma on the components.

Lemma 3. Lemma 2 still holds if we replace the assumption f(J) C 0f(D)
by f(J) C OW for some component W of f(D)\ f(dD).

Now we can state our first theorem for the Cantor boundary behavior.

Theorem 1. Let f be analytic in D and continuous on D. Suppose the set
of limit points of Z = {z € D : f'(z) = 0} is 8D. Then f has the Cantor
boundary behavior.
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The proof is simple by the two lemmas. We show that C = f~1(0f(DD))
does not contain any subarc of 9I); this will imply that C is a Cantor-type set.
Suppose otherwise, then there exists a circular arc J = {e% : 6; <8 < 6,} C
FHEf(D)). It follows that f(J) C 8f(D). By Lemma 2, there exists a simply
connected domain D C D and a non-degenerated subarc I C J such that
I € 8D and f is univalent in D. Hence, f'(z) # 0in D, i.e., ZND =0 and
Z does not have a limit point in I°. This is a contradiction, and therefore C
is a Cantor set. The case for the components W; follows from the same proof.

We can construct analytic functions with the Cantor boundary behav-
ior explicitly using the theorem and the infinite Blaschke product. For ex-
ample, we let Ok =m/k, m=1,2,... k-1, k=2,3,..., and let zxm =
(1 — k=9)e2mem Since 350, 2P (1 = Jziml) = Sopo,(k — 1)k < oo if
s > 2, then the Blaschke product

oo k-1

ps(z) =[] 11

k=2 m=1

|Zk,m| Zkym — 2
Zk,m 1 Zk,mZ

converges uniformly for |z| < 7 < 1 and |ps(2z)| < 1 for z € D. For s > 2, we
define f(z) = foz ps(€)d€. Then f satisfies the assumptions in Theorem 1 and
hence has the desired property.

In general, the zeros of f/ are not easy to locate. We will give another
sufficient condition of different nature for f to have the Cantor boundary
behavior. It is related to the growth rate of the integral mean of |f’].

Let S denote the class of all analytic functions f with f(0) =0, f’(0) =1,
that are univalent in . For A > 0, we define

B . log (27 |/ (re®)|*do)
AR) =sup (hﬁ?‘f" —log(1 —7) M

and call it the integral mean spectrum of S [18,19]. A nice survey of this and
related topics can be found in [3]. It follows easily that for any f € S and for
any fixed € > 0, there exists a constant C = C(e) > 0 such that

Ly Ao < ¢ L 1 2
o/, |/ (re)| S A= Ee 5 <r<L (2)

The estimate of 8()) is a difficult problem. Up to now, the best upper bound
estimate was given by Pommerenke:

1 11/2
ﬁ(,\)gA—§+(4,\2—A+Z> <3N+, A>0. (3)

The lower bound was considered by Makarov [15], and a sharper estimate was
given by Kayumov [12] more recently: S(A) > 1A% for 0 <A < 2.
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Theorem 2. Let f be analytic in D and continuous on I. Suppose, for any
non-degenerated interval I C [0,2x], there exist K > 0,C >0, and 0 <rp < 1
such that, for sufficiently small A > 0,

/I[f'(Tew)]’\d@ Z E‘i—::q;j—):;, o <71 < 1. (4)

Then f has the Cantor boundary behavior.

Note that, by assumption, when A > 0 is small, the mean growth rate of | /|
is greater than the rate for all the univalent functions in S (i.e., Ak > 3A2+7A3
in (3)). This, together with Lemmas 2 and 8 and a contrapositive argument
(using the Riemann mapping theorem on D), yields the theorem.

4 The Complex Weierstrass Functions

In the following we counsider the class of complex Weierstrass functions:

oo

f(2) = faplz) =) a7z, z €D,

n=1
where 0 < § < 1 and g > 2 is an integer. It is well known that f is a Lipschitz
function of order 8 and the Hausdorff dimension of f(dD) is 1 < 1/8 < 2 for
B> 5 [9]
For0<0<2m0<a<w/2,7>0, welet
So(0,7) ={z:|z—€?| <7, |arg(l — e7?2)| < a}

to denote the Stolz angle at ¢*’. By some rather delicate estimations, we show
that the class of f; g satisfies the following lemma.

Lemma 4. For 0y, = 2rmq™k withm =0,...,¢° =1, k=1,2,..., there
exist C >0, 0<a<1, and 0 < 1, < 5qg % such that

C

W , z e Soz(ek,m; Tj) \ {eie’“""}.

Re(e%m f'(z)) >
In order to apply Theorem 2, it is more convenient to modify the integral

mean growth condition to be a discretized growth condition of |f’|.

Lemma 5. For Oy, = 2rmg~% withm =0,...,q"—1, j=1,2,..., suppose
there exist k >0, § >0, and n € (0,7/2) such that

'@ = el —]2))7" 1)

for z € Sy (Okm,6/2%) and §/25+1 <1 — |z| < §/2%. Then the integral mean
condition in (4) of Theorem 2 is satisfied.
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By using the two lemmas and Theorem 2, we prove the following.

Theorem 3. For 0< <1, q>2 an integer, the complex Weierstrass func-
tion fq.3 has the Cantor boundary behavior.

In Fig. 1, we display some graphics of the complex Weierstrass functions
f(z) = 350°,¢7Pn29" for different values of g and 8. It is seen that the

Fig. 1. The images f, (0D). The first two are ¢ = 30, 8 = 0.5,0.4; the second two
are ¢ = 10,8 = 0.6, 0.5; the last two are ¢ = 3,2, =05
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number of pedals depends on ¢. Indeed, there are ¢ — 1 symmetric pedals due
to ¢"™ =1 (mod ¢ — 1). The curve f(0D) can be space-filling on some regions
inside f(D), as was first observed by Salem and Zygmund. In [1], Barariski
proved this further for ¢ > 2 and for g sufficiently close to 0. It is seen from
the picture that as 8 is closer to 0, the mean growth rate of |f’| is larger and
the curve f(I)) loops more violently.

In our theorem, we make use of the fact that the gap ratio g of the series
is an integer and the coeflicients are a geometric progression. We do not know
whether the more general lacunary series still have the Cantor boundary be-
havior. Also, it is well known that for Ref and Imf, the box dimension of
the graph is known to be 2 — g [9]; however, the question for the Hausdorff
dimension is still open (see [10,11,17]). It is seen that f(GD) is a fractal curve,
and it will be interesting to find the dimension in connection with the results
in [20] and [1], and in particular for the dimension or Hausdorff measure of
the Cantor set C and the outside boundary of the image f(C)(= df(D)).

5 Cauchy Transform on Sierpinski Gasket

Let Spz = e + (z — €x)/2, k = 0,1,2, where &5, = e2*"/3, The attractor of
this iterated function system {Sj}?_, is the Sierpinski gasket K (see Fig. 2).
Recall that the a-Hausdorfl measures satisfies H*(2E) = 2*H*(E). For p =
H| i, where p is a self-similar measure and normalized to 1, it satisfies y =
37! Z?:o po St [11,16]. The Cauchy transform of y = H®| is defined by

F(z):/K%H—j%.

It is clear that F' is analytic away from K and F(oco) = 0. In [14], Strichartz
et al. showed that F’ has a unique extension to be a Holder continuous func-
tion over K of order log 3/log2 — 1 (see also [4,5]). Let Ag be the unbounded
connected component of C\ K, then F(Ay) is a bounded domain. In [14] they

Fig. 2. The Sierpinski gasket K with vertices 1, ™%/, ¢47%/8
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Fig. 3. The image of the outer triangle of K under F(z); the picture on the right
is the magnification around F'(—3

also observed from computer graphics that the image F(0Ap) is a curve con-
sisting of infinitely many fractal-looking loops (see Fig. 3), and they proposed
the Cantor set conjecture: there exists a Cantor-type set C C 0A¢ such that
F(C) = 8F(Ap). This is actually the motivation of our investigation of the
Cantor boundary behavior.

By symmetry we only consider the vertical line segment 8Ag; the dyadic
points zx ., (not including the two end points) are of the form: for 1 <m <
28 —1and k>1,

m m 1 m—2k1
Zkm = 2_1951 + (]— - —) &9 = —5 + ""2k—‘\/§1 (1)

For 6 € (0,#/2] and r > 0, we use the notation
20)={z: |argz — 7| <0} and 02(0;r) ={z¢€ 2(0):|z|<r}
to replace the Stolz angle on D.

Theorem 4. There exists a function G such that, for any zm i,
F(z+ zpm) = F(2km) + G(2)2% 1 + 2pk,m(2), 0<argz < 2m,

where
(i) G is continuous on C\{0}, analytic in 2(n/2), and G(2z) = G(z) in 0 <
arg z < 2m.
(i) pr.m(2) is bounded continuous on C, and analytic in 2(w/2)U{z: |z| <
3/2k‘+1}_
From this we can draw the following conclusion on the growth rate of F'
near 0A4g.
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Proposition 5. There exists C > 0 such that

max  [F'(z)| < Ct* 2,
dist (z,K)>t

and the order is attained at the dyadic points of 04y, in the sense that there
exists 0 <n < 7/2,8 >0 and ¢ > 0 such that for any z € 2(n;27%6),

|F' (2 + 21m)| > el2]* 7%

Let ¢ be the Riemann mapping that transforms the closed unit disk I onto
AogU{oo} conformally. We can use Proposition 5 to show that Lemma 5 (with a
slight modification on the 8y, ,,,) is satisfied. Hence, f(z) = F((z)) satisfies the
growth rate condition in Theorem 2. Therefore, we have the following theorem
which answers the Cantor set conjecture proposed by Strichartz et al. in [14].

Theorem 5. The Cauchy transform F has the Cantor boundary behavior.

The main idea in the proof of Theorem 4 and Proposition 5 is to make use
of the following auxiliary functions:

aw) = [ ZEO pe- [ 2

w(z —w

with 0 < k < 5, where A = e5™/3 Ay and Ay is the “Sierpinski cone” gener-
ated by the relocated gasket 7' =1 — K with vertex at 0 (see Fig.4).

Fig. 4. The Sierpinski cones

These functions have the multiplicative periodic property (period 2). Formally
(2g1(2)) = —Hy(2). The bounded function G in Theorem 4 is given by
G(z) = 227 (q1(2) + 95(2)).

The Hy's are used in the derivative F’ in Proposition 5:
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F'(z + zp,m) = —(H1(2) + Hs(z)) + O(1)

as z € £2(n/2) and z — 0.

From the self-similar property of F', we see that there are “loops inside
loops” in the image F(84) (Fig.2). The image points in these loops have
multiplicity (from Ag) at least 2 and can be any large number. It is natural
to ask whether the area of the Riemann region F(4g) (counting according to
multiplicity) is finite. We prove the following.

Theorem 6. The area of the Riemann region F(Ap) is finite, but it is infinite
for F(C\K) .

The Cantor boundary behavior suggests that F(94) is a fractal curve.
Indeed, observe that F'(z) is Holder continuous of order & — 1 on K. We have
immediately (by [9, p. 29]) the following proposition.

Proposition 6. dimy F'(84¢) < (o — 1)7 (= 1.70951).
On the other hand, by using Theorem 4,
F(z 4 2mk) = F(zmi) + G(2)2°7 + 0(2), (2)

we see that the order o — 1 is attained on a dense subset of 8Ag. It is natural
to make the following conjecture:

The box dimension and the Hausdorff dimension of F(8Ap) are (a—1)"1.

Let Gr(f;I) = {(t,f(t)) : t € I} denote the graph of f on an interval
I. Tt is known that if f is Holder continuous of order 0 < s < 1, then the
upper box dimension dimgGr(f;I) < 2 — s. It is easy to show ([9, p. 146])
that if there exists ¢ > 0 such that for any dyadic subinterval Iy ,, C I, m =
0,...,28 -1, k>0, :

Oscy(Imx) > 27k,

then dim pGr(f; I) > 2—s. Based on this and the estimation on the oscillation
of ReF(z) and ImF(z), we have the following.

Proposition 7. dimpg Gr(ReF';0A¢) and dimp Gr(ImF;04) are 3 — a.

We do not know if the Hausdorfl dimension of the graphs of ReF' and
ImF is 3 — a. This question may be difficult, as the approximating function G
in (2) has a series expression 3, .5 2(*~2¢(27"2) [6]. It is analogous to the
well-known Weierstrass function, and as already mentioned, the Hausdorff
dimension of its graph is still unsolved.
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