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Abstract

For nonnegative matriCes My, -+, My, , we define the pressure
function P(q) := limp—co £ log Z|J|=n | M;]|9. We prove that if -
S ™ | M; is irreducible, then P(q) is differentiable. The result is .
important when we consider the multifractal formalism for the
iterated function systems with overlaps. The proof is a simplifica-
tion of an earlier version of the authors [FL] on the more general
setting of continuous matrix-valued functions on the subshift of

finite type.
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1 Introduction

Given a family of non-negative d x d real matrices {My,- -, My}, we
define the pressure function P(q) by

1
P(q) := lim —1 M;l||? 0 1.
(9) nﬂ%onf’g%:nll e a> (L.1)

where My = Mj, ... M;, for J =j1...J» € {1,...m}", | - || denotes the
matrix norm defined by |JA|| := 1A1, 1* = (1,---,1). The existence of
the limit in the definition follows from a subadditive argument.

The pressure function of the scalar case (in terms of the potential
functions) was studied in great detail in statistical mechanics [R] and dy-
namical systems ([B], [P]) in conjunction with the entropy and variational
principle; it has also been used to study the multifractal structure of the
self-similar (or self-conformal) measures generated by iterated function
systems (IFS) with no overlap (the open set condition)([MU], [FL]). In
those cases, the pressure functions under consideration are differentiable
(actually real analytic). This property is essential to investigate the phase
transition in thermodynamics, and for the validity of the multifractal for-
malism in the dimension theory of fractals.

In the recent investigation of the self-similar measures generated by
iterated function systems with overlaps, it is known that in many in-
teresting cases, the measure can be put into a vector form with a new
non-overlapping IFS and with matrix weights ([LN 1,2], [LNR], [Fel,2],
[FeQ]). In this way the related multifractal formalism depends on the dif-
ferentiability of the above P(g) ([LN2], [LW], [Fe1,2], [FeLW]). In another
direction, the expression of the matrix product in (1.1) also appears in
the study of the scaling functions in wavelet theory (the matrices are al-
lowed to be non-positive) in the form of the L?-joint spectral radius and
the L4-Lipschitz exponent ([DL}, [LM]) and the problem of differentiabil-
ity of the P(g) also appears there. For a survey of these, the reader can

refer to [L].

A systematic study of the differentiability of the pressure functions of
product of non-negative matrices was carried out in [FL] (see also [Fe3]).
The setup is in the more general subshift of finite type (X4,0) where
= {1,2,---,m},m > 2, o is the shift map on ¥, Aisan m xXm
matrix with entries 0 and 1. For a Holder continuous matrix-valued
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function M (z) on X4, the pressure function is defined by

P(g) = lim ~log Y sup |M()M(og)- - M(e"a)|"

where [J] is the cylinder set determined by J. The reason of this gen-
erality is to include the consideration in dynamical system. The proof
is however more complicated due to some technicalities. In view of the
many unsolved problems and the major applications, it is worthwhile to
reduce to the special case (1.1) and give a simpler and more transparent
proof. The main theorem is

Theorem 1.1. Let My, ..., My, be non-negative d x d matrices such that
H = 5.7, M; is irreducible. Then the pressure function P(q) is differ-
entiable for g > 0.

The proof is to apply a technique of Brown, Michon and Peyriere
[BMP] and Carleson [C] to construct, from the given matrices, a certain
ergodic measure that possesses the “Gibbs property”; the differentiability
of P(q) is obtained via such measure by extending an idea of Heurteaux

We note that if H is not irreducible, then Theorem 1.1 is not true.
Some examples and remarks will be given in the last section. As an
_ application we let

n—oo n

E(a) = {JZ (j;) € Z: lim log || M, - - - M, | _ a}

where ¥ = {1,---m}". We prove the following dimension formula which
_is in essence derived from the variational principle.

Theorem 1.2. Under the same assumption of Theorem 1.1, we have for
gy a=P(q), q>0,

dimg E(e) = Egl—ﬂ;(—qq + P(q))-

To relate this to the classical random product of matrices, we let {Yn}
the iid. random variables that take values My, ..., M, with uniform

tribution, then under certain assumption on the M;’s,

1
lim =log||Y,...Yi|| =X as.
n—eo N,
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and \ is called the upper Lyapunov exponent ([FK], [BL, Chapter 1]). In
comparison with the above theorem, it corresponds to the case forg=20
and A\ = P'(0) (it exists under the additional assumptions on the M;

(IBL, Theorem 4.3]) and dimgE()\) = P(0)/logm = 1.

2 Basic setup.

Let & = {1,...,m}" be the symbolic space endowed with the standard
metric d(I,J) = m™" where I = (i), J = (jx) and n is the smallest
of the k such that iy # jr. Let o be the shift operator on X defined by
o(i1,13,...) = (2,13, .. .). For each positive integer n, we use X, to denote

the set of all the indices of length n over 1,...,m. Let ¥* = UnzjL Y.
For I,J € ¥*, we write |I| as its length and I.J as the concatenation. For

J=j1...jn€E*, we let [.]]={(7/k)62 ik = Jk, 1§k_<_n}
For any two families of positive numbers {a;}icz, {bi}icz, We write,
for brevity, a; = b; to mean the existence of a constant C > 0 such that

C‘lai S bi S Cai forallieT.

Proposition 2.1. There erists a o-invariant measure ji on % such that
p(fin - i) = p M, .. M| Vn>0,1i...9 € Xy (2.1)

where p is the largest eigenvalue of H := Y " M;.

Proof. Since H is an irreducible non-negative matrix, by the Perron-
Frobenius theorem, there exist two strictly positive column vectors u, v

such that

wH=pu' and Hv=pv
with w'v = 1. By the Kolmogorov consistence theorem, there is an
invariant measure u on ¥ such that

wllis. . in]) = p ™M, . Miv V>0, i1 in €50 (2.2)

It is easy to see that u!M;, ... M; v = || M;, ... M, || and the desire result
follows. o

The measure p will play a significant role in the study of the pressure
function P(q). It is actually uniquely determined by the property (2.1),
the proof will be given in the last section of remarks, making use of some
facts in Section 3. As an immediate consequence of (2.2), we have
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Corollary 2.2. There is a positive constant C' such that
p([1J) < Cu(DulJ)) VI, JeX (2.3)

For q € R, let 7(q) := 7.(q) be the Li-spectrum of y, i.e.,

log 3y p([1])*

7(g) = lim inf o

where the summation is taken over all I € ¥, with u({l]) > 0. By
Proposition 2.1, we have

7(q) =

Therefore to prove that P(q) is differentiable for g > 0, it suffices to prove
that for 7(q). The proof depends on the following result of Heurteaux

[H].

(qlogp—P(g)) VY ¢>0.

log m

Proposition 2.3. Let v be o Borel probability measure on . Assume
that there exists a constant C > 0 such that

v([IJ) < Cv(Ihv(lJ])) VI, JeX™ (2.4)

1 I,
Then 7'(1) exists if v is a Young measure (i.e., lim log v(In(z)) =
n—oco logm™"

constant for v almost all = = (j;) € & and In(x) = [fi- - - jnl)-
The main idea is to make use of the estimation of the dimensions:
dim, () := sup{a > 0: dim(E) < a = v(E) = 0}

and

Dim*(v) := inf{Dim(E) : v(R¢\ E) = 0}
where dim(E) and Dim(E) denote the Hausdorff dimension and the pack-
ing dimension of E respectively. If we let

D(v,z) = liminf log v(In(z))
n—00 log m~"

and let D(v, ) be defined similarly, then dim, (v) = ess inf{D(v,z)} and
Dim*(v) = ess sup{D(v,x)} ([F], [FLR]). It was proved in [H, Theorem
1.3] (also [N]) that

(1) < dim,(v) < Dim*(v) < 7.(1).




Complex Dynamics and Related Topics 134

Under the assumption (2.4), we have 74 (1) = dim.(v) and Dim*(v) <
(1) [H, Theorem 2.1]. Furthermore if v is a Young measure, then the
two dimensions are equal and hence 7/(1) exists (it is the entropy of v).

For more detail of the relationship of the dimensions, the reader can
refer to [F], [FLR]. Proposition 2.3 is a kind of inverse of 2 result of Ngai
[N]. In fact, Ngai proved that the existence of 7/(1) implies that v is a
Young measure, without the assumption (2.4). By using Proposition 2.3,
Heurteaux proved that 7,(q) is differentiable on R if v has the so-called
“quasi-Bernoulli” property: there exists C > 0 such that

cu(w() < w(IJ]) SCv(w(]) VI, JET

We point out that under our setting, the measure p may not be quasi-
Bernoulli unless all the entries of the matrices M; are positive (see the
examples and remarks in Section 4). However, in the following lemma,
we can still obtain a weaker form of the left inequality and apply an idea
of [H] to retrieve the differentiability of 7(g) for ¢ > 0.

It is easy to show that the given assumption on the irreducibility of
H is equivalent to the existence of an r € N such that 3., H k> 0.

Lemma 2.4. For g > 0, there erists a constant C' > 0 (depends on q
and r) such that

ST WUKIY 2 O VI JeX (25)

k=1 K€%y

Proof. Let I € &;, J € &,,. By (2.2), we have

SO WUk = Y D e T T MMMy

k=1 KeXg k=1 KeXy

o~ mrut My ( zr: p‘kH’“) Mjv.
k=1

Since S, H* is positive, so is Sr_  p FH* ; there is a constant Cy > 0
such that 37}, p~*H* > Cyvu’, which implies

S S wlik ) = pr et My(Cyva) My = Cua(TD(]):
k=1 KeX
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Let Ko € Uiy X such that u(IKoJ) maximizes the u(IKJ)’s, then
rmrp([IKoJ]) > Cru([I])u([J])- It follows that

Z S° w(IK I 2 p(IKoJ)? 2 Cir~*m™ " u(]) u((J])%,

k=1 KeXy,

which concludes the proof by letting C’ = C{r~m=7". O

3 Proof of the theorem

For ¢ > 0, n € N, we define sn(q) = Yjex, #([1])7, then 7(q) =
lim inf,—oo log sn(q)/ logm™". 1t follows from Lemma 2.4 that

Lemma 3.1. For g > 0, there ezists a constant C' > 0 (depends on q
and r) such that forn >r and I € X7,

3wl 2 Csa(gp(lI)* and > wI1)T 2 Csalg)nlI])*.

JeXn Jetn
Proof. Observe that for any 1 <k <rand I € ¥,

Sy =3 3 MRS zmT 3 D WK

JeTn KeXp JeBn—k Ke¥y J'et,

(the last inequality follows from p([L]) = p(|LK;)) for any Ki € Zg).
Therefore by Lemma 2.4 we have ,

oot = rtm S Y MK

JeBn k=1 KeXy J'en

> rimrCp(N)? > w([I)T = Csal@)u(l])*.

Jet,

The proof of the second part is similar, we need only adjust the inequality
in the parenthesis by u([L]) = p(c™*([L])) = u([K1L]), K1 € X, using
the o-invariant property of p. |

Lemma 3.2. For ¢ > 0 and for any ¢,n € N, we have (i) sern(q) =
se(q)sn(q); (ii) sa(gq) =m0
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Proof. From Lemma 3.1 and Corollary 2.2, there exist C,C’ > 0 such
that
C'se(q)sn(q) < se1n(q) < Cse(9)3n(9),
which proves (i). To prove (ii), we can write Csg4n(q) < (Cse(q)) (Csn(q))
(by (i)). Hence the subadditivity property implies
1 [ l n
n—00 n n n
so that C~'m~""@ < s,(g). The reverse inequality in (ii) follows from a
similar argument. d
For each integer n > 0, let B, be the o-algebra generated by the
cylinders [I], I € X,. We define a sequence of probability measures
{Vn,q} on B, by

_ e
vl =55 VI€Tn (3.1)

Then there is a subsequence {¥p, 4 }x>1 converges in the weak-star topol-
ogy to a probability measure v,. The following assertion shows that v,

has the “Gibbs property”.
Lemma 3.3. v,([I]) = p([1])4m™@ for alln >0, I € Zn.

Proof. Take any I € &, and £ > n +r, we have

p([IJ))e
Vn,q = Z qu [IJ] Z ,5‘[ )
JESpon JeStn Ot (g
q
~ Z ) Z(E (by (2.3) and Lemma 3.1)
JET Se(q
q
([I]) Sé—n(q) ([I])qmﬂT(Q) (by Lemma 3.2).
se(q)
Letting £ = ny /* 0o, we obtain the desired result. O

We can strengthen the above measure to be an ergodic measure.

Proposition 3.4. For each q > 0, there exists an ergodic measure 1y On
Y such that

nolI]) ~ p(I)im™ V>0, T€ T, (32)
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Proof. Let 7, be a limit point of a subsequence of {Lyg+ygoo™t+...+
Vg © o~} in the weak-star topology. Then 7, is a o-invariant measure

on ©. We have for each T € ¥, and £ € N,
) = > vl

JeZ,
~ Y p(I)mIT@ by Lemma 3.3)

JEL,
~ s(q)p([I])m*™™@  (by Corollary 2.2, Lemma 3.1)
~  p([])Imm@ (by Lemma 3.2). (3.3)

This proves the desired = for 7,. In what follows we prove that 7, is
ergodic. First we show that there is a constant C > 0 such that for each

IeX,, JeX,

hmznq( (1) 2 Cng()ma(( ). (3.4)

=0

To see this, we note that when ¢ > n,
an(lf —HD):
- Y Y Y wliKiKa)

k=1 K1€X Ko€¥;_n

ad> S Y WK K TmH T (by (3.2))

k=1 K1€3;, K2€Li—n

v

> Clm(iH)T(Q)m-‘TlT(Q)IZ Z Z w([TKL K J))Y.

k=1 K1€X Ko€3¥ip

By Lemmas 3.1, 3.2, 3.3, we have

> 2. > WK KRJ]) = Cop([I])* ST u([KaJ))?

k=1 K1€%; K2€Z;_n . Ko€Xin

Casi—n(@)p (] p([J])*
Cam= 7@ (1)) ([ J])".

(AN
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it follows that
S no= (D) 2 O Om s Ou( )"
k=1

> Com @l ((1)me(J])
= Ong([I)ma(l1),

from which (3.4) follows. Since the collection {[I] : I € Za, n € N}
is a semi-algebra that generates the Borel o-algebra on %, a standard
argument (e.g., see the proof of [W, Theorem 1.17]) shows that for any
Borel sets A, B C X,

Jim, inq (A n 0“"(3)) > Cny(A)ng(B)-

i=0

This implies that for any Borel sets A, B C ¥ with 7,(4) >0, ng(B) >0,
there exists n > 0 with 7,(A N oc"B) > 0. By [W, Theorem 1.5], nq is
ergodic. g
Proof of Theorem 1.1. It suffices to prove that 7(q) is differentiable
for ¢ > 0. By (3.2) and a direct computation, we have

Tog (£) = 7(gt) — t7(2)- (3.5)

where 7,,(t) is the Lt-spectrum of 7. Since 7, is ergodic on X, it
is a Young measure by the Shannon-McMillan-Brieman theorem (ie,

—1 - .
m 0g74(In(2)) equals the topological entropy of 7y for 1, almost

n—00 n

all z = (j;) € T and In(z) = [ji - .ja]). Hence by Proposition 2.3, oo (t)
is differentiable at t = 1. For any fixed ¢ and for any € > 0, let e = €/q,
then by (3.5), we have

(g +¢€) —7(q) _ T(g(t +€)) — 7(q) _ Tp (L +€) — T (1) N 7(q)
€ qe qe’ q

This implies that 7(g) is differentiable for ¢ > 0. O

Proof of Theorem 1.2. Let u be the o-invariant measure constructed
in the proof of Proposition 2.1. We see from the definition of 7,(q) that

qlogp— P(q) Vq>0

Tu(9) = logm

|
i
L
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and 1 |
E(a)z{xez; lim og p([Z1 -~ Znl) _ ng—a}

n—00 logm—" logm

By [BMP, Theorem 1] or [LN2, Theorem 4.1], we have

. logp—a 1
L —q - = et .
dimp E(a) < ogm ! 7u(9) logm( aq + P(q)) (3.6)

for any ¢ > 0.
Now assume that o = P'(g) for some g > 0. Let 7, be the corre-

sponding ergodic “Gibbs measure” we constructed. From the proof of
Theorem 1.1, we see that 77 (1) exists and

_ —qP'(q) + P(q)

(1) = arale) — 7ula) = T

By [N], we have

i 108 (i, n] —qP'(q) + P(g)

a. lel
n—oo . logm™ logm Mg &4 ’

which implies

lim log [|Ms, --- M, = P'(q), ne a.a. I = (i;) € L.

n—00 n

Therefore we have

~¢P'(q) + P(g)
logm

)

dimgE(a) > dimgn, =

which together with (3.6) yield the theorem. O

4 Remarks

We first give an example that the irreducibility is needed for Theorem
1.1.

Example 4.1. LetM1=(g ?)andM2=<(2) g).ThenHz
20

0 3k ) where |J| = n and k is the

M; + M, is reducible; My = (
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number of My’s in M. Hence 37, | M7 = ¢ _o k(2" + 3%)7. Note
that

5 (5) st (S (7)o 35 (1)) =tz sy

k=0 k=0

and
> (Z> (2" +3%) < (Z) 29(279 + 31) = 29(270*D) 4 (14 3)").
k=0 k=0

We hence have P(q) = max{(g + 1)log2,log(1 + 39)}, which is not dif-
ferentiable at ¢ =1

In Propositon 2.1, the measure p is actually unique to satisfy
p(I) = p | Myl for J € Zn. (4.1)

Indeed for ¢ = 1, s,(1) in (3.1) converges to 1 and 7(1) = 0. This means
that the v, in Lemma 3.3 and the 7; in Proposition 3.4 equal u. It is
ergodic by Proposition 3.4. Hence if there are p and y' satisfy (4.1), they
are absolutely continuous to each other, and being ergodic, they must be

equal.

In regard to the quasi-Bernoulli property of the u in Proposition 2.1,
we have

Proposition 4.2. If all the entries of M;, 1 < j < m are positive, then
the w in (1.1) will have the quasi-Bernoulli property. Moreover, P(q) is
differentiable over R.

Proof. The lower bound in the quasi-Bernoulli property can be ob-
tained by observing that for each j, M; > aFM; (co-ordinatewise)
where E is the d x d matrices with 1 on all the coordinates and o =
(ming, min; ; My(%,7))/(d max; max;; My(i,7)). Hence by using the no-
tations in the proof of Proposition 2.1, we have £/ > cvut and

WM Myv > ca(at Mpv)(uf M;v).

and the lower bound for p follows.
Since u is quasi-Bernoulli, by [H, Theorem 3.3], 7,(g) is differentiable

over R. Note that

glogp — P(q
Tl—t( )=m—l VQGR
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It implies the differentability of P(q). O

The differentiablity of P(q) can be proved in a more general subshift
setting. To see this, let A be a primitive m X m matrix with entries 0
and 1, and ¥4 the subshift space over {1,...,m} (cf. [B]). Denote by
S an the collection of all admissible words of length n, i.e.,

Yan:={i1...0n: A(lj,i541) =1forall1<j<n— 1}.

If {M;}7, is a family of positive d x d matrices, then p(q) can be defined

as
1
P(q) := lim —log M|
@ = Jim or 3 1341

In [Fel], using a similar idea we proved that P(q) is differentiable over
R\{0} (see [FeL, Theorem 1.2]) (there is a trouble in handling the case
g = 0 by that method). Later Feng proved the differentability of P(g)
over R in a different way ([Fe3, Corrolary 4.2]). Actually, he generalized
Walters’ variational principle from the scalar function setting to the non-
negative matrix-valued function setting and gave an analogue of Ruelle’s
formula for the derivative of pressure functions (see [Fe3, Theorem 1.2]);
when M; (j = 1,...,m) are all positive, there is a unique equilibrium
state for each g € R, which implies the differentaibilty of P(g).

Without the assumption of positivity, the measure u in Proposition

2.1 is not necessary quasi-Bernoulli, so that Lemma 2.4 is essential.

Example 4.3. Let M; = (1) i

trix, then H = Mj + M, is an irreducible positive matrix, let u be the
measure constructed in Proposition 2.1. Let J = 1...1 (n-times), then
|M,|| = n+ 2 and hence

and M, an arbitrarily positive ma-

n
1Mo IMoL 2 S 1Mol -

This implies that there does not exist C’ > 0 such that C'u([I])u([J]) <
p([LJ]) for all I,J € &*.

Besides the above simple example, there are natural examples that do
not satisfy the quasi-Bernoulli property. For example, let p = (v5-1)/2,
the reciprocal of the golden ratio, let v be the Bernoulli convolution
corresponding to p, i.e., the unique self-similar measure associated with
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the IFS {pz, pz + (1 — p)} with weights {3, 1}. This IFS has overlaps,
however one can reduce the IFS to three maps with no overlap

Ri(z) = p*x, Ro(z)=p’z+ 0%, and Rs(z) =p’z+p,
and the measure v satisfies

. 1
v([i1.. 1)) = Zﬁ“Mil M|

where [i .. .4n) = Ry, ... Ri,([0,1]) and

11 10
M1=<01>, M2=( ) and M3=<11>

([LN1], [Fel], [FeO]). Then v does not have the quasi-Bernoulli property
by the same reason as in Example 4.3., but it will satisfy the assumption
in Theorem 1.1. We point out that there is no simple relation between
the pressure function P(g) generated by M, My, M5 and the Li-spectrum
7(q) of the v, since R; (i = 1,2,3) are not uniformly contractive. Actually
more can be said about the L%-spectrum 7(q) of the v: an explicit formula
was given in [LN1] for ¢ > 0 ( in terms the product of M, and M3 ) and
was extended to g < 0 in [Fel]. By using the formula, it was proved that
7(q) is differentiable (actually real analytic) on R except one point in R™.

N[00 =
DO bib O fi=

Another instructive example similar to the above is the 3-fold convo-
lution of the Cantor measure. It can easily be reduced to vector form
and the Li-spectrum is in terms the product of matrices [LW]. The L9-
spectrum behaves like the above example, but the dimension spectrum
has an usually behavior [HL]. The problem has been dealt in [FeLW] (see

also [S]).

Note that the behavior for ¢ < 0 is also important in the multifractal
analysis. For this we have to modify the the pressure function P(q)
slightly:

o1
Plg) = lim —log Y |My]* (42
noee JENR

where N, consists of all the J € X, such that My # 0. It is clear that
if My + 0 for all J € X, then the super-additivity of the sum in (4.2)
implies that the limit exists. In our case we have
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Proposition 4.4. Suppose My, - -+ M, are non-negative matrices and
H = Y7, M; is irreducible, then the limit in (4.2) ezists for each ¢ <0

Proof. By the irreducibility, there exists integer 7 with 5, H* > 0.
From the proof of Lemma 2.4, there is a constant C' > 0 such that for
each I,J € X%, there exists Ko € Ui, Sk and 4 € X satisfying

0 < [Mixosll < CIMllIMsll, 0 < Mgl < ClIMill (4.3)

Denote by s, = Y jen, IM. 7|9. Then (4.3) implies 555 < O3 01 Sntlik:
From (4.3) we also deduce that for any I € Tx, there exists ¢ € Xy such
that My; # 0. Since [|Mpll < D||M;]| for some constantCy > 0, we have
$p < Cy¥8nyq for any integers n, . It follows that sps¢ < C'Spieqr for
some constant C' > 0 (depending on q), which implies that C'Spyr 18
super-multiplicative. This yields the existence of the limit. 0.

The differentiability of such P(g) for ¢ <0 is still unknown. We see
from the above Bernoulli convolution of the golden ratio that the above
P(q) can be non-differentiable at a point of ¢ < 0. On the other hand,
it is known that by imposing some stronger conditions on the matrices
(but can have negative entries), the pressure function P(q) is analytic
near g = 0 (see e.g., [BL, Theorem 4.3]).

The above example of Bernoulli convolution also gives rise to another
interesting question. Note that it is a special case of the overlapping
IFS that can be reduced to new sets of IFS with no overlap and the
calculation of the 7(g) can be converted into the product of matrices as
in (1.1). Such IFS is an important class of those that satisfy the weak
separation condition ([LN2], [LNR]). Under this condition it was proved
that the multifractal formalism is valid provided that 7(q) is differentiable
[LN2]. In view of this it will be useful to find the differentiability of the
7(q) for the self-similar measures generated by the IFS with the weak
separation condition. Indeed in [Fe2], Feng considered the IFS that are
defined on R and satisfy a stronger finite type condition, he established
the representing matrices for the corresponding self-similar measures and
applied Theorem 1.1 to yield the differentiability of 7(¢). The case on R4
is still unsolved.

Finally we remark that we do not know whether Theorem 1.1 can
be extended to non-positive matrices. An important theorem concerning
this is in [BL, Theorem 4.3] for the analyticity of P(q) near zero. More
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close to our development is the result of Daubechies and Lagarias [DL] on
the multifractal formalism of the well known scaling function Dy. They
showed the differentiability of the corresponding 7(g) (which is modified
to the LI-Lipschitz exponent of the function), but the consideration de-
pends on the two involved 2 X 9 matrices to have a common eigenvector.
There are some extensions in [LM].
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