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On the connectedness and classification of self-affine tiles

Ibrahim Kirat and Ka-Sing Lau

1. Introduction

We call an integer matrix A € M,(Z) ezpanding if all the eigenvalues of A have
moduli > 1. Let [det(A4)] = ¢, a subset D = {d1,--- ,dq} C Z" of ¢ distinct vectors
is called a ¢-digit set. The affine maps w; defined by

wi(z) = ANz +d;), 1<j<q,
are all contractions under a suitable norm in R™ (see [LW2, pp. 29-30]). The family
{w;}]_, is called an iterated function system (IFS) and there is a unique nonempty
compact set satisfying T' = ngl w;(T) [F], T is called the attractor of the system
and is explicitly given by

(11) T .= T(A, D) = {i.tfl_ld‘]I : dji S D}
=1

Let 4(T) denote the Lebesgue measure of T', we call T' an integral self-affine tile
if 4(T) > 0. The study of self-affine tiles was originally motivated by the work
of Thurston [T] and Kenyon [K] on quasi-periodic self-similar tilings, and that of
Gréchenig and Madych [GM)], Grochenig and Haas [GH] on compactly supported
Haar-type orthonormal wavelet basis. In a series of paper [LW 1-5], Lagarias and
Wang have developed the basic theory of the self-affine tiles. In this note, we will
consider two problems concerning such tiles: the connectedness of the tiles and the
classification of the expanding integer matrix A.

There is very little known about the connectedness of the self-affine tiles. In
[0], Odlyzko gave a characterization of such tiles 7" in R to be the finite union of
intervals by using the strict product form of the digits. In R?, Bandt and Gelbrich
[BG] investigated the disc like tiles for |det A| = 2 or 3. In R™, Hacon et al [H]
proved all 2-digit tiles 7" are pathwise connected (actually the tile can be filled up
by a space filling curve).

It is almost trivial to see that in R, for A = [¢] and D = {0,v, ..., (¢ — 1)v} with
g,v € Z*, T is an interval. Hence it is natural to investigate this simplest class
of tiles in R™. For v € R™\{0}, we will call a digit set D = {dyv, dav, ..., dq—10} a
collinear digit set. We are particularly interested in those ”consecutive” collinear
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digit set {0,v,...,(¢ — 1)v}. By setting up a general criterion for connectedness, we
show that for a tile defined by the consecutive collinear digit sets, this topological
property can be reduced into an algebraic property of the characteristic polynomial
(c.p.) of A. We say that a monic, integer polynomial f(z) ¢ Z[z] has property (*)
if there exists g(z) € Z[z] such that

(1.2) g(@)f(@) = 2" +ap1z* "+ FawEg
with |a;| <¢-1,i=1,--- k-1

THEOREM 1.1. Let A € M, (Z) be expanding with | det A| = q and let
D={0,v,2v,...,(q¢ - 1)}

be a collinear digit set in Z"\{0}. Then T = T(A, D) is connected if the character-
istic polynomial f(z) of A has property (*).

We call a polynomial expanding if all its roots have moduli > 1.

THEOREM 1.2. All the monic, expanding integer polynomials of degree < 3 have
property (x). Consequently if T is a self-affine tile in R™,n < 3, generated by an
expanding integer matriz A with | det A| = g and digit set

D={0,v,2v,...,(g— 1)}, veZ", n<3,

then T is connected.

The case for n = 3 is proved by Rao in [KLR]. Property (*) has its own interest
from the algebraic point of view. We are not able to prove this property for all
degree n, monic, expanding integer polynomials. However we can prove a statement
close to it. We will discuss this in Section 2.

Our next consideration is on the Z-similarity of the expanding integer matrices.
We say that A, B € M,(Z) are Z-similar, denoted by A ~ B, if there exists a
unimodular matrix P € M,(Z) (i.e., P is invertiable and P~ € M,(Z)) such that
PAP~! = B. Z-similarity is an equivalent relationship, its equivalence classes are
called Z-similar classes. The Z-similar classification is useful in studying the tiles.
For example it is known that the measure u(7) has integer value [LW3, Theorem
1.1], but in general it is difficulty to determine if it is positive, in particular, if
w(T) =1 ([B], [LW 1-5]). The measure u(T) > 0 and u(T") = 1 are invariant under
Z-similarity, it is therefore possible to reduce the measure problem to a few classes
of matrices for consideration. Other properties of the tiles such as the connectedness
([BG], [GH], [HSV], [KL1]), the dimension of the boundary ([KLSW], [SW]) and
the tiling problem ([LW2]) are all invariant under the Z-similarity.

The Z-similar classification of expanding integer matrices was first studied
by Lagarias and Wang [LW1] using the characteristic polynomials. They showed
that each integer expanding polynomial f(z) = z? + az + ¢, |q| = 2 corresponds
to exactly one Z-similar class of expanding matrices A € My(Z). Since there
are six such polynomials, there are only six Z-similar classes of 2 x 2 integer
matrices with |det(A4)] = 2. The situation is considerably more complicate for
|det(A)| > 2. In Section 3, we will give the complete classification for A € My(Z)
with |detA| = 3,4,5. By using this classification we can sort out those that are



ON THE CONNECTEDNESS AND THE CLASSIFICATION OF SELF-AFFINE TILES 195

Z-similar to the self-similar matrices, i.e., those that are constant multiples of or-
thonormal matrices. They are the most important ones in the geometry of fractals.
We also make use of the classification to consider some cases of u(T(A, D) > 0 that
is not covered by the general theorem.

The detail of theorems will appear in [KL1|, [KL2], [KLR].

2. Connectedness

Let A € M,|Z] be expanding and |det A|] = g and D C Z™ be a ¢-digit set.
Let L = Z[A, D] be the lattice generated by D, AD,..., A»"'D, then D is called a
complete set of coset representatives in L/A(L) (in short, D is complete) if

O d; + A(L)) and (d;+AL)N(d;+ AL))=0 for i+#j.

It is well known that D is complete implies p(T(4, D)) > 0 [B], but the converse
is not true and in general it is difficult to determine D to be complete (see Section
3). But for collinear digit set, the problem is much simpler.

THEOREM 2.1. Suppose A € M,(Z) is an ezpanding matric with |det A =g,
q > 2 is a prime. Let D = {dyv,...,dgv} with v € R*\ {0}, d; € Z. Then T
is a self-affine tile (i.e., p(T) > 0) if and only if {v, Av, ..., A" v} is a linearly
independent set and {d, ..., dg} = ¢'{d}, ..., d,} where {d,, ..., d}} is complete in Zq.

In particular if v € Z™\ {0}, then {v, Av, ..., A" v} is automatically a linearly
independent set. Hence T is a self-affine tile if and only if the above {d}, ..., d;} is
complete in Zg.

For the case det A = ¢ is not a prime, if we agsume further that the eigenvalues
of A has n independent eigenvectors and if we take suitable v € Z™ \ {0}, then the
same conclusion of the theorem holds. However we do not have a complete answer
without the additional assumption on the eigenvalues of A.

In the following, we give a general criterion of connectedness by using a “graph”
argument on D. Let (4, D) be given, we define

E={(di,dj): (T+d)N(T+d;)#0, di,d; € D}

to be the set of ‘edges’ for the set D; we say that d; and d; are £-connected if
there exists a finite sequence {d;,, ..., d;, }R € D such that d;, = d;, d;, = d; and

(dj,,dj,) € €, 1 <1<k —1. It is not difficult to prove

PROPOSITION 2.2. Let A € M,(Z) be an expanding matriz with |det A| = ¢
and let D = {d1,...,dq} CR"™ be a q-digit set. Then T is connected if and only if
for any two d;,d; € D, d; and d; are £-connecled.

For the consecutive collinear digit set, we can reduce the above £-connectedness
to a simple algebraic condition. First note that for such 7, it is connected if and only
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if {0,v} € &, which is equivalent to T'()(T" + v) # 0. Let u be in the intersection,
then
(o 9] oo
U= ZajA‘Jv =v+ Za;A"J'U
j=1 j=1

where aj,a; = 0,1,---,(¢ — 1). It follows that for D = {0,---,(¢ — 1)}, T is
connected if and only if

(2.1) v = ZﬂjA_jv for some f; =0,%1,---,+(¢—1).

j=1
Next we will reduce this infinite series to a finite sum. Let s, := Z;n:l B; Am I,
s), = Z;?:l ,BéAk"jv where S;,0; = 0,+£1,..., (g — 1). We define a shift py, by
(2.2) Pe(Sm) = Aksm + S;c'

LEMMA 2.3. Let A € M,(Z) be expanding and let D = {0,v,...,(¢ — 1)v}
with v € R™\ {0}. Then T'(A,D) is connected if there exists a monic polynomial
Z;’;l B;x™ 7 with sy, = ZTzl B;A™ v and a shift px, such that pk(sm) = Sm.

Proof. In view of (2.1), it suffices to construct a sequence {8;}52, with fp = 1 and
B; =0, £1,...,4(¢ — 1) for j > 1 such that Z;io B; A9y = 0. By the hypothesis,
we have

Pi(sm) = propeo---0py(sm)
—_—
[ times
1-1
= Aklsm + Z Ak:']s;g
=0
= Sm.
_ 1 Y .
Let t; := A% (pt(s;m)) = sm + 214 kigl and t = llggo t;. Thent =0

since t; = A *s,, — 0. Write 0 = A™™+1¢ = Yoo Bi A7 v by inserting the full
expressions for s,, and s. This series converges since starting from j = m, {8; };-";O
is periodic (repeated coefficients of ;). Also, 3222, BjA™v = 0. We have f = 1
since sy, is monic. Therefore {$;}72, is the required sequence. U

The above discussion leads to the following algebraic method to check the
connectedness.

THEOREM 2.4. Let A € M, (Z) be an expanding matriz with |det A| = ¢ and
characteristic polynomial f(x). Let D = {0,v,...,(¢ — Dv} with v € R™ \ {0}.
Suppose f(x) has property () as defined in Section 1, then T'(A, D) is connected.

Proof. Let s; = v and let h(z) = g(x)f(z) be defined as in the definition of
property (). We have two cases. (i) h(0) = —q. We take

pr(s1) = AFy + (ak_lAk_l +ap_2AF 2 4 fa A - (g — D).

Then pg(s1) = h(A)v+v = s1 since h(A) = 0. By Lemma 2.3, T(A, D) is connected.
(ii) h(0) = q. We take
qr(s1) = —Aky (—akﬁlAk_l —ag AP % — g A— (¢g— DI
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so that q(s1) = —h(A)v+v = s1. Note that in the above expression of gx(s1), the
leading coefficient is —A* instead of A* in (2.2). Lemma 2.3 still apply to this case
by a slight modification of the argument. ]

In view of the theorem we will consider property (*) in the rest of this section.

PROPOSITION 2.5. [B] Let f(z) = 2% + ax + q, where a € Z, 1 # q € N. Then
J(z) is expanding if and only if |a| < g for f(0) = g, and |a| < g—2 for f(0) = —q.

Note that all the degree 2 expanding polynomial, except for f(z) = 22+ qz+gq,
are already in the form of property (). If we multiply g(z) = z F1 by f(xz), then

h(z) = g(z)f () =2° £ (¢ — 1)z* F ¢
and hence f(z) also has property (x). By Theorem 2.4 we have

COROLLARY 2.6. All the self-affine integral tiles in R? generated by the con-
secutive collinear digit sets are connected.

To prove the connectedness of such tiles in R, we need to establish a charac-
terization of the polynomials similar to Proposition 2.5. Let f(z) and f (z) denote
the characteristic polynomial of A and —A € M,,(Z) respectively. It is easy to see
that f(z) = (=1)"f(—x). This enables us to consider the degree 3 characteristic
polynomials with positive constant terms, i.e. det A < 0. Furthermore we can
assume that

(2.3) f(z) =23+ ax® + bz +q
where a,b > 0,ab # 0 and g > 2 (the case ab = 0 is trivial). We want to determine

the coeflicients a,b so that f(x) is an expanding polynomial. It is elementary to
prove

LEMMA 2.7. Suppose f(z) is of the form (2.8) and is expanding, then

f(l), f(_]_)’ f(q) >0 and f(—_Q) <0.

Conwversely suppose the f(x) in (2.3) has a real root in (—q,—1) or (1,q) and has
no other real root in [—1,1]. Then f(x) is expanding.

By repeatedly using the lemma we can prove

PROPOSITION 2.8. Consider the f(z) in (2.3).

(i) If f(z) = 2° —ax +b:v+q, then f(z) is expanding if and only if ¢ > a+b+2;
(i) If f(z) = 2 — ax? — bx + q, then f(z) is expanding if and only if ¢ > a + b;
(iii) Let f(z) = ® + ax? — bx + q, then f(z) is expanding if and only if

(a) a=q—-1, b<q—-2 or
(b) a<q_1, bSQ+a)
(iv) Let f(z) = 2% + ax? + bz + q, then f(z) is expanding if and only if
(a) a=q+1, ¢+2<b<2¢-1; or
(b) a=gq, 2<b<2¢—-2; or
() a<g—-1, b<g+a-—2.
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THEOREM 2.9. Let f(x) € Z[x] be degree 8, monic and expanding, then f(x)
has property (*).

It follows that all the self-affine tiles in R3 generated by the expanding integer
matriz A and D = {0,v,--+,(q¢ — 1)v} C Z* are connected.

Proof. For the f(z) in Proposition 2.8 (iii)(b) and (iv)(a,b,c) that are not already
in the form of property (*), we will need to find a g(z) € Z[z] to reduce its coeffi-
cients to have moduli < g — 1. We can also assume that ¢ > 4 (because of case II
in the following). For the case ¢ = 2, it is easy to check using Proposition 2.8. For
g = 3, the theorem is true by Table 1.

(I) In Proposition 2.8(iii)(b), a < ¢ — 1 and we divide the b < g + a into two
cases. If b= q+ a, we let g(z) = (2 + 1)(z + 1), then

g(@)f(z) = 2® + (a+ 1)a® + (1 - ga’ +2° —az +¢.
Ifg<b<qg+a, welet g{z) =z +1, then
g(@)f(x) = 2" + (a+1)2° + (a— )z + (¢ — b)z +4q
(IT) In Proposition 2.8(iv)(a), a = ¢ -1 and we divide the b into three cases.
If b= (g +2), we let g(z) = (x — 1)?, then
g@)f(a) =2° + (¢ = Da* ~ (¢~ 1)2° = 32" — (¢~ 2z +q
If b = 2¢ — 1, we let g(z) = (22 + 1)(z — 1), then
9(@)f(z) = 2"+ (g = 1)a® —2° — (¢~ 2)a" - 32° — (¢ - 3)2" —z +¢.
If g+ 2 < b < 2¢—1, we take g(z) = (z — 1)%(z? + 1)(2® + 1), then
g(@)f(@) =z + (g — 1)a® + (b—2¢)z® + (3¢ — 2b + 1)z" + (2b — 3¢ — 2)2°
+(g—b+1)z°+ (¢ — b)z* + (2b — 3¢ — )2 + (3¢ — 2b+ 1)2* + (b — 2¢)z + g,
and property (*) is satisfied.
(IIT) For Proposition 2.8(iv)(b) and (iv)(c), we take g(z) = = — 1, then
g(z)f(z) = 2* 4+ (a — )z* + (b - a)z® + (¢ — b)z + ¢.
By (I), (II), (III), all the cases are taken care, and the theorem is proved. L]

To illustrate the proof of Theorem 2.9, we include in the following the degree 3
expanding integer polynomials for ¢ = 3,4, 5 that need to multiply the factors g(z).
Note that the table ¢ = 5 includes all the cases in the theorem and the factors g(x)
we used in the proof.

There are 25 expanding characteristic polynomials f(z) with f(0) = det A = 3;
17 of them are already in the form of property (). The rest of them can be reduced
to the form of property () by multiplying a polynomial g(x) as is exhibited in Table
1.

There are 51 such expanding polynomials with f(0) = det A = 4; 35 of the
f(z) are already in the form of property (*). The rest can be shown to be in such
form by multiplying suitable g(z), as is in Table 2.

There are 85 such expanding polynomial with f(0) = det A = 5; 26 of them
need to multiply a factor g{x). They are listed in Table 3. Note that from the proof
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| cp-=p(z) | 9(z) I hz) = g(z)p(z) |
23 -3z +3 (z2 +1)(z+ 1) 2% +2° -2zt + 2%+ 3
23+ 2% — 4z + 3 (#2+1)(z+1) |25 +22° —22% +2° —2+3
23+ 22 —32x+3 z+1 xt +22°% — 222 4+ 3
23 +222+3z+3 z—1 zt+ 2% 22 -3
23 +322 + 22+ 3 z—1 2t + 223 — 2 b —3
23 +322+32+3 r—1 2t +22% — 3
23 +32° +42+3 z—1 2t + 223+ 2% —2 -3
3 +422 +52+3 | (@2 -2+ 1)(z—1) 204+ 225 —2* +2 -3

TABLE 1. g(z) for the case det A = -3

[cp.=p(z) | 9(z) | h(z) = g(a)p(x) ]
3 — A4z +4 (z2 + 1) (z + 1) 2% +2° - 3zt + 2% + 4
23422 —dr 44 r+1 z* + 223 — 322+ 4
P +z?—5z+4 || (#2+D(z+1) 20 4225 — 32t + 23 — 2 44
234222 -6z +4 || (22 +1)(z+1) 28 + 325 — 3% + 2% — 22 + 4
23 4+ 222 — 5z +4 r+1 2t + 323 322 —z+ 4
23+ 222 —4dx +4 z+1 2t 4+ 323 — 222 4+ 4
23 4+ 222 4+ 4z 4 x—1 2t +2d 222 4
23+ 322+ 4z +4 z—1 2t 228 22 —4
23 4+ 322+ 52 +4 z—1 ot 28 4222 —x— 4
23 +4z? + 22+ 4 x—1 2t 4+ 32% — 222 22 — 4
23+ 422 + 3z +4 x—1 2t +32% — 2% 42— 4
2 +4x? + Az +4 z—1 z* +3z°% — 4
23 42?4+ 52+ 4 z—1 4+ 328+ 22— —4
23+ 422+ 6z +4 z—1 2t 4+ 32% + 222 — 22 — 4
z3 +52% 4+ 6z + 4 (x—1)2 z5 + 32 — 32® — 322 — 2z + 4
P +522+ Tz +4 || (22 +1)(z—1)% | 27 + 320 —2® - 22* — 323 — 22 — x4+ 4

TABLE 2. g(xz) for the case det A = —4

we see that these are all the g(z) needed to use for all the expanding polynomial of

f0)=gq

For the higher degree expanding integer polynomials, Garsia [G, Lemma 1.6]

proved a weaker statement than property (*): there exists g(z) € Z[z] such that
g(z)f(z) = apz® 4+ 4+ a1z +q where laj| <q Vj=1,...,k.

His proof makes use of the pigeon hole principle. By using a geometric argument
of the tiling set, we can improve Garsia’s result as follows.

THEOREM 2.10. Let f(x) € Z[z] be an irreducible ezpanding, monic polyno-
mial. Then there ezists g(x) € Z[x] such that

h(z) = f(z)g(z) = axz”™ + ap—12" '+ tax £ ¢

where |a;| <g—1 forj=1,--- k.
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[c.p=p(=) I g(z) h(z) = g(=)p(=)
z3 — Bz + 5 (=2 + )(z+ 1) 20 + 2° — dz? + 25 + 5
23+ 22 -5z +5 z+1 zt +22% —42% +5
z3 + 2% — 6z +5 (22 +1)(z+1) 26 4205 — 4zt 428 2+ 5
2% 4222 + 5245 z—1 zt + 2% + 322 -5
23 + 222 — Bz +5 z+1 24+ 32% — 322 +5
23 + 222 — 6z +5 z+1 zt 4+ 323 — 42?2 —2 45
23 4 22% — 7z +5 (22 + (= +1) 26 + 325 — a0t + 2% — 20 +5
23 + 322 + 62+ 5 z—1 z4 4+ 228 + 322 -2 —5
23 + 322 + Bz + 5 z—1 zt 20°% 4222 — 5
23 +32% — 6z +5 z+1 zt 4+ 428 — 222 4+ 5
23 + 322 — 6z + 5 z4+1 zt +42% — 322 —z +5
z3 4+ 322 -7z +5 z+1 z4 + 423 — 42?2 — 22+ 5
z3 +32% — 8z +5 (22 + 1)z + 1) 26 + 425 — 40t 4+ 2% — 3z +5
z3 4+ 422 + T2 + 5 z—1 z? + 323 + 302 — 22 ~ 5
23 + 4z + 6245 z—1 24+ 32 + 222 —2 -5
23 +4z2 450+ 5 z—1 2t 430 + 2% -5
2% 4+ 522 + 8z + 5 z—1 z4 + 42% + 322 — 3z — 5
23 4522 + 7z 45 z—1 z? +42° + 222 —22 -5
23 4+ 522 + 62 +5 z—1 24+ 4azd + 22 —2 -5
23 4+ 522 + 5z + 5 z—1 2t +42% — 5
z3 4 52% + 4z + 5 z—1 24 t4z® — 22+ 2 -5
2% + 522 + 3245 z—1 2zt 4 42® — 22% + 20 - 5
2% 4+ 522 + 22 45 z—1 24 423 — 322 432~ 5
z3 4+ 622 + 92 45 (22 + 1)(z — 1)? 27 4428 — 2% —3z* ~32° — 222 — 2+ 5
2346248245 || (@— D22+ 1)@ +1) | 22 4 42® — 22% — 2% — 22° — 32* —~ 22 45
z3 4 60% + 72 +5 (z - 1) 25 + da? — 42 — 322 — 3 45

TABLE 3. g(z) for the case det A = —5

The proof is given in [KLR], still the theorem falls short of property (%) on the
leading coefficient az. We conjecture that the theorem is true for all expanding
polynomials f € Z[x] with a; = 1. If this is true, then all the self-affine tiles
generated by the consecutive collinear digit sets will be connected.

3. Z-Similar Classification.

For the expanding A € Mj(Z) with | det A| = 2, it was shown in [LW1] that the
Z-similar classes are uniquely determined by the charateristic polynomials, there are
six of them by Proposition 2.5. In this section we consider the expanding A € M, (Z)
with |det A] = 3,4,5. The basic techniques for the Z-similar classification are
outlined in the following. We will need some facts concerning the polynomials and
the algebraic fields.

PROPOSITION 3.1. [KL1] Let f(x) = 2™ + ap-12™ ' +--- £ q, where a; € Z
and q is a prime. Suppose all the roots of f(z) have moduli > 1, then f(z) is
irreducible in Q[z) and all the roots are simple.

Let R be a ring. We say that the two ideals S and T' of R are in the same class
if there exist two non-zero elements «, 8 € R such that @S = 7. This relationship
determines the ideal classes of R. The following theorem allows us to convert the
7Z-similar classification to the classical ideal classification.

THEOREM 3.2. (Latimer and MacDuffee [N]) Let f(x) € Z[z] be an irreducible
monic polynomial of degree n and let 6 be a root of f(z). Then there is a one-to-one
correspondence between the ideal classes of the ring Z[0] and the Z-similar classes
of matrices A € My, (Z) such that f(A) =0.
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PROPOSITION 3.3. [M, p.15] Let m be a square free integer and let Q[v/m)] be the
quadratic field (i.e. the rational field generated by +/m). Then the set of algebraic

integers R in Q[v/m] is
(3.1) R={a+b/m: a,b€Z} ifm=2 or3 (mod4),

(3.2) R:{w: a,b€Z, a=b(mod2)} ifm =1 (mod4).

The number of the ideal classes of the above rings R (C Q[/m]) is tabled in
[Mo, pp. 313-345]; we list those that we will need. Here m is a square-free integer
and h,, is the class number.

[m || o |
3,5, 6,13, 17, 21, 29, —1, -2, -8, —7, —11, =19 || 1
-5, —15 2

TABLE 4. Class numbers

Let A € M3(Z) be an expanding matrix and let f(z) be its c.p. Then the root 8
of f(z) can be written as 0 = 3 (u+vy/m), u,v,m € Z. Our Z-similar classification
is based on the following two methods.

Method I. If f is irreducible and Z[f] = R as in (3.1) or (3.2), then we can
determine the number of Z-similar classes of f by applying the theorem of Latimer
and MacDuffee and Table 4.

Method II. If the above conditions on f are not satisfied, then we will use

the following scheme from [LW1]. Let A = l' ZH 212 :| and let p(A) := —aj1a90.
21 Q22
1

(a) If p(A) > 0, we consider the unimodular matrices P = [ 0 _16 } and

P = _16/ (1) } where € := sign(aj1021), € := sign(agais). Let 4; = PAP L or
P'A(P")™L, then
(3.3) p(A1) = p(A) + a3, + eagi(aze — a11)

or, respectively

p(A1) = p(A) + afy + € ara(ann — ass). (3.3)
We aim to have p(A;) < p(A), so as to reduce A to a Z-similar matrix with smaller
p(). We can repeat this for &k times to obtain a Z-similar matrix Ay with p(A)

equals to a few specific cases.
(b) For all these specific cases, we determine their Z-similar classes individually.

For an expanding matrix A4 € My(Z) with |det(A4)| = 3, we can make use of
Proposition 2.5 to write down all the characteristic polynomials:

() =z?-3, z?2+2z+3,
() 2?+z-3, 22+x+3, 22+3z+3,
(II1) 22 + 3.
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THEOREM 3.4. Suppose an expanding matriz A € Ma(Z) has c.p. f(z) in (1)
or (II). Then A is Z-similar to the companion matriz C of f(x). ‘
On the other hand if f(z) = x? + 3 in (III), then A has two Z-similar classes:

1 2

the companion matriz C and o _1

Sketch of proof. The polynomial f(z) = x> — 3 has a root 8 = +/3 and Z[6)] is of
the form (3.1). Proposition 3.3 asserts that Z[6] is the set of algebraic integers in
the quadratic field Q[v/3], and it has only one ideal class (see Table 4). Therefore,
there is only one Z-similar class for f by Theorem 3.2, and it is represented by the

companion matrix C'.
For f(z) = 2? £2z+ 3 in (I), we can consider the roots § = £14-+/—2 and the

same argument applies.
For the polynomials in (II), we consider the respective roots § = %(il +4/13),

1(£1+/=T11), 3(£3+ v/=3). In each of the cases, R = Z[0] is of the form (3.2).
By Proposition 3.3, they are the sets of algebraic integers in the quadratic fields
Q[V13], Q[v—11], Q[v/—3] respectively. Again there is only one ideal class of Z[6]
from Table 4 and Theorem 3.2 applies.

For the remaining case in (I1I), it is direct to check that [ _12 _21 } has 243

as characteristic polynomial and are not Z-similar to C. Let § = /=3, it is a root
of 22 + 3 and Z[f] = {a + by/~3 : a,b € Z} is not of the form R in (3.1) and (3.2).
Hence the table in [Mo] does not give the number of ideal classes of Z[f]. Therefore
to determine that there are only two Z-similar classes, we will use Method II as

outlined above.

Let A = [a;;] € M2(Z) be expanding and has c.p. f(z) = 2 + 3. Then
f(z) = 22 + 3 = 2% — (a11 + az)z + det(A), it follows that a1 + aze = 0 so that
p(A) = a%, > 0. For the case p(A) > 0, we claim that

(34) 0< |av21[ < |a11| +1 or 0< ’alzi < |a11|.

Indeed we observe that ais, ag # 0 (if otherwise, we will have 3 = det(A) = —a?;

which is impossible). For the remaining inequalities, we assume the contrary holds,
i.e., lag1] > |a11] + 1, |aiz] > |ai1], then

[alzagll > (faul + 2)(|CI,11| + 1) = |(111|2 -+ 31(111| + 2.

Tt follows that 3 = |detA| > |aiz2a21| — |ai1]* > 5 and is impossible.
For p(A) = 0, it is not difficult to show that A ~ C. For p(A) > 0, we divide
our consideration into two cases:

(i) If |a11] = 1, A is Z-similar to [ _12 _21 } or { —11 _41 } The second

matrix is Z-similar to C.
(ii) If |ay1| > 1, we consider the two cases in (3.4). For 0 < |agi| < |an| +1,
by observing that ay; = —ag2, we can rewrite (3.3) as
p(A1) = p(A) + a3) + eani(ag2 — a11) = p(A) + a3, — 2|azi||ai]-

It is elementary to show that p(A;) < p(4). For the other case 0 < |a1a] < |a11],
we can draw the same conclusion by using the alternative form (3.3)":

p(A1) = p(A) + a'%z + €'ara(arn — ags).
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We continue this process to construct Z-similar matrices Ay with decreasing
p(Ay) until p(Ag) = 0 or p(Ax) = 1 as in case (i), then we conclude that f(z) can
only have the two Z-similar classes as listed. ]

For the expanding matrices A € M3(Z) with |det(A}| = 4, there are 14 charac-
teristic polynomials. They are
1) z*+3z+4, z2+zx-—4,
(I) 2%+4, z?+z+4, 22+£20+4, 22+22—4,
(1) 2?2 —4, 2?44z +4.

THEOREM 3.5. Fach A with c.p. in (I) is Z-similar to its companion matriz
C.

Fach c.p. in (II) has two Z-similar classes of expanding matrices. The repre-
sentatives of these classes, besides the companion matriz C, are listed according to

L 0 2 +1 2 0 2 0 2
the ordering in (II) as: { 9 0},{ 3 $2},[ 9 ?2]’[2 :FQ]'
For 2% — 4, the Z-similar classes are (2) _n2 forn = 0,1,2; and for

2 F2 |n|
z*t4x + 4, they are [ 0 2 } for alln € 7.
For the proof we apply Method I to the c.p. in group (I) and 2? £z + 4 in
group (IT). For the rest of the cases, we need to use Method I1.

For the expanding matrices A € My(Z) with |detA| = 5, there are 18 possible
c.p. f(z).
(1) 2243z -5, x?4+22-5, 22+z-05,
z?+x+5, z2+£3x+5, 2?4z +5, z2+5z4+5,
() x?+5, 22+22+5.

THEOREM 3.6. Suppose an expanding matriz A € My(Z) has c.p. f(z) in (I).
Then A is Z-similar to the companion matriz of f(z).

Each c.p. f(z) in (1) corresponds to two Z-similar classes. The representing
matrices of the four polynomials, besides the companion mairiz, are :

A AL AL L

listed according to the order in (II).

For the proof, we apply Method I to the c.p. in group (I) and 2% + 5 and
Method (II) for the rest.

In Table 5, we listed the degree 2, monic, expanding integer polynomials f(z)
with f(0) = +3,+4,+5 that correspond to more than one Z-similar classes of
matrices besides the companion matrices. They appear in Theorems 3.4, 3.5, 3.6.

A transformation S : R™ — R™ is called a similitude if there is a constant « > 0
such that |S(z) — S(y)| = ez — y| for all z,y € R™. In this case, S is of the form
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[cp. of 4 || Number of similarity classes | Representatives of classes besides C |

2?2+ 3 2 _12 _21

22— 2z —4 2 [ (2) 3 }

2% —4 3 [g T2:|,’I”L—O,2

22+ 20 —4 2 _ (2) _22 -

22 — 4z 44 00 [2171'} [n|#1
0 2 i

2% — 2z + 4 2 _02 3

22—z +4 2 - :; ; |

z?+4 2 32 g

2t x+4 2 _13 __22

22 +2x+4 2 W02 _22

z? + 4z +4 00 { 02 |n2]], In| # 1

2 -2z —4 2 [ g ; ]

z2 -5 2 [ ; 31

a?+2z+5 2 :; _21

2t — 2545 2 [ _12 ?]

2?2 +5 2 _23 _32

TABLE 5. Representatives of the non-unique Z-similar classes

Sz = Mz + b where M is a self-similar matrix, i.e., |Mz| = a|z| for all z € R™.
The following proposition follows directly from the definition.

PROPOSITION 3.7. A self-similar matriz M € My(Z) is of the form [ﬂ jF’;n]

We can use this proposition and the above results to check if the expanding
matrices are Z-similar to the self-similar matrices. They are listed in Table 6.

If T is a tile generated by a self-similar matrix M and pu(7T) = 1, then there are
algorithms to calculate dimg(9T), the boundary of 7' [SW]. We recall that if L is
a bi-Lipschitz map on a set E, i.e. there exist ¢1, ¢ > 0 such that

alz—y| < Lz —y| < colz —y| forall z,y € E,
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[ cp of A4 [ Number of similarity classes | The classes with a self-similar representative
) 1 1 _11
22— 22+ 2 1 —11 }
z? + 2z 42 1 _11 j
22 — Az +4 o0 [ 3 (2)
: AN
2 +4 2 [ _02 é }]
2?2 +dx +4 00 { _02 u02 ,
z*—5 2 H —21}“ —12}
z? —2z+5 2 _[ _12 %l
z? + 220 +5 2 _ :; 31
2? —Adz +5 1 _ __21 ;
r?+4x+5 1 :? j2

TABLE 6. Z-Similar classes with self-similar representatives

then dimg(LE) = dimg(E), where dimy denotes the Hausdorfl dimension. Now
if A is Z-similar to M, i.e. A= P MP with P € GLy(Z), and if we let D' = PD,
then T'(A, D) = P~YT'(M, D') and if p(T'(M, D")) = 1, then dimy (9T (A, D)) can
be calculated.

To conclude we consider the condition for u(T") > 0. By using the notations in
the beginning of Section 2, we say that D is a standard digit set if D is complete in
L/A(L). In [LW3], Lagarias and Wang proved that if g is a prime, and

(3.5) qZ" ¢ A*(Z"),

then u(T(A,D)) > 0 if and only if D is a standard digit set. They also conjecture
that condition (3.5) is redundant [LW3]. For the expanding A with det A = 3, the
cases

flx)=2*+3 and x? + 32 + 3.
do not satisfy (3.5). However by making use of Theorem 3.4 and a criterion of

[LW3], we show that p(T) > 0 if and only if D is a standard digit set [KL2]. This
reinforce the conjecture in [LW3].
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